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Abstract

The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear 

pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein 

components of the lamina and these other nuclear envelope substructures. Mutations in the single 

gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause 

diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with 

features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also 

cause an array of diseases that selectively affect different tissues or organs. In some instances, 

the molecular and cellular consequences of laminopathy-causing mutations are known. However, 

even when these are understood, mechanisms explaining specific tissue or organ pathology remain 

enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may 

affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, 

including responses to mechanical stress.
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INTRODUCTION

In 1994, Daniela Toniolo and colleagues (1) reported that mutations in a novel gene caused 

X-linked Emery-Dreifuss muscular dystrophy. Two years later, the encoded transmembrane 

protein named emerin after Alan Emery was localized to the nuclear envelope, presumably 

the inner nuclear membrane (2, 3). In 1999, Ketty Schwartz and colleagues (4) reported 

that mutations in LMNA encoding lamin A and lamin C (lamin A/C), peripheral proteins 

of the inner nuclear membrane, cause the phenotypically identical autosomal dominant 

Emery-Dreifuss muscular dystrophy. Soon after, mutations in LMNA were reported to cause 

Dunnigan-type familial partial lipodystrophy (5-7), mandibuloacral dysplasia type A (8), an 

axonal peripheral neuropathy (9), and Hutchinson-Gilford progeria syndrome (HGPS) (10, 

11). These initial studies led to the identification of a group of diseases caused by mutations 
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in genes encoding proteins of the nuclear envelope, which are now often referred to as 

nuclear envelopathies or, more often, laminopathies.

In the past two decades, additional laminopathies have been described. Investigators have 

also provided better descriptions of the genetics, clinical phenotypes, and pathology. The 

development of cellular and animal models has led to a better understanding of nuclear 

envelope protein functions and how their dysfunction may relate to tissue-specific pathology. 

However, deciphering mechanisms of how these disorders affect specific tissues, especially 

when the mutant genes and encoded proteins are widely expressed, has remained elusive. 

This review covers up-to-date aspects of the molecular pathology of the laminopathies, 

summarizing what we know and pointing out gaps in our understanding of this group of 

diseases.

THE NUCLEAR ENVELOPE

The nuclear envelope separates the nucleoplasm from the cytoplasm in eukaryotic cells. 

It consists of the nuclear membranes, nuclear pore complexes (NPCs), and nuclear 

lamina (Figure 1). The nuclear membranes are separated into three morphologically 

distinct domains: inner, outer, and pore. The outer nuclear membrane is contiguous with 

the endoplasmic reticulum and similarly contains ribosomes on its outer surface. It is 

separated from the inner nuclear membrane by the perinuclear space, a continuation of the 

endoplasmic reticulum lumen. The nuclear lamina, a meshwork on intermediate filament 

proteins called lamins, which form noncanonical 3.5-nm-diameter filaments, lines the 

nucleoplasmic side of the inner nuclear membrane (12). The pore membranes connect 

the inner and outer nuclear membranes where NPCs are located. The pore complexes are 

megadalton structures that mediate active and passive transport of substances between the 

nucleus and the cytoplasm (13).

A unique collection of transmembrane proteins concentrate in the inner nuclear membrane, 

along with a few in the pore and outer nuclear membrane of interphase cells (Figure 

2). An initial subtractive proteomics analysis study of extracts of rodent livers identified 

approximately 80 integral inner nuclear membrane proteins (14). After synthesis on 

membrane-bound ribosomes, transmembrane proteins most likely concentrate in the inner 

nuclear membrane as a result of retention by binding to lamins or chromatin after lateral 

diffusion through the interconnected endoplasmic reticulum and nuclear membranes (15). 

The pore membrane contains a small number of transmembrane nucleoporins that anchor 

the pore complexes (13). The outer nuclear membrane generally shares transmembrane 

proteins with the endoplasmic reticulum but contains uniquely localized KASH domain 

proteins, termed nesprins in mammals. The KASH domains of nesprins interact within 

the perinuclear space with the luminal domains of integral inner nuclear membrane SUN 

proteins, forming the linker of nucleoskeleton and cytoskeleton (LINC) complex (16, 17). 

SUN proteins bind to lamins. The cytoplasmic domains of different nesprins interact directly 

or indirectly with actin, microtubule, and intermediate filaments. These connections provide 

a nucleocytoskeletal network mediating proper positioning of the nucleus within the cell and 

the transduction of force from the cytoplasm to the nucleus (18).
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Most nuclear envelope proteins appear to be expressed ubiquitously in most different cell 

types. For example, lamin A/C is present in most terminally differentiated somatic cells 

(19). However, there are differences in the nuclear envelope proteome of different cells 

and tissues (20). This topic has been relatively poorly studied but is likely important in 

understanding the generation of different cellular mechanics, cell cycle regulation, signaling, 

gene expression, and genome organization that may underlie the tissue-specific nature of 

most laminopathies.

LAMINOPATHIES

Mutations in LMNA Cause Four Major Types of Pathology

LMNA on chromosome 1q21.2-q21.3 encodes the A-type lamins lamin A, which is 

posttranslationally processed from a precursor protein, prelamin A, and lamin C (21, 

22). Prelamin A and lamin C are identical for the first 566 amino acids. As a result of 

alternative splicing of RNA in the region encoded by exon 10, lamin C has six unique 

carboxyl-terminal amino acids and prelamin A 98.

