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Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) are a global threat. We 

analyzed clinical outcomes of patients with CRKP in different countries and associated bacterial 

characteristics.

Methods: The second Consortium on Resistance Against Carbapenems in Klebsiella and 

other Enterobacteriaceae (CRACKLE-2, ClinicalTrials.gov: NCT03646227) is a prospective, 

multicenter, cohort study. Patients were hospitalized in Argentina, Australia, Chile, China, 

Colombia, Lebanon, Singapore, and the US, with clinical cultures positive for CRKP in 2017–

2018. Bacterial characteristics, all-cause mortality, and desirability of outcome ranking (DOOR) at 

30 days were compared between patients from China, South America, and the US.

Findings: Of 991 patients with CRKP, 502 (51%) were infected, and 489 (49%) colonized. 

CRKP within various regions were genetically similar. Infected patients from the US were more 

acutely ill as compared to patients from China or South America (median [IQR] Pitt bacteremia 

score 3 [2, 6] vs. 2 [0, 4], and 2 [0, 4]) and had more comorbid conditions (median [IQR] Charlson 

comorbidity index 3 [2, 5] vs. 1 [0, 3] and 1 [0, 2]). IPW-adjusted DOOR outcomes were similar 

in patients from China, South America, and the US. Unadjusted 30-day mortality after CRKP 

infection was 12% (29/246) in China, vs. 23% (30/130) in the US, vs. 28% (31/109) in South 

America. Adjusted mortality was similar between China and the US, but higher in South America 
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(vs. China aOR 4·82, 95% CI 2·22–10·50, and vs. US aOR 3·34, 95% CI 1·50–7·47). Patients 

infected with strains carrying the O2v2 O locus were at lower risk for 30-day mortality vs. other O 

loci (aOR 0·34, 95% CI 0·15–0·78).

Interpretation: The global CRKP epidemic has important regional differences in baseline 

characteristics of at-risk patients, bacterial characteristics, and clinical outcomes. Research 

findings from one region may not be generalizable to other regions.

Funding: National Institutes of Health

Introduction

Antimicrobial resistance (AMR) is a global catastrophe that threatens progress in a variety 

of medical fields. Among multi-drug resistant organisms (MDRO), CRE are of specific 

concern given limited treatment options and potential for community spread. The World 

Health Organization (WHO) recognizes CRE among the highest priority pathogens.1 

Within CRE, carbapenem-resistant K. pneumoniae (CRKP) are the most common bacterial 

species.2 In previous studies, the pooled mortality associated with CRKP infections has been 

estimated between 33% and 42%.3,4

In most regions of the world, Klebsiella pneumoniae carbapenemases (KPC) are the most 

common etiology of carbapenem resistance in CRKP.2,5,6 In China, carbapenem resistance 

in K. pneumoniae increased from 3% in 2005, to 21% in 2017; primarily mediated through 

KPC.6 In contrast, CRE cases in hospitalized patients in the US remained relatively stable 

from 2012 to 2017.3

From the second Consortium on Resistance against Carbapenems in Klebsiella and 

other Enterobacterales (CRACKLE-2), we recently reported on the molecular and 

clinical epidemiology of CRE in US hospitals between 2016 and mid-2017.2 Enrollment 

in CRACKLE-2 continued within and beyond the US. Here, we compared clinical 

characteristics and outcomes of this new international cohort of patients with CRKP. We 

also analyzed differences between bacterial isolates from eight countries around the world.

Methods

Patients

CRACKLE-2 was previously described.2 Briefly, CRACKLE-2 was a prospective, 

observational, international, multicenter study with consecutive enrollment of patients 

with CDC-defined CRE isolated in a clinical culture from any anatomic site during 

hospitalization. Here, from 71 hospitals in Argentina, Australia, Chile, China, Colombia, 

Lebanon, Singapore, and the United States, the first qualifying culture episode during the 

first admission for each unique patient enrolled during the study period (June 13, 2017 – 

November 30, 2018, details in the Supplementary Materials) with an available CRKP isolate 

was included. The study was approved by the Institutional Review Boards of all the health 

systems involved, with a waiver of consent.
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Clinical data and outcomes

Clinical data were obtained from the health record. Standardized definitions for infection 

were applied centrally (see Supplementary Materials).2 Positive cultures that did not meet 

infection criteria were considered colonization.2 All included cultures were obtained as part 

of routine clinical care; cultures obtained for surveillance purposes only were excluded. At 

90 days after discharge, data on post-hospitalization death and readmission were collected 

from the health record. The primary outcome was a desirability of outcome ranking (DOOR) 

analysis, as previously described.2 Briefly, this outcome assessed three deleterious events; 

lack of clinical response, prolonged hospitalization (hospitalization ≥ 30 days after first 

positive culture or readmission within 30 days), and adverse events (new renal failure 

and/or Clostridioides difficile infection), in addition to survival at 30 days after the index 

culture (see Supplementary Materials).2 The best outcome was defined as being alive 

without deleterious events. The worst outcome was death. Three levels in between these 

two extremes were: alive with 1, 2, and 3 deleterious events, respectively. As only 2 out 

of 502 patients with CRKP infection fell into the “alive with 3 events” level, that level 

was grouped post hoc with the “alive with 2 events” level for analysis, for 4 total levels of 

outcomes.

