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Abstract
This comprehensive review aimed to evaluate the relationship between SARS-CoV-2 infection (the cause of coronavirus 
disease 2019, or COVID-19) and the metabolic and endocrine characteristics frequently found in women with polycystic 
ovary syndrome (PCOS). In the general population, COVID-19 is more severe in subjects with dyslipidemia, obesity, diabetes 
mellitus, and arterial hypertension. Because these conditions are comorbidities commonly associated with PCOS, it was 
hypothesized that women with PCOS would be at higher risk for acquiring COVID-19 and developing more severe clinical 
presentations. This hypothesis was confirmed in several epidemiological studies. The present review shows that women 
with PCOS are at 28%–50% higher risk of being infected with the SARS-CoV-2 virus at all ages and that, in these women, 
COVID-19 is associated with increased rates of hospitalization, morbidity, and mortality. We summarize the mechanisms 
of the higher risk of COVID-19 infection in women with PCOS, particularly in those with carbohydrate and lipid abnormal 
metabolism, hyperandrogenism, and central obesity.
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Abbreviations
ACE2	� Angiotensin-converting enzyme 2
ADAM	� A disintegrin and metalloproteinase
Ang	� Angiotensin
ARDS	� Acute respiratory distress syndrome
ATIR	� Angiotensin receptor 1
BMI	� Body mass index
COVID-19	� Coronavirus disease 2019
CVD	� Cardiovascular disease
DPP-4	� Dipeptidyl peptidase 4
1L	� Interleukin
IR	� Insulin resistance
LH	� Luteinizing hormone

NAFLD	� Non-alcoholic fat liver disease
NK cell	� Natural killer cell
PCOM	� Polycystic ovary morphology
PCOS	� Polycystic ovary syndrome
RAS	� Renin-angiotensin system
SARS	� Severe acute respiratory syndrome
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus virus 2
T2DM	� Type 2 diabetes mellitus
TMPRSS2	� Transmembrane serine protease 2
USA	� United States of America
WHO	� World Health Organization

1  Introduction

Coronavirus disease 2019 (COVID-19) was declared a 
pandemic in March 2020 [1]. Women and young people 
were reported to be less affected [2, 3]. COVID-19 might 
be more severe and carry higher mortality rates in patients 
with comorbidities, such as hormone abnormalities, diabetes 
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mellitus, obesity, arterial hypertension, and dyslipidemia 
[4–9]. Among endocrine conditions, hyperandrogenism, 
adrenal insufficiency, and hyperthyroidism may facilitate 
the acquisition of the infection and be associated with 
more severe clinical forms of the disease. Polycystic ovary 
syndrome (PCOS), diagnosed in 5% to 20% of women of 
reproductive age [7, 10], is characterized by hyperandro-
genism (70%–80%) and frequently accompanied by obe-
sity (29%–70%), glucose intolerance (30%–40%), insulin 
resistance (IR) (18%–48%), diabetes mellitus (4%–26%), 
dyslipidemia (70%–75%), arterial hypertension (5%–25%), 
non-alcoholic fatty liver disease (NAFLD) (34%–70%), and 
low-grade chronic inflammation (20%–27%) [11–17]. This 
spectrum of clinical and laboratory findings in PCOS are 
major risks for severe COVID-19 [4, 18–20]. Because PCOS 
is among the most common endocrine diseases in women of 
reproductive age and is frequently associated with a higher 
risk of more severe COVID-19, this review updates the cur-
rent knowledge on the subject. The need for elucidating the 
mechanisms of this association among the various PCOS 
phenotypes was also considered.

2 � Methods

This narrative review aimed to identify possible connec-
tions between COVID-19 severity, PCOS phenotypes, and 
associated comorbidities. We identified the most relevant 
publications in the past two years in the English language. 
We searched PubMed, Web of Science, and Google Scholar 
to identify studies from December 2019 to November 2021. 
The search was enlarged by retrieving bibliographic cita-
tions from the obtained articles. The following major sub-
ject headings were combined: polycystic ovary syndrome 
and SARS-Coronavirus, PCOS and COVID-19, obesity 
and COVID-19, hyperandrogenism and COVID-19, IR and 
COVID-19, dyslipidemia and COVID-19. Abstracts were 
reviewed, and the most relevant complete publications were 
used (Fig. 1).