Prelamin A contains a cysteine-aliphatic-aliphatic-any amino acid (CAAX) motif at its 

carboxyl terminus that triggers a series of processing reactions to generate lamin A 

(23). First, protein farnesyltransferase catalyzes the addition of a farnesyl moiety to the 

cysteine. Second, either Ras converting CAAX endopeptidase 1 or zinc metallopeptidase, 

STE24 homolog (ZMPSTE24) catalyzes the endoproteolytic cleavage of the -AAX. Third, 

isoprenylcysteine carboxyl methyltransferase catalyzes methylation of the farnesylcysteine. 

Finally, ZMPSTE24 recognizes the farnesylated protein and catalyzes an endoproteolytic 

cleavage leading to the removal of the last 15 amino acids, including the farnesylcysteine 

α-methyl ester.

Mutations in LMNA cause four major types of pathology involving (a) multiple systems 

with features of accelerated aging (progeroid disorders), (b) striated muscle, (c) adipose 

tissue, and (d) peripheral nerve (Table 1). Within each major pathology type, there are 

specific disorders that were described on the basis of clinical phenotypes before the genetics 

were elucidated, with overlap between them. However, while the major pathology types may 

share some features, they are clearly distinct.

Progeroid Disorders

The multisystem diseases with features of accelerated aging can be divided into processing-

deficient and processing-proficient progeroid laminopathies (24). In the first group, 

mutations in LMNA lead to defective prelamin A processing and accumulation of 

farnesylated variants. Similarly, mutations in ZMPSTE24 can lead to defective prelamin A 

processing, prelamin A accumulation, and progeroid syndromes. In the processing-proficient 

disorders, LMNA mutations generate amino acid substitutions in lamin A/C, but prelamin A 

is normally processed.

The most common albeit still ultrarare progeroid disorder caused by defective prelamin 

A processing is HGPS. Children with HGPS have, among other symptoms, growth 

impairment, sclerotic skin, micrognathia, decreased subcutaneous fat, alopecia, prominent 
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cutaneous vasculature, fingertip tufting, and decreased bone density; they generally die in 

their teens from complications of occlusive cardiovascular or cerebrovascular disease (25). 

A dominant de novo c.1824C>T (Gly608Gly) mutation activates a cryptic splice leading 

to an in-frame deletion of 150 base pairs in pre-mRNA encoding prelamin A (10, 11). As 

a result, an internally truncated prelamin A variant, called progerin, accumulates. Progerin 

lacks 50 amino acids, including the second ZMPSTE24 recognition site, and hence retains a 

farnesylated, carboxymethylated cysteine at its carboxyl terminus (Figure 3).

Other LMNA mutations can also lead to accumulation of progerin and cause phenotypes 

more or less severe than HGPS roughly in proportion to the amount of progerin expressed 

(24). An LMNA mutation leading to expression of a farnesylated prelamin A variant with an 

internal deletion of only 35 amino acids causes a progeroid disorder less severe than HGPS 

(24). One study also reported a patient with a de novo LMNA c.1940C>T transversion that 

resulted in a Leu to Arg amino acid substitution at residue 647, abolishing the ZMPSTE24 

cleavage site; she accumulated full-length prelamin A with a single amino acid change and 

suffers from a relatively mild progeroid disorder (26).

Progeroid disorders also arise from loss-of-function mutations in ZMPSTE24. Severity 

of disease correlates with residual activity of the prelamin A processing protease 

(27). Total loss of function causes the neonatal lethal progeroid disorder restrictive 

dermopathy. Homozygous or compound heterozygous partial loss-of-function mutations 

cause mandibuloacral dysplasia type B or clinically similar progeroid disorders. In these 

patients, full-length farnesylated prelamin A accumulates to varying extents. The most 

prominent clinical features in these patients are hypoplasia of the mandible and clavicles, 

acro-osteolysis, and lipodystrophy. The patient with an LMNA point mutation that abolished 

the ZMPSTE24 recognition site had very similar clinical features (26).

Considerable evidence indicates that farnesylated prelamin A and its farnesylated variants 

are responsible for pathology in HGPS and the other processing-deficient progeroid 

laminopathies. Cultured cells from patients with these disorders and genetically modified 

mouse models have abnormal nuclear morphology with blebbing of the nuclear envelope 

(28-34). Treatment of these cultured cells, as well as transfected cells expressing progerin, 

with protein farnesyltransferase inhibitors or a statin plus an aminobisphosphonate that 

reduce protein prenylation restores normal nuclear shape (31-36). More significantly, 

Fong et al. (37) originally showed that treatment of Zmpste24 null mice with a 

protein farnesyltransferase inhibitor reversed profound progeroid phenotypes and prolonged 

survival. Since then, several other studies have confirmed the beneficial effects of blocking 

protein farnesylation in mouse models of HGPS and in mice with ZMPSTE24 deficiency 

(38-40). Human clinical trials have also shown beneficial effects of the farnesyltransferase 

inhibitor lonafarnib in children with HGPS (41, 42). In 2020, the United States Food and 

Drug Administration approved lonafarnib for the treatment of HGPS and other processing-

deficient progeroid laminopathies (42).