Microbiology

Determination of initial eligibility of CRKP isolates was performed in local microbiology 

laboratories (see Supplementary Materials). Meropenem and ertapenem susceptibility 

testing was later performed in the Antibacterial Resistance Leadership Group (ARLG) 

Laboratory Center laboratory using broth microdilution on all isolates that did not carry 

a carbapenemase gene. Carbapenemase genes were determined through whole genome 

sequencing of all included isolates. Patients were excluded from the study if their isolate did 

not harbor a carbapenemase gene and tested susceptible or intermediate to both carbapenems 

upon ARLG Laboratory Center testing.

Whole genome sequencing and genomic analysis

Sequencing was performed on all isolates as previously described at UTHealth (Illumina 

HiSeq 4000, NextSeq 2000, and MiSeq), Molecular Resource Facility, Rutgers (Rutgers; 

Illumina NextSeq500), University of El Bosque (Illumina MiSeq, HiSeq 4000 and NextSeq 

2000), and Beijing Genomics Institute (Illumina, Hiseq X).2 Draft genomes were assembled 

using SPAdes v3.13.0.7 Klebsiella pneumoniae complex subspecies, MLST, wzi allele, 

capsule (K), O antigen (LPS) serotype, and acquired virulence loci were analyzed by 

Kleborate v2.0.1 and Kaptive v0.7.3.8–11 Resistance genes were called by AMRFinderPlus 

v3.9.8 and ARIBA v2.14.6.12,13 Core genome alignment was generated by snippy v4.6.0 

(https://github.com/tseemann/snippy), and a maximum likelihood phylogenetic tree was 

constructed in RAxML v8.2.4.14 The genomes sequenced in this study were deposited 

in GenBank bioproject accession no. PRJNA658369. Further details are available in the 

Supplementary Materials.
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Statistical analysis

Three regions were defined: South America (Argentina, Chile, and Colombia), the US, 

and China. Due to the limited sample size compared to other regions, patients from 

Australia, Lebanon, and Singapore were described but not included in comparative outcome 

analyses. Regions were compared using pairwise desirability of outcome ranking (DOOR) 

analyses.15 The following variables were used in inverse probability weighting (IPW): 

Origin (home vs. other), Charlson comorbidity index (CCI >3 vs. ≤3), age at culture, Pitt 

Bacteremia Score, and anatomical source (blood, respiratory, urine, other).16,17 The Pitt 

Bacteremia Score was previously validated for non-bacteremic infections.18 Bacterial risk 

factors (MLST type, yersiniabactin, colibactin, OmpK35/36, K locus, and O locus) for 

all-cause mortality were evaluated using multivariable logistic regression models. The same 

clinically relevant confounders used in the model to calculate IPW weights were included 

in all adjusted logistic regression models. To visualize all-cause mortality within 30 days of 

initial culture, Kaplan Meier curves with log-rank tests of unadjusted survival probability 

without censoring were created. Censoring was absent as, unless known to have died, 

patients were assumed to be alive at 30 days from initial cultureFurther details are available 

in the Supplementary Materials.

Role of the funding source

The sponsor of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the 

data in the study and had final responsibility for the decision to submit for publication.

Results

From 71 hospitals in eight countries, 991 unique patients were included (Table 1). Of these, 

502 (51%, 95% CI 48–54) patients met criteria for CRKP infection, and the remaining 

489 (49%, 95% CI 46–53) were colonized (Supplementary Table 1). A higher proportion 

of patients in South America (64%, 95% CI 57–71 [109/170]) were infected, as compared 

to China (51%, 95% CI 46–55 [246/485]) and the US (46%, 95% CI 40–52 [130/284]), 

p=0·0007. Patients in the US had more comorbidities (median CCI = 3, interquartile range 

[IQR] 1–5), as compared to China (median CCI = 1, IQR 0–2), and South America (median 

CCI = 1, IQR 0–3), p<0·0001. Notable specific comorbidities that were more common in the 

US included diabetes mellitus, chronic kidney disease, and dementia; absolute differences 

vs. China 24% (95% CI 18–31), 21% (95% CI 16–27), and 9% (95% CI 5–13), respectively, 

and absolute differences vs. South America 16% (95% CI 7–25), 15% (95% CI 8–22), 

and 8% (95% CI 4–13), respectively. In China, CRKP were most frequently isolated from 

respiratory cultures (62%, 95% CI 58–67 [302/485]), whereas urine was the most common 

single source in South America (44%, 95% CI 36–51 [74/170]) and the US (40%, 95% CI 