3 � COVID‑19 prevalence, physiopathology, 
and risk factors

3.1 � Prevalence and clinical manifestations

The pandemic began in December 2019 in Wuhan, China, 
via zoonotic transmission of a virus from animals to 
humans [2]. A novel coronavirus was identified that shared 
substantial homology with SARS-CoV; the new virus 
was named SARS-Cov-2. Epidemiological data showed 
that COVID-19 is more frequent in men than in women 
and older adults than in children [21]. The worldwide 

case-fatality rate ranges from 2.0% [2] to 7.2% [22–24]. 
It is currently estimated that COVID-19 occurred in over 
258 million individuals worldwide and has resulted in 5 
million deaths [25]. Children represent 7% to 27% of all 
cases of COVID-19 but only 1.2% to 4.2% of hospitaliza-
tions [26–29].

Symptoms of COVID-19 range from entirely asympto-
matic to those of a common cold to a drop in oxygen satura-
tion, pulmonary dysfunction, and death [29]. Asymptomatic 
carriage has resulted in poorly defined viral prevalence rates; 
however, the rate is estimated at 35% [30]. Seropositivity 
in these subjects had been estimated at 4.6% in the USA 
(ranging from 1.1% to 14.2%) [31]. Between the ages of 
18 to 44 years, about four to five cases are undiagnosed 
for every diagnosed case of COVID-19 [31, 32]. There is 
a general sequel rate of 0.30–0.43 and 0.52 among those 
requiring hospitalization [32]. Older age is associated with 
a moderately increased risk of persistent symptoms [33], 
such as fatigue, dyspnea, insomnia, joint pain, and memory 
problems [32].

2158 records iden�fied through database
searching from December 2019 to October
2021

1883 were excluded by means of
�tle/abstract.

275 records assessed for eligibility 

71 full text were excluded due to 
repe��ve informa�on.

204 ar�cles were included in the review

Fig. 1   Flowchart for review of the relationship between COVID-19 
and polycystic ovary syndrome
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3.2 � Physiopathology

SARS-CoV-2 infection causes an acute respiratory syndrome 
called COVID-19 (later broadened to include extrapulmonary 
manifestations). To enter cells, SARS-CoV-2 spike S protein 
requires two enzyme receptors, the angiotensin-converting 
enzyme 2 (ACE2) receptor and transmembrane protease ser-
ine 2 (TMPRSS2) [34–36]. SARS-CoV-2 primarily affects the 
respiratory system, kidneys, heart, liver, central nervous sys-
tem, and coagulation system. Involvement of the cardiovascu-
lar system may be associated with microvascular obstructive 
thrombo-inflammatory alterations [37]. The average incuba-
tion period lasts 5 to 6 days, and the initial symptoms include 
fever, dry cough, runny nose, sore throat, headache, dizziness, 
weakness, anosmia, ageusia, vomiting, and diarrhea [25].

3.3 � Risk factors

Many clinical abnormal conditions are thought to facilitate 
SARS-CoV-2 infection. It may be more frequent and severe, 
with increased morbidity and mortality in the context of 
age, gender, metabolic, cardiovascular, and endocrine dis-
eases [5]. Despite having a lower incidence in younger and 
female subjects, several comorbidities may increase the 
risk for COVID-19 in these populations [3, 4]. COVID-19 
is more severe in patients with hypertension, cardiac disease, 
pulmonary disease, chronic kidney disease, and liver dis-
ease [38–40]. The Center for Disease Control lists about 25 
clinical-laboratory abnormalities associated with increased 
prevalence of COVID-19. These included cancer, diabetes 
mellitus, immunocompromised state, heart diseases, chronic 
kindly disease, chronic obstructive pulmonary disease, obe-
sity, pregnancy, smoking, liver disease, and arterial hyper-
tension [41]. Additionally, several endocrine conditions were 
associated with more frequent COVID-19. Hyperandrogen-
ism may facilitate SARS-Cov-2 infection. For this reason, 
polycystic ovary syndrome (a hyperandrogenic condition) 
gives rise to an almost 30% increased risk for COVID-19 
compared with controls, even after adjustment for body mass 
index (BMI), age, and impaired glucose regulation [20].