While the accumulation of prelamin A or variants, not loss of lamin A function, is clearly 

responsible for the molecular pathology in processing-deficient progeroid laminopathies, the 

downstream mechanistic defects these farnesylated proteins induce are less well understood. 
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Fibroblasts from patients with HGPS have decreased viability and increased apoptosis under 

repetitive mechanical strain, suggesting that accumulation of progerin may lead to the death 

of certain cells exposed to stress (43). Unprocessed prelamin A and progerin also perturb 

DNA damage repair responses, resulting in genomic instability (44). Progerin induces DNA 

replication fork stalling and nuclease-mediated fork degradation, causing replication stress 

and genomic instability, which are accompanied by upregulation of the cGAS/STING 

pathway and activation of an interferon-like innate immune response (45). Progerin and 

farnesylated prelamin A may also bind to and directly modulate the functions of proteins 

involved in DNA repair or other nuclear processes. For example, in induced pluripotent 

stem cells from patients with HGPS, progerin binds to DNA-dependent protein kinase 

catalytic subunit, which is known to be involved in DNA repair and various aging-related 

cellular events (46). Despite intensive investigation, exactly how and to what extent these or 

other pathogenic mechanisms may contribute to cellular dysfunction in processing-deficient 

progeroid laminopathies remain to be firmly established.

Point mutations in LMNA that do not cause farnesylated prelamin A or variant 

accumulation can also cause progeroid disorders. Mandibuloacral dysplasia type A is 

caused by a homozygous arginine-to-histidine amino acid substitution at residue 527 (8). 

These patients have similar symptoms to those with ZMPSTE24 partial loss-of-function 

mutations. Dominant LMNA mutations have also been described in patients diagnosed with 

atypical Werner syndrome (47). Several other homozygous, heterozygous, and compound 

heterozygous LMNA mutations leading to amino acid substitutions have further been linked 

to progeroid disorders (24). The dominant amino acid substitutions tend to cluster in 

structured regions of lamin A/C, including the rod domains conserved among intermediate 

filament proteins and an immunoglobulin-like fold domain in the tail domain. The 

heterozygous amino acid substitutions mostly cluster in a portion of the immunoglobulin-

like fold domain and disrupt the interaction of lamin A/C with barrier-to-autointegration 

factor (48). A homozygous point mutation in the gene encoding barrier-to-autointegration 

factor also causes a progeroid disorder, and the resulting amino acid substitution disrupts 

binding to lamin A/C (49). Barrier-to-autointegration factor was originally discovered as a 

host protein that prevents a DNA copy of a retroviral genome from integrating into itself. 

It was subsequently found to be involved in processes that protect genome integrity such 

as nuclear envelope reformation at the end of mitosis, repair of ruptured envelopes, and the 

DNA damage response (50). Disruption of barrier-to-autointegration factor binding to lamin 

A may alter its normal function. Hence, as in processing-deficient laminopathies, genomic 

instability may be a downstream cellular defect in processing-proficient laminopathies.

Striated Muscle Disease

The first identified pathogenic mutations in LMNA segregated in affected family members 

with autosomal dominant Emery-Dreifuss muscular dystrophy (4). The clinical diagnosis 

of Emery-Dreifuss muscular dystrophy is based on distinctive features of early joint 

contractures, humeroperoneal wasting, and weakness and cardiomyopathy with early 

conduction defects (51). Subsequent studies showed that LMNA mutations cause dilated 

cardiomyopathy with other muscle groups affected, such as limb-girdle muscular dystrophy, 

or even minimal to no skeletal muscle pathology (52-56). In most of these disorders, the 
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age of onset is usually in later childhood or early adulthood, but LMNA mutations also 

sometimes cause congenital muscular dystrophy that presents in the first year of life with the 

eventual development of cardiomyopathy (57).

Dominant LMNA mutations that cause striated muscle disease lead to single amino acid 

substitutions, small deletions, RNA splicing defects, or haploinsufficiency. Extremely rare 

heterozygous mutations have been described (55, 58). Striated muscle disease-causing 

LMNA mutations likely lead to loss of some aspect of lamin A/C function, as demonstrated 

in Lmna null mice (59). Fibroblasts from these mice, as well as from patients with 

LMNA mutations and striated muscle disease, have altered nuclear morphology (59, 

60). Mouse fibroblasts lacking lamin A/C have increased nuclear deformation, defective 

mechanotransduction, and impaired viability under mechanical strain (61). These fibroblasts 

as well as transfected cells expressing lamin A variants that cause muscle disease also 

have defective movement of the nucleus when polarizing for migration (62). Cryoelectron 

tomography analysis of mouse fibroblasts homozygous for an Lmna point mutation that 

causes striated muscle disease shows apparently unaltered organization of the lamin 

filaments but increased nuclear surface area, reduced heterochromatin, and increased lamin 

B1 and B2 expression (63).

Loss of lamin A/C leads to mislocalization of the integral inner nuclear membrane 

protein emerin to the bulk endoplasmic reticulum (59). Expression of some muscle disease–

associated point mutant lamin A variants also leads to a partial mislocalization of emerin 

(64, 65). Emerin and lamin A/C directly interact (66). Mutations in the gene encoding 

emerin cause phenotypically near-identical disease to the striated muscle disease caused 

by LMNA mutations (1). Both lamin A/C and emerin interact with lamina-associated 

polypeptide (LAP) 1, another transmembrane protein of the inner nuclear membrane (67). 

Mutations in the gene encoding LAP1 also cause muscular dystrophy and cardiomyopathy 

in humans, and deletion of the protein from mouse skeletal and cardiac muscle, respectively, 

causes these phenotypes (67-69). These findings suggest that a complex of lamin A/C, 

emerin, and LAP1 has a critical role in striated muscle maintenance.