35–46 [115/284]). Patients were hospitalized for a shorter duration prior to their first positive 

CRKP culture in the US (median 2 days from admission to culture; IQR 0–17) as compared 

to those in China and South America (median 8 days from admission to culture; IQR 2–18 

in China; IQR 1–22 in South America). In 334/991 (34%, 95% CI 31–37) patients, another 

pathogen was isolated from the same source within 7 days of the index culture. Antibiotic 

treatment is summarized in Supplementary Table 2.
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Based on whole genome sequence data, 97% (95% CI 96–98 [963/991]) of bacterial isolates 

were K. pneumoniae sensu stricto. Other K. pneumoniae complex species included K. 
variicola subsp. variicola (n=12), K. quasipneumoniae subsp. quasipneumoniae (n=8), and 

K. quasipneumoniae subsp. similipneumoniae (n=8). Carbapenemase genes were present 

in 90% (95% CI 88–92 [888/991]) of isolates (Table 2, and Supplementary Table 3); 

blaKPC was the most common (81%, 95% CI 79–84 [807/991]). In China, blaKPC-2 was 

the predominant carbapenemase gene (94%, 95% CI 91–96 [454/485]). In South America 

and the US, most CRKP carried blaKPC-2 (39%, 95% CI 32–46 [66/170] and 44%, 95% 

CI 38–49 [124/284]) or blaKPC-3 (30%, 95% CI 23–37 [51/170] and 37%, 95% CI 31–

43 [105/284]). blaOXA-48-like genes were the most common family of carbapenemases in 

Lebanon (75%, 95% CI 56–94 [15/20]) and Singapore (94%, 95% CI 82–100 [15/16]). In 

Lebanon, six isolates carried both blaOXA-48 and blaNDM-5. ESBL genes were more common 

in isolates from China. blaCTX-M genes were found in 60% (95% CI 57–63 [598/991]) of 

isolates and were more common in China (81%, 95% CI 78–85 [395/485]) compared to 

South America (56%, 95% CI 48–63 [95/170]) or the US (27%, 95% CI 22–32 [77/284]). 

blaCTX-M-65 accounted for most blaCTX-M genes in China (Table 2); blaCTX-M-65 was only 

found in one isolate outside of China. In South America and the US, blaCTX-M-15 was the 

predominant blaCTX-M gene. ESBL blaSHV genes were also more common in China (45%, 

95% CI 41–49 [218/485]) vs South America (11%, 95% CI 6–15 [18/170]) and the US 

(33%, 95% CI 27–38 [93/284]).

Limited intra-country genetic variation was observed (Figure 1, and Interactive Figure 

available at http://arlg.med.unc.edu/crackle/). Multi-locus sequence types (MLST) were 

strongly associated with region. Strain type ST11 was predominantly found in in China 

(78%, 95% CI 75–82 [379/485]) and South America (45%, 95% CI 37–52 [76/170]). The 

ST11 strains in China mainly harbor K locus type (KL) 64 and 47, while South American 

ST11 isolates carry KL105 and KL39 (Table 2). South American ST11 isolates located 

at different phylogenetic clades as the Chinese ST11 KL64 and KL47 strains (Figure 1). 

ST11 KL64 and KL47 strains from China differ by an average of 22 core SNPs (range 

1–53), while they differ with South American KL105 and KL39 strains by average of 53 

(31–81) and 67 (54–93) core SNPs, respectively. In the US, 57% of CRKP isolates were 

ST258 strain types, harboring primarily KL107 and KL106. ST11 isolates from China were 

associated with four specific plasmid replicons (Figure 1).

The distribution of selected putative virulence genes is summarized in Table 2. Specific 

putative virulence genes more common in Chinese isolates included rmpA2 (59%, 95% CI 

54–63 [284/485] vs. 0% [0/170] in South America vs. 0%, 95% CI 0–1 [1/284] in the US), 

rmpADC (38%, 95% CI 34–43 [185/485] vs. 0% [0/170] in South America vs. 0%, 95% 

CI 0–1 [1/284] in the US), yersiniabactin (95%, 95% CI 93–97 [460/485] vs. 61%, 95% 

CI 54–69 [104/170] in South America vs. 42%, 95% CI 36–48 [119/284] in the US), and 

aerobactin (62%, 95% CI 57–66 [299/485] vs. 0% [0/170] in South America vs. 1%, 95% 

CI 0–3 [4/284] in the US). In contrast, colibactin was less common in isolates from China 

(1%, 95% CI 0–1 [3/485] vs. 8%, 95% CI 4–12 [13/170] in South America vs. 21%, 95% CI 

