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Corpus callosum (CC) abnormalities have been observed in several psychiatric disorders. Maltreatment has also been associated
with marked differences in CC anatomy and microstructure, though rarely controlled for in psychiatric neuroimaging studies. The
aim of this study was to identify type and timing of maltreatment associated with alterations in CC microstructure and to ascertain
if they differ by sex. T1 and diffusion-weighted MRIs were obtained from 345 (135M/210 F) healthy 18–25-year-olds. The
Maltreatment and Abuse Chronology of Exposure scale provided retrospective data on exposure to ten types of maltreatment
across each year of childhood. AI predictive analytics were used to identify the most significant type and time risk factors. The most
striking maltreatment-associated alterations in males were in axial diffusivity and were most specifically associated with exposure to
emotional abuse or neglect during segment-specific sensitive periods. In contrast, maltreatment was associated with marked
alteration in radial diffusivity and fractional anisotropy in females and was most specifically associated with early physical neglect
during one common sensitive period involving all segments except the splenium. Overall sex differences, controlling for
maltreatment, brain size, and sociodemographic factors were limited to the genu with greater fractional anisotropy in males and
radial diffusivity in females. These findings suggest that maltreatment may target myelinization in females and axonal development
in males and that these sex differences need to be taken into account in studies seeking to delineate the contribution of CC
abnormalities and interhemispheric communication to psychiatric disorders.
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INTRODUCTION
The corpus callosum (CC) is the largest fiber tract interconnecting
right and left hemispheres and plays an important role in sensory
integration, bimanual motor actions, memory, language, creativity,
and intelligence [1]. Abnormalities in CC morphometry and diffusion
parameters have been reported in a host of psychiatric disorders
including: schizophrenia [2], bipolar disorder [3], major depression
[4], attention deficit hyperactivity disorder [5], post-traumatic stress
disorder [6], autism [7], and alcohol use disorder [8].
Several studies have also assessed whether the CC is sexually

dimorphic. Most of the differences in CC volume reported in earlier
studies can be attributed to sex-related differences in overall brain
size [9, 10]. However, a few studies using the approach of matching
males and females for brain size reported differences in CC volume,
with a notably larger genu in females than males [11]. Sex
differences have also been reported in regional measures of myelin
water ratio and in fractional anisotropy [8]. Hence, this still remains
an open question.
A critically important confounding factor that has never been

taken into account in studies assessing sex differences in CC
structure and only rarely taken into account in studies assessing

the relationship between CC anatomy and psychopathology is
childhood maltreatment [12–16].
Briefly, maltreatment is the most important preventable risk

factor for psychopathology and is associated with significant
alterations in brain morphometry. One of the earliest and most
consistent findings is reduced area and integrity of the CC. For
example, in a landmark study, De Bellis et al. [17] reported that CC
midsagittal area was reduced in maltreated youths with post-
traumatic stress disorder (PTSD) and that the differences between
maltreated and controls were greater in males than females.
Similar results were reported by Teicher and colleagues [18, 19].
A number of subsequent studies have reported an association
between fractional anisotropy (FA) in the CC and exposure to
different types of adversity [14, 20–25].
Theoretically, maltreatment could affect the CC through

alterations in myelination [26] or through effects on the number,
diameter, or packing density of axons as well as through effects on
distribution of internal axonal structures such as microtubules and
neurofilaments. The overarching aim of this study was to delineate
type and timing of maltreatment associated with alterations in CC
microstructure and to assess whether there were sex differences
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in CC parameters once the variance attributable to specific types
of maltreatment were controlled for.
The key CC parameters assessed were volume and number of

fiber streams within each CC segment as well as measures of
diffusivity. FA is the most frequently reported diffusion metric and
though highly sensitive it is a rather non-specific indicator of
neuropathology and microstructure. Radial, axial, and mean
diffusivity provide additional information. Radial diffusivity (λ⊥) is
strongly associated with myelination and increases in the
presence of demyelination or dysmyelination [27–29]. Axial
diffusivity (λ//) is minimally affected by changes in myelination
[29] but is influenced by axonal parameters such as axonal
degeneration or damage [28]. Acute axonal injury is associated
with decreased λ//. In contrast, increased λ// has been associated
with chronic axonal injury and attributed to changes in cellular
infiltration, gliosis, and extracellular water due to inflammation.
Mean diffusivity reflects changes in both axial and radial diffusivity
and in addition is influenced by inflammation and edema [30]. The
CC is an ideal white matter tract to assess these parameters in, as it
has few white matter crossings and has a relatively homogeneous
fiber population [31].