3.3.1 � Age

Despite infants and young children having a higher risk 
of respiratory tract infection, SARS-CoV-2 causes milder 
symptoms COVID-19 in younger people than in older 
patients [42, 43]. The reasons for this difference in sus-
ceptibility are not clear [2]. Children may carry smaller 
viral loads. It is also possible that the expression of ACE2 
in lung and epithelial cells is lower in younger humans. 
Young people also present a qualitatively different response 
to the SARS-CoV-2 virus than adults, with less transition 
from naive T cells to central memory, effector, and effector 

memory T cells [44]. It is also possible that the simultane-
ous presence of other viruses in the lungs and airways in 
young children can compete with SARS-CoV-2, limiting its 
proliferation and cell invasion [2, 45]. Finally, combining 
these possibilities may explain why young people have a 
lower risk of COVID-19 than older people.

3.3.2 � Gender

It appears that the likelihood of acquiring COVID-19 is sim-
ilar in both sexes or is slightly higher in males; nevertheless, 
the severity of the disease is less pronounced in women than 
in men [3, 46–48]. Immunological and hormonal differences 
between men and women may explain this phenomenon [36, 
49–51]. Despite identical susceptibility, severity and prob-
ability of death are higher in men, independent of age [3]. 
The effects of androgen levels via the expression of ACE2 
and TMPRSS2 may explain the sex-specific differences in 
the disease severity [46, 48, 51–58]. Conversely, estradiol 
(and possibly progesterone) may protect women [53, 59]. 
Estrogens promote the production of anti-inflammatory 
cytokines (interleukin-10) and increase helper T and B cell 
numbers, thereby increasing antibody production. Estrogens 
suppress the production of proinflammatory cytokines and 
the migration of macrophages and monocytes into infected 
tissues [53]. Estrogens may also enhance vitamin D activity, 
reducing cytokine production [60, 61]. Moreover, women 
mount more robust immune responses than men in clear-
ing viral loads [62, 63]. When vaccinated, women produce 
overresponses that can be twice as strong as men's [49, 64, 
65]. Finally, the presence of two X chromosomes accounts 
for a more robust immune system that more effectively fights 
infections [65, 66].

3.3.3 � Metabolic abnormalities

Obesity, dyslipidemia, IR, and diabetes mellitus also worsen 
COVID-19 [67, 68]. Obesity is characterized by adipose 
tissue hypoxia resulting in a chronic state of increased 
proinflammatory cytokines. Adipose tissue is also a target 
and reservoir of SARS-CoV-2 [69, 70]. The increased 
risk of severe COVID-19 in "Obesity" is well established 
[71–75]; the risks are higher for hospitalization and death 
[73, 76, 77]. The risk was estimated to be three-fold higher 
than normal-weight individuals [78]. Dyslipidemia is one 
of the most common comorbidities that worsen COVID-
19. However, it remains a matter of debate whether 
dyslipidemia significantly influences COVID-19 outcome 
[79]. Two meta-analyses found that even when controlling 
for age and sex, dyslipidemia increases COVID-19 severity 
[40, 79]. Furthermore, treatment with statins may reduce 
severe disease and mortality in patients with dyslipidemia, 
mediated by their immune-modulatory effects [80–82]. 
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Patients with diabetes mellitus have increased susceptibility 
to infections [83, 84] because of impaired immune function 
[85–87]. Despite SARS-CoV-2 infection in diabetic subjects 
being associated with adverse outcomes, it appears that 
the infectivity is not increased in the context of diabetes 
itself [88]. The hyperglycemic state participates in the 
pathogenesis and outcomes of respiratory infections 
[88–90]. Therefore, these findings suggest that patients with 
diabetes may experience higher viral loads when infected 
with respiratory viruses [87, 88].