17–26 [61/284] in the US).
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The distribution of unadjusted DOOR outcomes is shown in Figure 2. IPW-adjusted DOOR 

outcomes were similar in infected patients from China (n=246), South America (n=109), 

and the US (n=130). The IPW-adjusted DOOR probability estimates were: China vs. South 

America 53% (95% CI 42–65), US vs. China 50% (95% CI 41–61), and US vs. South 

America 53% (95% CI 41–66). The proportion of patients with infections who were alive at 

30 days after first positive culture without deleterious events was lowest in China (31%, 95% 

CI 26–37 [77/246]), compared to 45% (95% CI 36–54 [49/109]) in South America, and 41% 

(95% CI 32–49 [53/130]) in the US. Among patients with infections who were alive at 30 

days, lack of clinical response was observed in 62% (95% CI 55–68 [135/217]) of patients 

from China, compared to 28% (95% CI 18–38 [22/78]) in South America, and 24% (95% 

CI 16–32 [24/100]) in the US. For infected patients, length of stay was shorter in the US 

(median 19 days; IQR 8–46 days) compared to China (median 28 days; IQR 17–47 days), 

and South America (median 25 days, IQR 14–49 days), p=0·0055. Readmissions within 

90 days in patients with infection, who were discharged alive were more common in the 

US (50%, 95% CI 40–60 [50/100]) vs. China (7%, 95% CI 3–10 [14/213]) and vs. South 

America (23%, 95% CI 13–33[17/74]), p<0·0001.

The all-cause 30- and 90-day mortality in patients with CRKP infections were 19% (95% 

CI 15–22 [93/502]), and 22% (95% CI 19–26 [111/501]), respectively (Figure 3.A.). In 

patients with CRKP infections (see Supplementary Table 4), CCI > 3 (aOR 2·93, 95% CI 

1·53–5·61), and Pitt bacteremia score (aOR per point increase 1·45, 95% CI 1·31–1·60) were 

independently associated with increased 30-day mortality, whereas urinary infection was 

associated with lower 30-day mortality (vs bacteremia aOR 0·13, 95% CI 0·05–0·34, and vs 

respiratory infection aOR 0·26, 95% CI 0·09–0·78). In all patients with CRKP bacteremia, 

30-day mortality was 34% (95% CI 26–42 [44/130]) overall, 24% (95% CI 11–38 [10/41]) 

in China, 56% (95% CI 39–73 [19/34]) in South America, and 31% (95% CI 18–44 [15/49]) 

in the US.

In patients with CRKP infections, unadjusted all-cause 30- and 90-day mortality rates were 

lower in China (12%, 95% CI 8–16 [29/246] and 13%, 95% CI 9–17 [32/246]) compared 

to South America (28%, 95% CI 20–37 [31/109] and 35%, 95% CI 26–44 [38/109]) or 

the US (23%, 95% CI 16–30 [30/130] and 28%, 95% CI 20–36 [36/129]), p=0·0003 and 

p<0·0001, respectively (Figure 3.A.). After adjusting for age, origin, CCI, Pitt bacteremia 

score, and culture source, mortality was higher in South America (vs. China aOR 4·82, 95% 

CI 2·22–10·50, and vs. US aOR 3·34, 95% CI 1·50–7·47), with the mortality difference 

between the US and China no longer being significant (aOR 1·44, 95% CI 0·70–2·96).

No independent association was found between 30-day mortality and ST, capsule type, 

yersinibactin, colibactin, or OmpK35/36 porin genes (data not shown). There was 

insufficient diversity in the distribution of aerobactin, rmpA2, and rmpADC to allow for 

inclusion in adjusted models. The association between O locus and 30-day mortality was 

evaluated in US and South American patients, excluding patients from China where only 5 

isolates had the O2v2 locus, and all five associated patients survived to 30 days. In patients 

from South America and the US, the O2v2 O locus was associated with lower 30-day 

mortality (Figure 3.B.) when compared to other O loci (aOR 0·34, 95% CI 0·15–0·78).
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Discussion

In this large, multinational, contemporaneous, prospective cohort study, mortality rates 

were lower in China as compared to South America and the US. High levels of chronic 

comorbidities and severity of illness in US patients accounted for the observed mortality 

difference between China and the US. In patients with CRKP infections from South 

America, the odds of dying within 30 days was three to four-fold higher as compared to 

China and the US after adjusting for chronic and acute illness. The increased mortality 

rates in South America when compared to the US may be related to the limited availability 

of novel anti-CRE antibiotics such as ceftazidime-avibactam during the study period.19,20 

In addition, factors that we did not evaluate in this study, such as healthcare system 

characteristics and resulting differences in healthcare-seeking behaviors may play a role 

in the observed increased mortality in South America. For example, inequality in access to 

care has been shown to be an important factor in mortality associated with COVID-19.21

Another possible explanation for variance in mortality rates is bacterial virulence. The 

genetically homogeneous CRKP from China may represent bacteria that are less likely to 

cause severe disease and/or detrimental host responses. However, most putative virulence 

genes we evaluated were more common in isolates from China. Among other bacterial 

factors that we evaluated, only the O2v2 O locus – uncommon in China – was associated 

with survival among patients in South America and the US. Genes encoded in the O locus 

are involved in the composition of bacterial lipopolysaccharide (LPS). LPS interacts with 

innate immune receptors including Toll-like receptor 4 to drive the host response to Gram-

negative bacterial infection.22 Therefore, the observed association between the O locus and 

mortality has biologic plausibility. This should be considered hypothesis generating and 

requires confirmation in independent cohorts and animal studies.