METHODS
Subject recruitment
Partners Healthcare institutional review board approved this study and
written informed consent was obtained from all participants. Recruitment
followed previously reported methods [32–35] and are reported in detail in
the Supplement. Briefly, participants were medically healthy, right-handed,
unmedicated and between 18–25 years of age who were recruited by
advertising and selected based on maltreatment history to increase
percentage of participants with exposure to multiple types of maltreat-
ment to help ensure that information could be extracted on consequences
of exposure to all types of maltreatment at nearly all ages. Maltreated
participants were enrolled without regard to psychiatric history to
constitute a representative sample. Subjects received $25 for completing
the online assessment, $100 per interview and assessment session, and
$100 for a 1 h MRI protocol.

Subject assessments
Mental health professionals blind to the neuroimaging results conducted
the assessments and Structured Clinical Interviews for DSM-IV psychiatric
disorders [36, 37]. Parental education and perceived financial sufficiency
(rated from 1—much less than enough money for our needs to 5—much
more than enough money for our needs) were collected as these are an
important risk factor for maltreatment and may also have effects on
trajectories of brain development [38]. Verbal and non-verbal IQ were
assessed using the KBITS-2 [39].

Assessment of maltreatment history
The Maltreatment and Abuse Chronology of Exposure (MACE) scale
provide ratings on ten types of maltreatment (i.e., parental verbal abuse,
parental non-verbal emotional abuse, parental physical abuse, sexual
abuse, witnessing interparental violence, witnessing violence towards
siblings, emotional neglect, physical neglect, peer emotional bullying and
peer physical bullying) during each year of childhood. It consists of 52
items selected using Item Response Theory [40]. Participants indicate
whether they experienced a given event and check off each year of
occurrence. Each MACE category fits a Rasch Model meaning that each
category provides a ‘fundamental measurement’ of exposure in which
items are measured on at least an interval scale with a common unit [41].
MACE has excellent overall test-retest reliability (r= 0.91) [40] with no

evidence of a significant negative attribution bias in test-retest ratings [42].
More detailed information regarding the reliability of MACE ratings at
specific ages are included in the Supplement.

MRI data acquisition
MRI scans were acquired using 3 T Siemens TIM Trio (Erlangen, Germany)
using previously reported methods [32, 33]. Briefly, Multiple diffusion-
weighted images were acquired in 72 directions. Scan sequences are
provided in the Supplement.

MRI analysis
T1-weighted image was processed with FreeSurfer version 6 (http://surfer.
nmr.mgh.harvard.edu/) that partitioned the CC into five equal segments in
the A-P plane and calculated volumes for each segment. Diffusion tensor
images were preprocessed following ENIGMA DTI protocols (http://enigma.
ini.usc.edu/protocols/dti-protocols/). Briefly, diffusion-weighted images
were corrected for motion and eddy current distortions using eddy correct
in FSL [43]. Collected gradient field maps were used to correct for EPI-
induced susceptibility artifacts using FSL’s FUGUE. Tensors were fit with
FSL’s DTIFIT providing maps of fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (λ⊥), and axial diffusivity (λ//). Voxel-wise statistical
analyses were performed using Tract-Based Spatial Statistics (TBSS) [44] by
nonlinearly registering maps of all DTI measures to the FMRIB58_FA
standard-space. CC ROIs were created manually in standard space by
dividing CC lengthwise into five equal segments to align with the Freesurfer
segmentation. FA, MD, λ⊥, and λ// were averaged for each segment. Fiber
stream numbers were estimated using deterministic tractography and the
Diffusion Toolkit and TrackVis [45], with default settings, to delineate whole-
brain fiber streams, followed by counting the number of streams that went
through, touched, or existed within a CC segment.