Adipose Tissue Disease

In 1974, Dunnigan and colleagues (70) described a dominantly inherited form of partial 

lipodystrophy with loss of subcutaneous fat from the limbs and trunk at around the onset of 

puberty. About 25 years later, three groups reported mutations in LMNA in individuals with 

so-called Dunnigan-type familial partial lipodystrophy (5-7). Subsequent to the peripheral 

fat loss, patients develop insulin resistance, diabetes mellitus, hypertriglyceridemia, and 

associated complications such as hepatic steatosis and steatohepatitis (5-7, 71, 72). LMNA 
mutations can also cause atypical lipodystrophic syndromes different from the Dunnigan-

type (73).

About 90% of the mutations causing Dunnigan-type patient lipodystrophy are located in 

LMNA exon 8. These mutations create amino acid substitutions that lead to a diminution 

of the conserved positively charged character of a solvent-exposed surface in the lamin 

A/C immunoglobulin-like fold domain (74, 75). In contrast, amino acid substitutions 

in the same region that cause striated muscle disease disrupt the overall structure of 
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the immunoglobulin-like fold domain (Figure 4). This suggests that LMNA mutations 

causing partial lipodystrophy destroy a positively charged interaction site for a lamin 

A/C binding partner important in adipocyte function. This portion of lamin A/C binds to 

the transcription factor sterol response element binding protein 1, and some data suggest 

that its transcriptional activity is altered by a lipodystrophy-causing lamin A variant (76, 

77). Overexpression of lamin A in preadipocytes inhibits lipid accumulation, triglyceride 

synthesis, and expression of adipogenic markers, whereas embryonic fibroblasts lacking 

lamin A/C accumulate more intracellular lipid (78).

Peripheral Neuropathy

An LMNA mutation generating an arginine-to-cysteine amino acid substitution at position 

298 in the rod domain of lamin A/C causes autosomal recessive peripheral neuropathy 

(9). Individuals with this Charcot-Marie-Tooth disease type 2B1 suffer from an axonal 

neuropathy with variability in the age of onset and the course of the disease (79). Sciatic 

nerves of Lmna null mice have a reduction of axon density, axonal enlargement, and 

nonmyelinated axons similar to phenotypes of human peripheral axonal neuropathies (9). 

However, mice homozygous for the corresponding human point mutation affecting residue 

298 do not develop a detectable peripheral neuropathy phenotype (80).

Mutations in Genes Encoding B-Type Lamins

B-type lamins are encoded by two independent genes in humans, LMNB1 and LMNB2. 

Lamin B1 and lamin B2 are expressed in nearly every cell type from early stages of 

development. Deficiency in lamin B1 or lamin B2 in mice leads to defects in neuronal 

migration and layering within the cerebral cortex and cerebellum, indicating the crucial 

roles of these lamins in the developing brain (81, 82). Consistent with these phenotypes 

in knockout mice, de novo mutations in LMNB1 have been identified in seven individuals 

with primary microcephaly (83). Another study reported that mutations in LMNB1 and 

LMNB2 cause syndromic microcephaly (84). Padiath et al. (85) reported that duplications of 

LMNB1 cause autosomal dominant leukodystrophy, an adult-onset demyelinating disorder. 

Overexpression of lamin B1 in BAC transgenic mice results in aberrant myelin formation, 

axonal degeneration, demyelination, and cognitive and motor defects (86). B-type lamins, 

although widely expressed, appear to have special functions in the central nervous system.

LAMINOPATHIES INVOLVING ENVELOPE PROTEINS OTHER THAN LAMINS 

OR ZMPSTE24

Mutations in genes encoding nuclear envelope proteins other than lamins or the prelamin A 

processing enzyme ZMPSTE24 also cause rare inherited diseases (Table 2). Several of these 

mimic the cardiac and skeletal muscle diseases caused by LMNA mutations. Others affect 

bone or multiple organ systems.

Emerin

As discussed above, mutations in EMD encoding emerin, which interacts with lamin A/C 

and LAP1, cause X-linked Emery-Dreifuss muscular dystrophy (1). Virtually all these 
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mutations cause a loss of emerin expression (2, 3, 87, 88). The clinical symptoms of 

X-linked Emery-Dreifuss muscular dystrophy are almost identical to those of the autosomal 

form caused by LMNA mutations. As with LMNA mutations that cause striated muscle 

disease, dilated cardiomyopathy with skeletal muscle involvement different than classical 

Emery-Dreifuss can occur with loss of emerin (89, 90). Deletion of emerin, deletion of 

lamin A/C, and cardiomyopathy-causing LMNA mutations lead to some of the same cell 

signaling defects, such as ERK1/2 activation (91-93).

Two independent laboratories generated emerin knockout mouse lines. Unlike human 

patients, these emerin-deficient mice display minimal to no muscular dystrophy or 

cardiomyopathy phenotypes (94, 95). However, there is a significant excess of LAP1 

relative to emerin in mouse skeletal muscle compared with that of human. In mice, loss of 

LAP1 from skeletal muscle causes pathology, and combined deletion of emerin significantly 

exacerbates it (67). This suggests that LAP1, which binds to emerin, may compensate for its 

depletion from mouse striated muscle.