The 30-day all-cause mortality in patients with CRKP infections was 19%. Previous 

estimates of mortality after CRKP infections are mostly based on retrospective studies. 

The prospective European cohort study EURECA has recently finished enrollment, with no 

data yet available.23 A meta-analysis of 62 studies published between 1999–2015 estimated 

pooled mortality after CRKP infections at 42%.4 The pooled mortality was 33% in KPC-

producing CRKP infections in a more recent meta-analysis of 21 studies published from 

the US, Greece, Italy, Brazil, China, Spain and Israel during 2007–2018.3 The decreased 

mortality rate in our study may reflect the type of infections included, as well as advances in 

treatment of CRKP infections over time.

Overall, the 30-day mortality in patients with CRKP bacteremia in our cohort was 34%, 

lower than reported previously. In the INCREMENT study, the 30-day mortality rate was 

43% in a retrospective cohort of patients with CPE bacteremia predominantly from hospitals 

in Europe in 2004–2013.24 Similarly, the 30-day mortality rate was 45% in patients with 

KPC-producing CRKP bacteremia in two Italian ICUs during 2015–2018.25 In South-Africa 

in 2015–2018, in-hospital mortality associated with CRE bacteremia was 38%.26

In DOOR analyses, no differences in the overall likelihood of a better outcome between 

infected patients in China, South America, and the US were seen. DOOR estimates are 
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equally impacted by shifts between any of the ordinal outcomes. While mortality was lower 

in China, the proportion of patients without a clinical response was higher. This illustrates 

the complementary value of the DOOR outcome approach to determination of all-cause 

mortality. The underlying reasons for the observed discrepancy between clinical response 

rates and overall mortality remain to be determined.

While CRKP are a global threat, characteristics of the CRKP epidemic vary by region. For 

instance, in China, most CRKP were recovered from respiratory cultures. This likely reflects 

the microbiologic testing pattern in China. In the China Antimicrobial Surveillance Network 

(ChiNet), 40% of over 200,000 bacterial isolates were cultured from the respiratory tract, 

as compared to 19% from the urine and 15% from blood.27 Whole genome sequencing 

data revealed that the CRKP epidemic is also genetically different in different parts of the 

world. In China, a genetically homogeneous set of isolates was responsible for most CRKP 

infections. These isolates were characterized by ST11 strain type, KL64 capsule type, and 

carriage of blaKPC-2, blaCTX-M-65, and four common plasmid replicons uncommon in other 

regions. The emergence of a ST11-KL64-blaKPC-2 strain around 2016 was reported in a 

Chinese single-center retrospective study.28 Of note, that strain was not reported to carry 

blaCTX-M-65.28 These markers may be used to monitor clonal spread of other CRKP strains 

into China, or conversely of ST11 strains out of China. The predilection of specific CRKP 

strain types for certain regions was also observed in Europe in the EuSCAPE study.5 In this 

study, CRKP spread in Europe was determined to be primarily nosocomial in 2013–2014.5 

These regional differences may have implications on whether studies evaluating diagnostics, 

treatment, and prognosis can be extrapolated from one region of the world to another.

Limitations

This study has several important limitations. First, the contribution of patients from 

Lebanon, Singapore and Australia was relatively small, which prohibited inclusion of these 

countries in comparative analyses. Similarly, while this study had a broad geographic reach, 

important areas of the world were not represented. Data from Europe will be forthcoming 

through the EURECA study.23 Several other regions with known high AMR incidence were 

similarly not included. Second, within each country, patients were predominantly enrolled 

from larger hospitals. The epidemiology of patients admitted to smaller community-based 

hospitals may be different. Furthermore, a relatively small number of hospitals participated 

per country, and for South America, only a limited number of countries participated. Our 

results should not be interpreted as being representative of the epidemiology of all types of 

hospitalized patients with CRKP in participating countries. Nonetheless, a strength of our 

approach is that we used a standardized, contemporaneous approach to include hospitalized 

patients with CRKP with a broad geographic area, combined with detailed clinical and 

bacterial genetic analyses. Third, the use of a waiver of consent results in consecutive 

enrollment without selection bias. A limitation of this approach is that only data that is 

collected as part of routine clinical practice can be recorded. These data may vary between 

regions. Fourth, we compared a large number of variables across three regions, which 

may raise issues with multiple comparisons. However, only two outcome variables were 

evaluated; the DOOR outcome, which was adjusted through IPW, and all-cause mortality for 

which we used multivariable logistic regression.