3.3.4 � Endocrine diseases

Endocrinological conditions such as thyroid dysfunction, 
adrenal dysfunction, and hyperandrogenism are related to 
increased susceptibility to acquiring COVID-19 and disease 
severity [9, 91, 92]. There is a direct effect of coronavirus on 
the thyroid gland [8]. Studies indicated that lower levels of 
triiodothyronine and thyroxine were found in SARS infec-
tions than controls, attributed to the destruction of follicu-
lar and parafollicular thyroid cells [91, 92]. There are few 
data regarding the relationship between COVID-19 infec-
tion and thyroid dysfunction [91, 93–95]. Clinical thyroid 
dysfunction was reported in 11% of subjects hospitalized 
with COVID-19: thyrotoxicosis in 94%, overt hypothyroid-
ism in 6%, and subclinical thyroid dysfunction in 14% [91]. 
Based on thyroxin stimulating hormone levels, hyperthy-
roidism was identified in 20% and hypothyroidism in 5% 
of hospitalized patients [91]. Thyrotoxicosis in COVID-19 
was associated with high proinflammatory interleukin-6 (IL-
6) levels and a high prevalence of thromboembolic events 
[91]. Thyroiditis is accompanied by hyperactivation of the 
Th1/Th2 response with overproduction of proinflammatory 
cytokines [23, 92, 96], a pattern like the one that occurs 
in abnormal conditions such as COVID-19. Abnormal thy-
roxin stimulating hormone levels were associated with more 
prolonged hospitalizations and higher in-hospital mortal-
ity, primarily in women with thyrotoxicosis [91]. Regarding 
patients with a previous diagnosis of hyperthyroidism who 
were taking antithyroid medications, the risk of agranulocy-
tosis overlapped with COVID-19, and complete blood count 
sare recommended if the infection is suspected [92].

Adrenal insufficiency may increase the risk of COVID-19 
[97] through impaired immune function and defective neutrophil 
and natural killer (NK) cell activity [97]. Whether the COVID-
19 outcome is worsened in adrenal insufficiency is controversial 
[98]. It appears that COVID-19 promotes degeneration and 
necrosis of adrenal cortical cells through a cytopathic effect 
of the virus [99]. It also appears that, in the SARS-CoV-2 
infection, specific amino acid sequences mimic sequences of 
adrenocorticotropic hormone [98]. In the case of suspicion of 
SARS-CoV-2 infection in patients with adrenal insufficiency, the 
hydrocortisone dosage might be immediately adjusted [100]. Of 

note, achieving physiological cortisol concentrations in patients 
with adrenal insufficiency and COVID-19 is challenging. 
Patients with Cushing’s disease may also be at higher risk of 
COVID-19 and severe manifestations [9, 101].

As mentioned earlier, sex differences in COVID-19 suggest 
that men are more susceptible and have worse outcomes and 
mortality than women in all adult age groups [22, 50]. SARS-
CoV-2 spike proteins are primed by ACE2 and TMPRSS2 
enzymes, which themselves are upregulated by testosterone 
levels [50]. Androgens may increase the risk and severity of 
COVID-19 [102, 103]. Nevertheless, it appears that a higher 
susceptibility to SARS-CoV-2 infection does not imply a higher 
risk of death [103]. In general, the compromised antiviral 
immune response to SARS-CoV-2 in men has been attributed 
to androgen levels [104]. Otherwise, in women, hypoestrogen-
ism by ovariectomy or treatment with anti-estrogens increased 
morbidity and mortality, suggesting a protective effect of estro-
gen [105]. In summary, there are conflicting findings regarding 
the role of testosterone in COVID-19; however, testosterone 
modulates the transcription of the TMPRSS2 gene, inhibiting 
the expression of the protein required for viral entry into cells 
[30, 106]. Conversely, there is also evidence that low testos-
terone levels might worsen COVID-19 outcomes [107, 108].

4 � COVID‑19 and PCOS

In women of reproductive age, the prevalence of PCOS 
ranges from 5 to 20% [7, 10], depending on age, ethnicity, 
and criteria used for making the diagnosis [18]. The Rotter-
dam criteria with the sub-classification of PCOS phenotypes 
are currently recommended [109]. Women with PCOS pre-
sent four phenotypes according to the presence or absence 
of hyperandrogenism, oligo/anovulation, amenorrhea, and 
polycystic ovary morphology (PCOM) by ultrasound.

The phenotypes may be associated with varying propor-
tions of comorbidities such as obesity (38%–88%), arterial 
hypertension (5%–25%), glucose intolerance (30%–40%), IR 
(30%–70%), dyslipidemia (70%–75%), NAFLD (24%–55%), 
and non-alcoholic steatohepatitis (44%). Nevertheless, the 
most important clinical features of PCOS are hyperandro-
genemia, visceral obesity, and IR [110–112].