MAN1

MAN1 was originally identified by autoantibodies from a patient with a collagen 

vascular disease as a nuclear envelope protein that cofractionated with nuclear lamins 

(96, 97). It has two transmembrane segments with nucleoplasmic amino- and carboxyl-

terminal domains. The amino-terminal region contains a LAP2-emerin-MAN1 (LEM) 

domain, a globular module for approximately 40 amino acids common to several inner 

nuclear membrane proteins. A genome-wide linkage analysis identified heterozygous 

loss-of-function mutations in LEMD3 encoding MAN1 in families with osteopoikilosis, 

nonsporadic melorheostosis, and Buschke-Ollendorff syndrome, disorders of excessive bone 

growth sometimes with skin abnormalities (98). Experiments in cultured cells and knockout 

mice clearly showed that MAN1 antagonizes bone morphogenic protein and transforming 

growth factor-β signaling by binding to Smad2 and Smad3 (98-102). Subsequent research 

determined the structural basis of MAN1 binding to Smad2, Smad3, and their inactivating 

phosphatase PPM1A (103). Hence, MAN1 provides an inner nuclear membrane-localized 

scaffold for inhibiting Smad2/Smad3-mediated signaling. This inhibitory mechanism is 

apparently most prominent in bone and to some extent skin cells, given the phenotypes 

of patients with loss-of-function mutations.

LBR

LBR is a polytopic integral protein of the inner nuclear membrane that interacts 

with B-type lamins and heterochromatin proteins (104-106). It is also homologous to 

sterol reductases of the endoplasmic reticulum (107). Hoffmann et al. (108) identified 

that heterozygous mutations in the LBR gene cause the benign Pelger-Huet anomaly, 

characterized by hypolobulation and altered chromatin structure of neutrophil nuclei. 

Subsequently, Waterham et al. (109) identified a homozygous LBR truncation mutation 

in patients with Greenberg dysplasia, a perinatal lethal syndrome that affects bone and 

other organ systems. A later study of three fetuses with Greenberg dysplasia identified 

mutations in LBR that resulted in the loss of sterol reductase activity (110). Tsai et 

al. (111) reported that disease-causing LBR mutations perturb LBR’s ability to engage 
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in cholesterol synthesis, with some mutations possibly leading to defective binding of a 

cofactor necessary for enzymatic activity and others causing degradation. Ichthyosis mice 

carry a spontaneous mutation in Lbr and have multiple abnormalities, including alopecia, 

syndactyly, hydrocephalus, and neutrophil nuclear morphology similar to human Pelger-

Huet anomaly (112). Mice with an Lbr gene trap mutation are phenotypically similar to 

ichthyosis mice (113).

LUMA

LUMA is an integral protein of the inner nuclear membrane that contains four 

transmembrane segments and is expressed in all or most cell types (114). A positional 

cloning study of 15 families with arrhythmogenic right ventricular dysplasia identified 

heterozygosity for a serine-to-leucine missense mutation at codon 358 in TMEM43 
encoding LUMA (115). Germline Tmem43 null mice and knock-in mice with the 

pathogenic serine-to-leucine amino acid substitution in LUMA have normal cardiac function 

(116). However, transgenic mice overexpressing a human pathogenic LUMA variant in 

cardiomyocytes die at young ages and recapitulate aspects of the human disease, including 

cardiomyocyte death and severe fibrofatty replacement (117).

LAP1

LAP1, encoded by TOR1AIP1, was originally identified in rat liver extracts as an integral 

membrane protein of the inner nuclear membrane associated with the nuclear lamina (118). 

Further investigation showed that it binds to lamin A/C and lamin B1 (119). There are at 

least two isoforms expressed from TOR1AIP1 in humans (120). LAP1 has a nucleoplasmic 

amino-terminal domain, a single transmembrane segment, and a carboxyl-terminal domain 

in the perinuclear space (121). Within the perinuclear space, LAP1 interacts with and 

is necessary to activate the AAA+ ATPase torsinA (122-124). In addition to binding to 

nuclear lamins, LAP1 interacts with emerin in the nucleoplasm (67). In mice, it is essential 

for postnatal skeletal muscle development and maintenance and proper cardiac function 

(67, 68, 125). Recessive mutations in TOR1AIP1 that disrupt the LAP1B isoform cause 

cardiomyopathy and muscular dystrophy (69). TOR1AIP1 mutations leading to a combined 

loss of both LAP1 isoforms causes multisystem disease with severe progressive neurological 

impairment, bilateral cataracts, growth retardation, and early lethality (126).

NET25

NET25 (also called LEM2) was identified by a subtractive proteomic study and is encoded 

by the LEMD2 gene (14). NET25 is structurally related to MAN1 and contains two 

transmembrane segments and a LEM domain in its amino-terminal region (127). It recruits 

ESCRT to repair ruptured interphase nuclei and to promote nuclear envelope reformation in 

mitosis (128, 129). NET25 is also required for proper myogenesis (130). Two collaborating 

research groups have identified a de novo missense LEMD2 mutation in two individuals 

with progeroid facial phenotypes and neurological anomalies (131).
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SUN Proteins

SUN proteins are integral inner nuclear membrane protein components of the LINC 

complex. Sequence variants in SUN1 and SUN2 have been reported in patients with 

muscular dystrophy and cardiomyopathy; however, segregation with disease in the affected 

families has not been demonstrated (132).

Nesprins

Nesprins are integral proteins localized to the outer nuclear membrane (there are also some 

small inner nuclear membrane–localized isoforms) that along with SUN proteins form the 

core LINC complex. SYNE1 encodes nesprin-1, which has several isoforms that interact 

with actin and microtubules. Deletion mutations in SYNE1 cause a recessively inherited 

cerebellar ataxia (133). A homozygous splice site mutation in SYNE1 causes recessive 

arthrogryposis multiplex congenita, a disorder characterized by congenital joint contractures 

and reduced fetal movements (134).