Wang et al. Page 10

Lancet Infect Dis. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

In summary, this evaluation of the CRKP epidemic in different parts of the world revealed 

more differences than similarities. Strain types, carbapenemase genes, and plasmid replicons 

were strongly associated with regions. Hospitalized patients with CRKP in China had lower 

unadjusted mortality rates, and lower levels of comorbidities and severity of illness than 

other regions. CRKP in China were also genetically homogeneous. In South America, 

mortality rates associated with CRKP infections were highest, even after adjusting for other 

contributing factors. These findings raise questions about the external generalizability of 

clinical studies on CRKP performed in any specific global region.
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Research in context

Evidence before this study

We searched PubMed and Google Scholar on February 1, 2021, using the terms 

“carbapenem resistant Klebsiella pneumoniae”, “carbapenemase”, “multi-locus sequence 

type” and “mortality”, without restrictions on language or dates. The results of these 

searches included primarily observational studies on epidemiology, risk factors, and 

outcomes associated with carbapenem-resistant Klebsiella pneumoniae (CRKP). Multi-

locus sequence types (MLST) belonging to clonal group 258 are most common 

globally distributed CRKP. In two meta-analyses, the pooled mortality associated CRKP 

infections was estimated between 33% and 42%. Reported risk factors for mortality 

included host factors such as comorbid conditions, as well as treatment-related variables 

such as delayed time to effective antibiotics, and the use of polymyxin-based treatments 

as compared to treatment with novel β-lactam/β-lactamase antibiotics. Four randomized 

trials evaluated the use of novel antibiotics with activity against CRKP in pathogen-

directed trials, which enrolled patients with a range of infections caused by various 

carbapenem-resistant Gram-negative bacteria. In three of these four trials, a numerical 

mortality benefit was associated with novel agents as compared to best available therapy.

Added value of this study

In this study, we used a prospective, standardized, contemporaneous approach to evaluate 

an all-inclusive cohort of hospitalized patients with CRKP in eight countries around 

the world. We showed that the genetic epidemiology of CRKP was unique within each 

specific region. All-cause 30-day mortality rates in patients with CRKP infections were 

lower in China (12%, 95% CI 8–16 [29/246]), as compared to the US (23%, 95% CI 

16–30 [30/130]) and South America (28%, 95% CI 20–37 [31/109]).

After adjustment for source, Pitt bacteremia score, Charlson comorbidity index, origin, 

and age, mortality was higher in South America 4·82, 95% CI 2·22–10·50, and vs. US 

aOR 3·34, 95% CI 1·50–7·47), and the mortality difference between the US and China 

was no longer significant (aOR 1·44, 95% CI 0·70–2·96).

Implications of all the available evidence

Together with previous evidence, these results support the notion that the characteristics 

of the CRKP epidemic in various parts of the world are different. Strain types, plasmid 

replicons, and carbapenemase genes are strongly associated with regions. Clinical 

outcomes in patients with CRKP infections are driven by acute and chronic level of 

illness and vary according to region. These findings raise questions about the external 

generalizability of clinical studies on CRKP performed in any specific global region.
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Figure 1. Bacterial population structure.
Maximum likelihood phylogenetic tree limited to K. pneumoniae sensu stricto is shown with 

corresponding metadata indicating country, clonal group, carbapenemase genes, and plasmid 

replicons present in each strain. An interactive figure for CRACKLE-2 data can be found 

here: http://arlg.med.unc.edu/crackle/.
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Figure 2. Distribution of desirability of outcome ranking (DOOR) outcomes in 485 patients with 
CRKP infections in China (n=246), South America (n=109), and the US (n=130).
Outcome at 30 days after index culture is shown. The best outcome was defined as being 

alive without deleterious events. The worst outcome was death (red). Two levels in between 

are: alive with 1 (yellow), or with 2 or 3 events (orange), respectively. Events included 

were: lack of clinical response, prolonged hospitalization, and adverse events (defined in 

Supplementary Materials).
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Figure 3. Kaplan-Meier Curves for all-cause mortality
A. Survival for 502 patients with CRKP infection by region

B. Survival for 239 patients from South America and the US with CRKP infection by 

O-locus
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Table 1.