A clear explanation of PCOS pathophysiology is lacking. 
The heterogeneity of PCOS reflects several possible patho-
physiologies. An increased frequency and amplitude in lute-
inizing hormone (LH) pulses may be found in most patients. 
Higher LH levels are accompanied by increased testosterone 
production by theca cells. The resulting hyperandrogenism 
may be associated with IR and hyperinsulinemia. Further-
more, a multigenic polymorphism and steroidogenic enzyme 
defects can be found in some women with PCOS [113, 114].

Epidemiological studies suggest that PCOS women are 
more susceptible to infections than women without PCOS. The 
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crude incidence of COVID-19 was 18.1 per 1000 person-years 
among women with PCOS and 11.9 per 1000 person-years 
among those without [19, 20]. A population-based study in the 
United Kingdom (including more than 21,000 PCOS patients 
with an average age of 39 years) suggested that PCOS subjects 
have a 51% higher risk of COVID-19. This risk decreased to 
28% after adjusting for age, BMI, and other confounding varia-
bles [19]. Despite being young and female, PCOS patients have 
the disadvantage of frequent comorbidities that may increase 
the risks of severe COVID-19 [115] (Table1).

IR associated with hyperinsulinemia, weight gain, and 
obesity enhances steroidogenesis and hyperandrogenism. 
Taken together, these features that are frequent in PCOS 
explain the association between PCOS and more preva-
lent SARS-CoV-2 infection [116] (Fig. 2). Additionally, 
endocrine and immune features of PCOS lead to immune 
dysfunction and a low-grade chronic inflammatory state 
[117]. Vitamin D levels are low and negatively associated 
with various comorbidities in PCOS. These low levels are 
also associated with COVID-19 [118–121].

4.1 � COVID‑19in PCOS phenotypes and associated 
comorbidities

The clinical relevance of PCOS phenotypes is based on ano-
vulation, hyperandrogenemia, obesity, hyperinsulinemia, 
and low-grade chronic inflammation, with varying increased 

risk for type 2 diabetes mellitus (T2DM), dyslipidemia, and 
cardiovascular disease (CVD); the prevalence of these con-
ditions varies across populations [18, 122]. In other words, 
the clinical relevance of COVID-19 in women with PCOS 
might be associated with phenotypes.

4.1.1 � Hyperandrogenism

Testosterone levels, frequently increased in PCOS sub-
jects, inhibit immunity and controls the expression of 
TMPRRS2 and ACE2, facilitating viral penetration into 
cells of various tissues [50, 56, 58, 104, 108, 123, 124] 
(Fig. 3). Women with PCOS and hyperandrogenemia have 
a worse metabolic profile than normoandrogenemic women 
with PCOS [15, 16, 125]. As previously stated, androgens 
favor SARS-CoV-2 infection [52, 56–58, 126–130]. Stud-
ies of these phenomena in humans are supported by animal 
models [123]. In addition to higher susceptibility to the 
SARS-CoV-2 virus, women with hyperandrogenic PCOS 
phenotype have more pronounced symptoms than women 
with PCOS and normal androgen levels [131]. The role of 
hyperandrogenemia in COVID-19 severity is supported by 
the benefit of anti-androgens against severe manifestations 
of COVID-19 [4, 50].

4.1.2 � Obesity

The major contributing factors for more severe clinical forms 
of COVID-19 in obesity are associated respiratory dysfunc-
tion [132, 133], overexpression of ACE2 in adipocytes, 
chronic systemic inflammation, and immune system hyper-
activation [62, 134, 135]. Subjects with a BMI over 30 kg/
m2 have a greater risk of death by COVID-19 [72, 75, 136], 
even after controlling for age and sex [71, 137]. In addition, 
obesity is associated with IR, leading to immune dysregu-
lation characterized by amplified immune responses [138, 
139], making the immune system more vulnerable to infec-
tions [140]. Increased levels of proinflammatory cytokines, 
NK cells, and mucosal-associated invariant T cells in obe-
sity are also implicated in the pathogenesis of COVID-19 
[73, 141, 142]. Additionally, higher proinflammatory dipep-
tidyl peptidase4 (DPP-4), and consequent hyperinsulinemia 
independently increase the risk of COVID-19 in obesity 
[143]. DPP-4 might interact with the S1 domain of the viral 
spike glycoprotein of SARS-CoV-2, allowing the virus to 
enter cells [144]. Obesity is also associated with a higher 
thrombosis risk relevant to coronavirus infection [145–147].