Studies from genetically modified mice implicate nesprin-1 and nesprin-2 function in 

cardiac and striated muscle function (135-137). Mutations in SYNE1 and SYNE2 encoding 

these human proteins have been associated with cardiomyopathy and muscular dystrophy; 

however, segregation within affected family members has not been demonstrated for SYNE1 
(138-140). Horn et al. (141) identified a homozygous truncating mutation in SYNE4 
encoding nesprin-4, an outer nuclear membrane LINC complex protein expressed in the 

hair cells of the inner ear. They further showed that Syne4 null mice, as well as mice lacking 

SUN1, have progressive hearing loss. In these mice, cochlear outer hair cells are formed but 

degenerate as hearing matures, while the inner hair cells remain intact. This result suggests 

that nucleocytoplasmic connections mediated by the LINC complex are essential for the 

viability of the outer hair cells.

TorsinA

A dominantly inherited in-frame TOR1A mutation leading to a single glutamic acid deletion 

in torsinA causes DYT1 dystonia (142). Wild-type torsinA is mainly localized throughout 

the endoplasmic reticulum, but the dystonia-causing variant is preferentially localized in 

the perinuclear space (143). TorsinA is an AAA+ ATPase that is inactive unless it binds 

to LAP1 in the perinuclear space or to LULL1 in the bulk endoplasmic reticulum (122, 

123). Although the dystonia-causing glutamic acid deletion is not located in the active 

site of torsinA, its deletion compromises binding to LAP1/LULL1, leading to significantly 

diminished ATP hydrolysis activity (122, 144).

Transgenic mice overexpressing the dystonia-causing torsinA variant in neurons exhibit 

abnormal involuntary movement defects and have perinuclear inclusion bodies that contain 

ubiquitin, lamin A, and torsinA (145). Germline deletion of Tor1a in mice causes perinatal 

lethality associated with abnormal nuclear membrane morphology of neurons (146). 

Various conditional deletions of Tor1a in subsets of neurons cause dystonic movements in 

mice, along with selective neurodegeneration; these results demonstrate a cell-autonomous 

function of torsinA in neurons (147, 148). Lack of torsinA function appears to lead to 

neuronal defects during development, as deleting it in mouse embryos causes dystonia 

Shin and Worman Page 10

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but deleting it from adult mice leads to no abnormalities. Conversely, restoring torsinA in 

juvenile DYT1 mice rescues motor defects, but there is no benefit from torsinA repletion in 

adult mice (149). Depletion of torsinA or its activator LAP1 from hepatocytes surprisingly 

causes reduced hepatic very-low-density lipoprotein secretion and steatosis (150). However, 

no genome-wide association studies so far have linked genes encoding these proteins to lipid 

metabolism defects or fatty liver disease in humans.

Nuclear Pore Complex Proteins

NPCs are macromolecular structures composed of multiple copies of approximately 30 

distinct proteins, most of which are called nucleoporins (151). NPCs mediate the passive 

and active transport between the nucleus and the cytoplasm, but growing evidence indicates 

that the NPCs have transport-independent roles including cell differentiation, cell cycle 

progression, gene expression, and epigenetic regulation (152). Many of these roles appear to 

be cell type specific, and pore complex composition may vary between cells, as mutations 

in genes encoding constituent proteins cause diseases involving specific organs (Table 3). A 

detailed discussion of these disorders is beyond the scope of this review on laminopathies; 

however, they have been reviewed elsewhere (153, 154).

IN SEARCH OF PATHOGENIC MECHANISMS

As we have already discussed, the molecular and cellular consequences of disease-causing 

mutations in several genes encoding nuclear envelope proteins are understood. For example, 

in HGPS, there is an accumulation of a farnesylated prelamin A that is likely responsible 

for abnormal cellular function. Pathogenic lamin A/C variants in Dunnigan-type partial 

lipodystrophy have an alteration in the surface charge of part of the proteins. However, 

the mechanisms of how alterations in the nuclear envelope proteins, most of which are 

expressed in multiple cell types, lead to pathology affecting specific tissues or organ 

systems remain for the most part enigmatic. In only a few cases, such as mutations in 

SYNE4 causing hearing loss, can cell type–specific expression of the gene explain the organ 

pathology (141).

The field has to a large extent focused on two general hypotheses to attempt to explain the 

tissue-selective nature of most laminopathies. One hypothesis is that the nuclear envelope 

regulates cell-specific transcription and that alterations in its structure lead to pathogenic 

changes in gene expression. The second hypothesis is that defects in the nuclear envelope 

make cells susceptible to damage by mechanical stress; this premise has often been invoked 

to explain the fact that striated muscle is often affected in laminopathies. This so-called 

mechanical stress hypothesis has gained traction as research into the role of the LINC 

complex in cellular force transduction has expanded. Some investigators have combined 

these two hypotheses, suggesting that increased sensitivity of cells with nuclear envelope 

defects to mechanical stress leads to increased activation of stress-responsive signaling 

pathways.

The most clear-cut example of altered gene expression as a pathogenic mechanism 

resulting from mutations in a gene encoding a nuclear envelope protein is the case of 

MAN1. As discussed above, MAN1 functions as an inner nuclear membrane scaffold to 

Shin and Worman Page 11

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deactivate Smad2 and Smad3. Loss of this inhibitory protein leads to increased transforming 

growth factor-β signaling (98-103). Transforming growth factor-β is a potent stimulant 

of bone formation (155). Osteopoikilosis, Buschke-Ollendorff syndrome, and nonsporadic 

melorheostosis caused by mutations in LEMD3 encoding MAN1 are characterized by 

increased bone density, a phenotype consistent with enhanced expression and repression 

of genes regulated by transforming growth factor-β. However, it is not entirely clear why 

MAN1 plays a significant role in inhibiting transforming growth factor-β signaling only in 

bone and in some cases skin, as other tissues are not affected by mutations leading to its 

partial loss of function.