Patient Characteristics

Characteristic China South America U.S. other
f all infected 

patients
all

P 
g 

n 485 (49) 170 (17) 284 (29) 52 (5) 502 (51) 991

age, median (IQR) 60 (46, 69) 63 (42, 73) 63 (50, 73) 67 (55, 76) 62 (47, 71) 62 (47, 72) 0·029

sex, male 323 (67) 102 (60) 144 (51) 29 (56) 297 (59) 598 (60) <0·0001

Charlson comorbidity index, 

median (IQR)
a

1 (0, 2) 1 (0, 3) 3 (1, 5) 2 (1, 4) 2 (0, 4) 1 (0, 3) <0·0001

Pitt Bacteremia Score, median 

(IQR)
b

2 (0, 4) 2 (0, 4) 2 (1, 5) 1 (0, 3) 2 (0, 4) 2 (0, 4) 0·0002

intensive care unit
c 263 (54) 44 (26) 101 (36) 25 (48) 202 (40) 433 (44) <0·0001

time to positive culture, days, 

median (IQR)
d

8 (2, 18) 8 (1, 22) 2 (0, 17) 15 (3, 34) 8 (1, 22) 7 (1, 19) <0·0001

admitted from
e <0·0001

home 171 (35) 125 (74) 127 (45) 43 (83) 250 (50) 466 (47)

hospital transfer 310 (64) 43 (25) 50 (18) 4 (8) 194 (39) 407 (41)

long-term chronic care 3 (1) 0 80 (28) 2 (4) 44 (9) 85 (9)

long term acute care 0 0 26 (9) 2 (4) 11 (2) 28 (3)

transferred from foreign 
country

0 0 1 (0) 1 (2) 2 (0) 2 (0)

hospice 1 (0) 1 (0) 0 0 1 (0) 2 (0)

culture <0·0001

blood: infection 41 (8) 34 (20) 49 (17) 6 (12) 130 (26) 130 (13)

urine: infection 30 (6) 38 (22) 41 (14) 4 (8) 113 (23) 113 (11)

urine: colonization 32 (7) 36 (21) 74 (26) 10 (19) 152 (15)

respiratory: infection 118 (24) 5 (3) 14 (5) 1(2) 138 (27) 138 (14)

respiratory: colonization 184 (38) 11 (6) 50 (18) 2 (4) 247 (25)

wound: infection 11 (2) 13 (8) 13 (5) 0 37 (7) 37 (4)

wound: colonization 5 (1) 10 (6) 23 (8) 3 (6) 41 (4)

intra-abdominal: infection 46 (9) 18 (11) 13 (5) 5 (10) 82 (16) 82 (8)

other: infection 0 1 (1) 0 1 (2) 2 (0) 2 (0)

other: colonization 18 (4) 4 (2) 7 (2) 20 (38) 49 (5)

All data is shown as n (%) unless otherwise specified.

a
Charlson comorbidity index. is a chronic comorbidity score with a range from 0 to 37, with higher scores indicating the presence of more 

comorbid conditions. A patient with a score of 3 could have three level 1 comorbid conditions (e.g. dementia, chronic pulmonary disease, and 
congestive heart failure), or one level 1 (e.g. dementia) and one level 2 comorbid condition (e.g. leukemia), or one level 3 condition (moderate or 

severe liver disease).29

b
Pitt bacteremia score is an acute severity of illness score. Higher scores indicate more severe illness. A patient with a score of 3 would have one 

level 1 marker (e.g. disoriented mental status) and one level 2 marker of acute illness (e.g. hypotension).18

c
Intensive care unit location on the day of first positive culture.
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d
Time to first positive culture indicates the number of days from admission to the collection date of the index culture, with 0 indicating that the 

index culture was obtained on the day of admission.

e
For analysis purposes grouped as home/transferred from foreign country, long term acute care/hospital transfer, and long term chronic care/

hospice. One person from South America had missing data for origin.

f
Australia, Lebanon, and Singapore.

g
p value comparing China, South America, and US, and distributions where applicable.

Lancet Infect Dis. Author manuscript; available in PMC 2023 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 25

Table 2.

Bacterial Characteristics

China 
(n=485)

South 
America 
(n=170)

U.S. (n=284) Other
g 

(n=52)

all infected 
patients 
(n=502)

All (n=991) p
h

Carbapenemases 
a 

Carbapenemase(s) present 473 (98) 127 (75) 249 (88) 39 (75) 443 (88) 888 (90) <0·0001

bla KPC-2 454 (94) 66 (39) 124 (44) 2 (4) 324 (65) 646 (65) <0·0001

bla KPC-3 0 51 (30) 105 (37) 0 78 (16) 156 (16) <0·0001

other blaKPC
b 2 (0) 0 3 (1) 0 3 (1) 5 (1) 0·285

bla NDM-1 8 (2) 14 (8) 6 (2) 3 (6) 16 (3) 31 (3) <0·0001

other blaNDM
c 4 (1) 0 0 9 (17) 7 (1) 13 (1) 0·153

bla OXA-48 0 0 7 (2) 25 (48) 10 (2) 32 (3) 0·0003

other blaOXA-48-like
d 3 (1) 1 (1) 7 (2) 5 (10) 8 (2) 16 (2) 0·053

other
e 4 (1) 3 (2) 0 1 (2) 4 (1) 8 (1) 0·102

No carbapenemase 
detected

12 (2) 43 (25) 35 (12) 13 (25) 59 (12) 103 (10)