Concurrent hypoventilation and obstructive sleep apnea 
associated with obesity may compromise respiratory func-
tion [146, 147]. Overall, obesity might increase the risk of 
comorbidities such as diabetes, cardiovascular disease, and 

Table 1   Comparable comorbidities that increase the risks for 
COVID-19 disease in women with and without polycystic ovary syn-
drome

Subjects Comorbidities

Non-PCOS
Hyperandrogenism
Obesity
Arterial hypertension
Insulin resistance
Hyperglycemia
Dyslipidemia
Liver disease
Kidney disease
Pulmonary disease

PCOS
Hyperandrogenism
Obesity
Arterial hypertension
Insulin resistance
Dysglycemia
Dyslipidemia
Non-alcoholic fatty liver disease
Non alcoholic steatohepatitis
Low-grade chronic inflammation
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thrombosis risk in the context of COVID-19 [148, 149]. 
Consequently, obesity (a common clinical feature of women 
with PCOS) is frequently associated with greater severity, 
poor outcome, and increased death rates from COVID-19 
infection in these women [22, 146, 150]. The expression of 

ACE2 is also higher in subcutaneous and visceral adipose 
tissue in PCOS, permitting the cellular entrance of SARS-
CoV-2 [149, 151, 152]. Visceral adipose tissues in PCOS 
also overexpress proinflammatory cytokines, worsening 
COVID-19 outcome [117, 153, 154].

Fig. 2   In women with polycystic ovary syndrome (PCOS), plasma 
renin levels are high, and the renin-angiotensin system (RAS) is 
overactivated, leading to high amounts of Ang II. Excess Ang II 
causes ACE2 to dissociate from the angiotensin receptor 1 AT1R 
(AT1R) and bind to AT1R. The binding of angiotensin II to AT1R 
results in vasoconstriction, increased vascular permeability, pul-
monary edema, and acute respiratory distress syndrome (ARDS). 
When ACE2 becomes detached from AT1R (indicated by broken red 
arrow), it increases the entry point for SARS-CoV-2 into pneumo-
cytes. The viral infection might also be facilitated by overexpression 
of androgen-induced expression of TMPRSS2 in PCOS, as the andro-

gen levels are higher. Upon binding with ACE2, the SARS-CoV-2–
ACE2complex becomes internalized and undergoes proteasomal 
degradation of ACE2 inside the cell. This may cause the reduction 
of ACE2 levels in lung cells. High Ang II levels also stimulate the 
adrenal gland to increase aldosterone level, which, in turn, decreases 
potassium and increases sodium levels, ultimately causing increased 
blood pressure. Taken together, these mechanisms could result in 
severe outcomes inCOVID-19-infected women with PCOS (from 
Moin et  al. [116]; Metabolism Open [115], with permission of CC-
Creative Commons License Deed)
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4.1.3 � IR/diabetes mellitus

Elevated serum glucose levels in diabetes are associated with 
seven-fold higher morbidity and mortality from COVID-19 
[85, 86, 89, 138]. Overall, IR and diabetes mellitus type 
1 and 2 are risk factors for SARS-CoV-2 infection [86, 
155–157]. Previously, higher expression of ACE2 in pan-
creatic islets was associated with diabetes mellitus [158]. 
Although the prevalence of COVID-19 in diabetic women 
does not appear to be different from that of the general 
population, morbidity and mortality are more significant in 
patients with diabetes [22, 159–163].

There are several mechanisms by which dysglycemia 
increases the susceptibility to severe COVID-19. These include 
higher affinity or more favorable cellular binding of SARS-
CoV-2 to ACE2 receptors, facilitating cell entry of SARS-
CoV-2 by increased expression of ACE2 through reduced 
ADAMTS 17 activity as a consequence of hyperinsulinemia 
[164]. There is also reduced viral clearance, upregulation of 
ACE2 through blockade of the renin-angiotensin system, and 
reduced T-cell function through defective phagocytosis by neu-
trophils, monocytes, and macrophages [26, 85, 86, 165–167]. 
There is also increased susceptibility to hyperinflammation 
[138, 168] and increased levels of DPP-4, which degrades 
glucagon-like peptide 1 [144]. Dysglycemia also activates 
plasmin and thrombin, leading to a hypercoagulable state 
[169, 170]. Finally, the binding of SARS-CoV-2 to the ACE2 
receptor may damage β-pancreatic cells, overwhelming the 
protective effect of the renin-angiotensin system, causing IR 
and increased SARS-CoV-2 internalization [158, 171]. The 
immune response is altered in hyperglycemic states, mediated 

by inhibiting lymphocyte proliferation and the impairment of 
macrophage and neutrophil functions [172, 173].