For nearly four decades, investigators have hypothesized that the nuclear envelope functions 

in the maintenance and the alterations of the three-dimensional structure of the genome 

during development, differentiation, and the cell cycle (156). There are numerous reports of 

altered chromatin organization and gene expression driven by disease-causing alterations in 

nuclear lamins and other nuclear envelope proteins. However, there are no robust examples 

of how alterations in the nuclear envelope in a laminopathy lead to chromatin structural 

changes that directly influence the expression of any single gene or group of genes involved 

in pathogenesis. Nonetheless, the hypothesis that disease-associated defects in the nuclear 

envelope alter chromatin in a way that directly leads to pathogenic gene expression changes 

remains prevalent in the field.

Since early reports that cells lacking lamin A/C have altered mechanical properties (61), 

many studies have focused on the hypothesis that stress-induced cellular damage or 

altered responses to mechanical strain underlie pathology in laminopathies. One study has 

demonstrated that in HGPS, progerin expression combined with mechanical stress promotes 

arterial smooth muscle cell death that is reduced by disruption of the LINC complex (157). 

Similarly, skeletal muscle cells with disease-causing alterations in lamin A/C have reduced 

nuclear stability and nuclear envelope damage, both of which are reduced by disruption of 

the LINC complex (158). Migrating fibroblasts, neurons, and myonuclei with alterations 

in lamins also have increased nuclear envelope rupture, DNA damage, and cell death 

(158-160). Increased susceptibility of cardiomyocytes to continuous mechanical strain may 

also explain the increased activation of stress-induced signaling pathways such as ERK1/2 

and AKT/mTOR in hearts of mice with cardiomyopathy-causing Lmna mutations (91, 

161). Abnormal activation of these pathways has detrimental effects on heart structure and 

function, whereas blocking these pathways has beneficial effects (161, 162).

Space limitations for this review prohibit us from citing all of the publications on testing 

the mechanical stress and gene expression hypotheses. Despite all of the research addressing 

these two hypotheses, neither one in and of itself is entirely satisfying. Alterations in both 

cell stress responses and gene expression may occur simultaneously to cause pathology. 

Other hypotheses must be proposed and tested as well. Mutations in different laminopathy-

associated genes, or even different mutations in the same gene such as LMNA, clearly have 

different consequences in different cell types. Hence, no single hypothesis will likely explain 

all of the diverse laminopathies.
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A major limitation of much of the research to date has been that data obtained in cell culture 

models, often fibroblasts from affected patients or transfected cells, cannot always be readily 

applicable to what is observed in affected tissues and organs. Nonetheless, studies in model 

cell systems are essential, as it is difficult to assess the effects of mechanical stress or certain 

other insults on intact organs. Measured gene expression alterations in animal or patient 

tissues also may not reflect the direct effect of a laminopathy-causing gene mutation but 

rather may indicate secondary consequences, such as inflammation or fibrosis. Therefore, 

future research more closely combining cell culture and in vivo approaches will help move 

the field forward. Furthermore, physicians who care for patients with laminopathies and 

pathologists who can appreciate the underlying tissue and organ dysfunction must interact 

more with basic scientists to assure that phenomena observed in cultured cells and even 

small animal models are relevant to what occurs in affected humans. To accomplish this 

interaction, disciplinary barriers will need to be broken down, and collaborations in which 

recognition and grant funding are shared will need to increase. Broader interdisciplinary 

research may be the only approach to elucidate the mechanisms underlying the broad 

range of diseases caused by mutations in genes encoding proteins of a fascinating structure 

common to virtually all eukaryotic cells.
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Figure 1. 
Schematic diagram of the nuclear envelope showing the nuclear membranes, nuclear lamina, 

and a nuclear pore complex. Ribosomes are on the rough endoplasmic reticulum and 

continuous outer nuclear membrane. The nuclear pore complexes are associated with the 

pore membranes, and lamina and chromatin are associated with the inner nuclear membrane.
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Figure 2. 
Schematic diagram showing select transmembrane proteins of the inner, pore, and outer 

membranes of the nuclear envelope. Representative transmembrane proteins that concentrate 

in the inner nuclear membrane are SUN1/2, emerin, LAP1, NET25, LAP2 β, MAN1, and 

LBR. Gp210 is a representative integral protein of the pore membrane. Nesprins concentrate 

in the outer nuclear membrane by binding within the perinuclear space to the luminal 

domains of SUN proteins and also bind to cytoskeletal filaments.
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Figure 3. 
Progerin is a farnesylated prelamin A variant that accumulates in Hutchinson-Gilford 

progeria syndrome (HGPS). The cysteine-isoleucine-serine-methionine (CISM) [cysteine-

aliphatic-aliphatic-any amino acid (CAAX) motif] in prelamin A triggers three sequential 

reactions: (①) Protein farnesyltransferase catalyzes the addition of a farnesyl moiety to the 

cysteine (C), (②) CAAX endopeptidase 1 or ZMPSTE24 catalyzes the endoproteolytic 

cleavage of the -ISM, and (③) isoprenylcysteine carboxyl methyltransferase catalyzes 

methylation of the farnesylcysteine. Normally, ZMPSTE24 (wild type) then recognizes 

farnesylated prelamin A and catalyzes an endoproteolytic cleavage (scissors), leading to 