Extended spectrum β-
lactamase

bla CTX-M 395 (81) 95 (56) 77 (27) 31 (60) 302 (60) 598 (60) <0·0001

bla CTX-M-15 81 (17) 77 (45) 75 (26) 26 (50) 121 (24) 259 (26) <0·0001

bla CTX-M-65 300 (62) 0 1 (0) 0 151 (30) 301 (30) <0·0001

bla SHV 
f 218 (45) 18 (11) 93 (33) 4 (8) 155 (31) 333 (34) <0·0001

bla TEM 
f 0 3 (2) 0 0 1 (0) 3 (0) 0·001

bla AmpC 51 (11) 2 (1) 5 (2) 6 (12) 31 (6) 64 (6) <0·0001

Multi-locus sequence 
type

<0·0001

ST11 379 (78) 76 (45) 16 (6) 2 (4) 250 (50) 473 (48)

ST258 0 13 (8) 163 (57) 1 (2) 78 (16) 177 (18)

ST15 78 (16) 1 (1) 15 (5) 2 (4) 44 (9) 96 (10)

ST147 3 (1) 2 (1) 5 (2) 15 (29) 14 (3) 25 (3)

other 25 (5) 78 (46) 85 (30) 32 (62) 116 (23) 220 (22)

K locus <0·0001

KL64 298 (61) 3 (2) 6 (2) 1 (2) 165 (33) 308 (31)

KL107 0 12 (7) 96 (34) 0 46 (9) 108 (11)

KL19 69 (14) 0 2 (1) 0 31 (6) 71 (7)

KL106 0 1 (1) 57 (20) 2 (4) 29 (6) 60 (6)

KL47 58 (12) 0 1 (0) 0 29 (6) 59 (6)

KL105 2 (0) 45 (26) 3 (1) 1 (2) 34 (7) 51 (5)
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China 
(n=485)

South 
America 
(n=170)

U.S. (n=284) Other
g 

(n=52)

all infected 
patients 
(n=502)

All (n=991) p
h

other 58 (12) 109 (64) 119 (42) 48 (92) 168 (33) 334 (34)

O locus <0·0001

O2v1 307 (63) 5 (3) 14 (5) 7 (13) 175 (35) 333 (34)

O2v2 6 (1) 66 (39) 171 (60) 6 (12) 119 (24) 249 (25)

other 172 (35) 99 (58) 99 (35) 39 (75) 208 (41) 409 (41)

porin genes

OmpK35 mutation 441 (91) 72 (42) 200 (70) 13 (25) 358 (71) 726 (73) <0·0001

OmpK36 mutation 433 (89) 80 (47) 89 (31) 19 (37) 316 (63) 621 (63) <0·0001

Putative virulence genes

aerobactin 299 (62) 0 4 (1) 8 (15) 156 (31) 311 (31) <0·0001

colibactin 3 (1) 13 (8) 61 (21) 3 (6) 33 (7) 80 (8) <0·0001

rmpA2 284 (59) 0 1 (0) 6 (12) 148 (29%) 291 (29) <0·0001

rmpADC 185 (38) 0 1 (0) 2 (4) 97 (19) 188 (19) <0·0001

yersiniabactin 460 (95) 104 (61) 119 (42) 23 (44) 357 (71) 706 (71) <0·0001

All data is shown as n (%), unless otherwise noted. WT wild-type; MT mutant.

a
Totals exceed 100%, as 17 isolates carried more than one carbapenemase gene.

b
Other blaKPC included blaKPC-12 (2), blaKPC-28 (1), blaKPC-31 (1), blaKPC-34 (1).

c
Other blaNDM included blaNDM-4 (2), blaNDM-5 (10), blaNDM-7 (1).

d
Other blaoxa-48-like included blaoxa-163 (1), blaoxa-181 (5), blaoxa-232 (10).

e
Other carbapenemases included blaVIM-2 (1), blaVIM-24 (2), blaIMP-1 (1), blaIMP-4 (4).

f
Limited to blaSHV and blaTEM genes that are considered extended spectrum β-lactamase genes, including blaSHV-12 (279), blaSHV-2A 

(32), blaSHV-110 (8), blaSHV-27 (3), blaSHV-2 (3), blaSHV-30 (2), blaSHV-32 (2), blaSHV-5 (2), blaSHV-100 (1), blaSHV-42 (1), and 

blaTEM-26 (3).

g
Australia, Lebanon, and Singapore.

h
Comparisons between China, South America, and the US.
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