Because IR/diabetes mellitus is found in 30%to70% of 
women with PCOS, they are clinical biomarkers of more 
severe COVID-19 in these women [174]. In PCOS, IR is 
associated with increased proinflammatory cytokines and 
higher expression levels of ACE2 [175–177]. It appears 
that metformin, frequently used in PCOS women with IR, 
has antiviral effects mediated by activation of the adenosine 
monophosphate-activated protein kinase pathway, modifying 
the ACE2 receptor, and blocking the entry of SARS-CoV-2 
into cells [177, 178]. It must be noted that, in the presence 
of marked dehydration and renal insufficiency in severe 
COVID-19, metformin must be discontinued [95, 165]. In 
the association of PCOS with type 2 diabetes mellitus and 
COVID-19, DPP4 inhibitors may be used; however, insulin 
is the treatment of choice [163, 179]. Of note, glucocorti-
coid treatment should not be used because it may aggravate 
glucose and metabolic homeostasis [95, 165].

4.1.4 � Dyslipidemia

Dyslipidemia increases the severity and mortality of 
COVID-19 [40, 180]. Lower levels of high-density lipo-
protein cholesterol preclude the stimulation of reverse cho-
lesterol transport from the peripheral compartments to the 
liver, immune system modulation, and infection control. 
Studies have shown that lower levels of total cholesterol 
and low-density lipoprotein cholesterol were associated 
with increased COVID-19 severity [181, 182]. Investigators 
reported that hypercholesterolemia stimulates inflammatory 

Fig. 3   Postulated mechanism 
of increased SARS-CoV-2 
infection and worsened clinical 
outcomes in PCOS. In PCOS, 
elevated androgens upregulate 
the SARS-CoV-2 receptor 
ACE2 and modify host pro-
teases to increase SARS-CoV-2 
viral entry into tissues. The Up 
arrow signifies increase(s); the 
lightning bolt represents injury 
(from Lizneva et al. [122, 123], 
with permission of CC-Creative 
Commons License Deed)
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responses and increases COVID-19 mortality [83, 84]. 
More robust studies are needed despite several publications 
supporting the higher risk of COVID-19 in dyslipidemic 
patients [180].

Women with PCOS have an increased risk of hyperlipi-
demia, non-alcoholic fatty liver disease, and central obe-
sity, tightly associated with hyperandrogenism [18, 40, 153, 
181, 182]. These conditions are associated with frequent 
hospitalization for COVID-19 [183]. In about 5% of patients 
with COVID-19, hyperlipidemia was present [184]. Previous 
reports associated different SARS infections with dyslipi-
demia [12]. Interestingly, statin (used to treat dyslipidemia) 
exerts pleiotropic effects on inflammation and modulates the 
immune response [183]. There are reports of the effective-
ness of statin treatment in some viral infections [185–187]. 
Whether statins may treat COVID-19 infection in dyslipi-
demic women with PCOS remains a hypothesis to be tested.

4.1.5 � Arterial hypertension

Despite limited data, hypertension is considered one of the 
most critical risk factors for COVID-19. The loss of ACE2 
through binding of SARS-CoV-2 may shift the system to 
higher angiotensin II and lower angiotensin (1–7) expres-
sion, activating the resin-angiotensin aldosterone system 
with vasoconstriction, sodium retention, oxidative stress, 
fibrosis, and increased baseline angiotensin levels (1–7) [50, 
188, 189]. The rate of hypertension in patients with COVID-
19 ranges from 10 to 34% [190]. Women with PCOS have 
higher blood pressure than non-PCOS women, particularly 
in the reproductive years and those with increased serum 
androgen levels [18, 191–194] and activation of the renin-
angiotensin system [128, 190, 191]. Patients with arterial 
hypertension with or without PCOS have a 3–fourfold higher 
risk of death by COVID-19 [15, 192, 193]. In women with 
PCOS and COVID-19, renal complications are commonly 
mediated by upregulated renal ACE2 mRNA [128]. Of note, 
ACE blockers attenuate the risk of COVID-19 in hyperten-
sive patients [194, 195].