removal of the last 15 amino acids, including the farnesylcysteine α-methyl ester, to 

generate prelamin A. In HGPS, an LMNA mutation activates an RNA cryptic splice, leading 

to expression of an internally truncated prelamin A variant, called progerin, that lacks 50 

amino acids (red dashed line). This deletion includes the second ZMPSTE24 recognition 

site, and hence it is cleaved and retains a farnesylated, carboxymethylated cysteine at its 

carboxyl terminus.
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Figure 4. 
Amino acid substitutions that cause Dunnigan-type familial partial lipodystrophy diminish 

the positivity of a surface of the lamin A/C immunoglobulin-like fold domain, while those 

in the same region causing striated muscle disease disrupt overall structure. (a) Localization 

of the amino acid substitutions (red) within the immunoglobulin-like fold domain causing 

striated muscle disease. (b) Three amino acid substitutions (green) causing Dunnigan-type 

familial partial lipodystrophy at R482, G465, and K486 that do not affect overall fold 

domain structure but diminish the positive charge of a solvent-exposed surface. In the 

disease-causing variants, glycine (neutral) at residue 465 is replaced by an aspartic acid 

(negative); arginine (positive) at residue 482 is replaced by a glutamine, tryptophan, or 

leucine (all neutral); or lysine (positive) at residue 486 is replaced by an asparagine (neutral). 

Figure adapted with permission from Reference 75.
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Table 1

Mutations in LMNA cause four groups of diseases affecting different tissues

Type of pathology Specific disorders

Progeroid disorders

Prelamin A processing-deficient laminopathies Hutchinson-Gilford progeria syndrome

Other progeroid disorders

Prelamin A processing-proficient laminopathies Mandibuloacral dysplasia type A

Other progeroid disorders

Striated muscle disease

Dilated cardiomyopathy with variable skeletal muscle involvement Emery-Dreifuss muscular dystrophy

Limb-girdle muscular dystrophy 1B

Dilated cardiomyopathy with minimal/variable skeletal muscle 
involvement

Congenital muscular dystrophy

Adipose tissue disease

Lipodystrophy Dunnigan-type familial partial lipodystrophy

Atypical lipodystrophy syndromes

Peripheral neuropathy

Charcot-Marie-Tooth disease type 2 Charcot-Marie-Tooth disease type 2B1
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Table 2

Genes encoding nuclear envelope proteins other than lamins linked to human diseases

Nuclear envelope
compartment Gene Protein Affected tissues Disease

Inner nuclear transmembrane EMD Emerin Striated muscle X-linked Emery-Dreifuss muscular dystrophy 
and related myopathies/cardiomyopathy

LEMD3 MAN1 Bone
Skin

Osteopoikilosis
Nonsporadic melorheostosis
Buschke-Ollendorff syndrome

LBR LBR Neutrophils
Bone
Multisystem

Pelger-Huet anomaly
Greenberg skeletal dysplasia

TMEM43 LUMA Striated muscle Arrhythmogenic right ventricular dysplasia

TOR1AIP1 LAP1 Striated muscle
Multisystem

Cardiomyopathy/muscular dystrophy
Multisystemic abnormalities with progressive 
neurological degeneration and early death

LEMD2 NET25 
(LEM2)

Multisystem Progeria-like facial phenotypes with other 
developmental abnormalities

SUN1/SUN2 SUN1/SUN2 Striated muscle Muscular dystrophy/cardiomyopathy

Outer nuclear transmembrane SYNE1 Nesprin-1 Central nervous system 
Striated muscle

Autosomal recessive spinocerebellar ataxia 8
Arthrogryposis multiplex congenita
Muscular dystrophy/cardiomyopathy

SYNE2 Nesprin-2 Striated muscle Cardiomyopathy/muscular dystrophy

SYNE4 Nesprin-4 Inner ear High-frequency hearing loss

Perinuclear space TOR1A TorsinA Central nervous system DYT1 dystonia
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Table 3

Genes encoding nuclear pore complex proteins linked to human diseases

Gene Protein Affected tissues Disease

AAAS Aladin Autonomic nervous system Triple-A syndrome

NUP155 Nup155 Heart Atrial fibrillation

NUP62 Nup62 Central nervous system Infantile bilateral striatal necrosis

GLE1 GLE1 Motor neurons Lethal congenital contracture syndrome-1

RanBP2/NUP358 RanBP2 (Nup358) Central nervous system Acute necrotizing encephalopathy

NUP107 Nup107 Kidney Galloway-Mowat syndrome

NUP107, NUP93, NUP205, 
NUP85, NUP133, NUP160

NUP107, NUP93, NUP205, 
NUP85, NUP133, NUP160

Kidney Steroid-resistant nephrotic syndrome

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 24.


	Abstract
	INTRODUCTION
	THE NUCLEAR ENVELOPE
	LAMINOPATHIES
	Mutations in LMNA Cause Four Major Types of Pathology
	Progeroid Disorders
	Striated Muscle Disease
	Adipose Tissue Disease
	Peripheral Neuropathy
	Mutations in Genes Encoding B-Type Lamins

	LAMINOPATHIES INVOLVING ENVELOPE PROTEINS OTHER THAN LAMINS OR ZMPSTE24
	Emerin
	MAN1
	LBR
	LUMA
	LAP1
	NET25
	SUN Proteins
	Nesprins
	TorsinA
	Nuclear Pore Complex Proteins

	IN SEARCH OF PATHOGENIC MECHANISMS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