Statistical analysis of sensitive exposure periods
A critical question is whether exposure to a particular type of maltreatment
at a specific age is an important risk factor for CC alterations. Conventional
analytic techniques are not suitable because there is substantial collinearity
in the degree of exposure to specific types of maltreatment. Instead, we
identified the most important cross-validated risk factors associated with
diffusivity measures using random forest regression (RFR) with conditional
inference trees (CIT) (cforest in R package party; http://party.r-forge.r-
project.org/), a form of artificial intelligence (AI) analytics that has been
reported to be resistant to collinearity, which we have used in prior
sensitive period studies after verifying its utility and superiority to other AI
algorithms in Monte-Carlo simulations [42, 46–52].
RFR predicts outcome by creating a forest of decision trees with each tree

generated from a different subset of the data and constrained in the
number of predictors it can consider at each decision point [53]. This
“wisdom of the crowd” strategy is well suited to the analysis of highly
collinear data sets and provides superior predictions than conventional
regression techniques [53]. The tree structure can also model interactions
and does not assume a linear relationship between exposure and response.
The variable importance (VI) of each regressor in the model was

assessed by permuting the variable, refitting the forest, and calculating
how much permutation of that variable increased the mean square error of
the fit to the test set. Permuting important regressors produces a large
increase in mean square error, whereas permuting unimportant regressors
have a negligible effect. For these analyses, the random forest was trained
using data from 63.3% of the participants and evaluated on the withheld
test set (36.7%). This process was repeated 50 times with different splits
between training and test sets to derive mean measures of VI for each
variable. To gauge significance, the overall process was then repeated
1000 times using reshuffled diffusivity values to calculate chance mean
and SD importance levels, and the significance of the difference between
mean VI and random chance VI was adjusted using Bonferroni correction
to control for multiple comparisons. We set a threshold so that at least 5%
of the sample needed to report some degree of exposure to a type/time
risk factor for it to be included as a predictor variable. Consequently, we
were not able to assess the importance of physical abuse at age 1, parental
verbal abuse at 1–2, peer emotional abuse at 1–3, witnessing interparental
violence at 1–3 and 17–18, witnessing violence to siblings at 1–4 and
16–18, peer physical abuse at 1–5 and sexual abuse prior to age 13 in this
sample. Specific methodological details are included in the Supplement.
Although RFR-CIT provides an excellent means of identifying risk factors

it does not provide a direct indication of the nature of the relationship
between the risk factors and outcome. Hence, we used the saved random
forest to predict the outcome by adjusting the degree of exposure to the
risk factor of interest while holding all other variables constant at their
modal value to ascertain direction of effect as we have done in previous
studies [33, 48–50].

RESULTS
Participants
Altogether 345 (135 M/210 F) participants were enrolled and
scanned with a mean age of 21.6 ± 2.5 years. Degree of exposure
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to each type of maltreatment on the MACE is included in Table 1.
Overall, 27.2%, 26.4%, 4.8%, and 17.6% had a definite lifetime
history of major depression, any anxiety disorder, PTSD, or any
personality disorder, respectively. The corresponding lifetime
prevalence rates for females was 32.7%, 32.2%, 5.3%, and 22.1%,
respectively. Based on self-report [54] 17.9% and 18.7% of males
and 29.8% and 22.1% of females had clinically significant
symptoms of depression or anxiety, respectively, at the time of
assessment. Demographic information is included in supplemen-
tal Table S1 along with data on time course of exposure to
maltreatment (Fig. S1).

Volume and fiber stream measure
Males. As seen in Fig. 1 and detailed in Table 1, the volume of the
CC in males was decreased primarily by emotional neglect (EN) and
witnessing interparental violence (WIPV). EN between ages 1–3 and
6–11 was associated with reduced volume in anterior and mid-
posterior segments, respectively. WIPV at age 4 was associated with
reduced volume in mid-anterior and central portions. Peer
emotional abuse (Peer_E) at age 17 was also associated with
decreased anterior and parental verbal abuse (PVA) at 15 with
decreased posterior volume.
Exposure to peer and parental emotional and physical abuse

between ages 8–14 were associated with decreased fiber number in
mid-anterior to posterior segments. Though the specific types and
timing varied by segment.