4.1.6 � Low‑grade chronic inflammation

The risk of COVID-19 is exceptionally high in individuals 
with pre-existing conditions that impair immune response 
and amplify proinflammatory responses. Therefore, any 
condition involving a chronic inflammatory state may 
predispose a patient to acquire SARS-COV-2 and suffer a 
poor COVID-19 outcome [196]. Inflammation may accom-
pany elevated BMI, obesity, hypertension, diabetes, and 
outcomes [197]. In summary, inflammation may facilitate 
severe COVID-19. The pre-existing inflammatory condi-
tion in PCOS renders patients more susceptible to activating 
proinflammatory pathways in response to infections [198], 

irrespective of total fat mass [199]. Central obesity in PCOS 
with dysfunctional adipocytes correlates with marked adi-
pose tissue overproduction of cytokines [17] and the chronic 
inflammatory state [18], favoring COVID-19 in women with 
PCOS [200].

4.1.7 � Vitamin D deficiency

Vitamin D influences innate and adaptative immune 
responses that regulate IL-6, and it inhibits the release of 
proinflammatory cytokines from macrophages in response 
to various viruses [118, 119, 201]. Lower vitamin D lev-
els have been associated with an impaired immune system 
and a higher risk for COVID-19 [202]. Because about 60% 
of women with PCOS have vitamin D deficiency [203], it 
is expected that a decrease in vitamin D levels will lead 
these patients to a higher risk of severe COVID-19 [201]. In 
PCOS, decreased vitamin D levels are associated with fac-
tors related to systemic macrophage-derived cytokine panels 
[117, 118, 204]. Additionally, vitamin D supplementation 
was shown to reduce the risk of COVID-19 via impairment 
of macrophage maturation and decreased serum levels of 
proinflammatory cytokines [118, 119].

5 � Concluding remarks

COVID-19 has been consistently reported to be more severe 
and fatal in the presence of comorbidities. Young age and 
female sex appear to be protective factors. Obesity, type 2 
diabetes mellitus, and arterial hypertension are significant 
predisposing factors. The low-grade chronic inflammatory 
state is the core component linking these underlining con-
ditions to poor COVID-19 outcomes. Some endocrinologi-
cal dysfunctions also facilitate SARS-CoV-2 infection and 
COVID-19 severity, particularly hyperandrogenism and thy-
rotoxicosis. Considering that a chronic inflammatory state is 
found in nearly 30% of PCOS patients, COVID-19 therapy 
must be tailored for women with PCOS. The hyperandro-
genism present in 80% of PCOS patients inhibits immu-
nity and controls the expression of TMPRRS2 and ACE2, 
facilitating viral prescription into cells. Prescription of anti-
androgens appears to have a beneficial effect on COVID-19 
manifestations.

Obesity (the major contributing factor for severe 
COVID-19) is associated with amplified immune responses, 
increased proinflammatory cytokine levels, higher levels of 
DPP-4, and hyperinsulinemia. Because obesity is found in 
30%–70% of women with PCOS, SARS-CoV-2 infection 
in PCOS requires specific management of concurrent IR. 
The prescription of metformin for these patients appears to 
modify the ACE2 receptor and block the entry of SARS-
CoV-2 into cells. Hypercholesterolemia appears to increase 
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the severity of COVID-19 infection and dyslipidemia, which 
is found in two-thirds of women with PCOS and is closely 
associated with hyperandrogenism, NAFLD, and central 
obesity (conditions frequently associated with PCOS). 
Hypercholesterolemia stimulates the inflammatory response 
and increases COVID-19 mortality. Statins may modulate 
inflammation and immune responses; their use in COVID-19 
in women with PCOS needs to be investigated. It is plau-
sible to conclude that the association between COVID-19 
infection and PCOS syndrome results in more severe clini-
cal manifestations. Specific protocols for caring for these 
patients must be developed.
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