Females. There were fewer discernible associations between
maltreatment and volume or fiber stream numbers in females
(Fig. 1, Table 1). The only significant risk factor for decreased CC
volume was WIPV at age 10 in the mid-posterior segment.
Interestingly, physical neglect (PN) at age 3, and non-verbal
emotional abuse (NVEA) at age 5 were associated with increased
volume in the central portion. Risk factors for reduced fiber stream
numbers were witnessing abuse to sibling (WSIB) at age 5 in mid-
anterior and sexual abuse at age 14 and parental verbal abuse
(PVA) at age 15 in the mid-posterior segment.

Diffusion measures
Males. As seen in Fig. 2 and detailed in Table 2 there were
marked associations between maltreatment and λ//. In particular,
increased λ// was associated with PVA at 4–7 years in anterior
segment and 8–10 years in mid-posterior, with WIPV from ages
6–9 for mid-posterior and posterior segments as well as with
emotional neglect (EN) between ages 9–12 for central and mid-
posterior segments. PN, in contrast, was associated with decreased
λ//, particularly in the mid-posterior segment.
Increased λ⊥ was primarily observed in the posterior segment

and were associated with PVA at age 5 and 8, WIPV at age 6, and
physical abuse (Phys) at age 13. FA was increased with Peer_E and

PVA at ages 5 and 12, respectively. Similarly, MD was also
increased primarily in the posterior segment and associated with
exposure to WIPV ages 5–7, PVA ages 8–9, and NVEA at 9. In
contrast, PN between ages 3–5 was associated with reduced MD
in the central portion.

Females. In comparison to males, there was only one significant
association between maltreatment and λ// which consisted of an
association between Phys at age 5 and decreased λ// in the
anterior segment (Table 3 and Fig. 2). Conversely, there were
numerous associations between maltreatment and measures of
λ⊥, FA, and MD. In particular, PN during the first 5 years was
associated with reduced λ⊥ in anterior, mid-anterior, central,
and mid-posterior segments. In general, PN was also associated
with increased FA in the same segments especially with
exposures between ages 2–7. PN was also associated with
decreased MD in mid-anterior, central, and mid-posterior
segments, particularly with exposures between ages 2–4.
Decreased MD was associated with exposure to EN at ages
6–7 in the posterior segment.

Role of psychopathology
One question is whether maltreatment produces brain changes by
increasing prevalence of psychiatric disorders. To test this
hypothesis we re-ran the RFR-CIT analyses and include lifetime
history of major depression, any anxiety disorder, or PTSD as risk
factors as well as current symptoms of depression or anxiety on
the symptom questionnaire [54]. None of these items emerged as
significant risk factors for any CC measure in males or females.

Sex-related differences in volume, fiber number, and
diffusivity measures
ANCOVA was used to assess sex differences in the five CC
segments for the entire sample. We covaried for intracranial
volume (icv), age, parental education, financial sufficiency, and
verbal and non-verbal IQ scores as well as the severity of exposure
to type and timing of maltreatment identified as significant risk
factors for that segment. Overall, three statistically significant
differences were note which were measures of FA (F1,286= 4.76,
p= 0.03), λ// (F1,286= 4.68, p= 0.03), and λ⊥ (F1,286= 5.60, p=
0.019) in the anterior segment, with values that were 1.2% smaller,
1.3% smaller, and 4.6% larger in females than males, respectively.
To more definitively assess whether there were gender

differences we ran a mixed effects analysis using 75 pairs of
male and female participants who were matched by icv (within <
±2% per pair, overall difference 0.13%, tpaired=−1.34, p= 0.18,
with volumes vary slightly but not significantly larger in females
than males). These analyses also included segment-specific
covariates for maltreatment. Overall, two significant differences
emerged. Males had greater FA values (F1,43= 7.20, p= 0.008)

Table 1. Prevalence of exposure to the ten types of maltreatment on the MACE.

Males Females

Any exposure (%) Significant exposure (%) Any exposure (%) Significant exposure (%)

SexA 14.8 7.4 30.0 21.0

PVA 71.9 33.3 68.6 42.9

NVEA 82.2 25.2 82.4 32.4

Phys 77.8 23.0 73.8 22.9

WIPV 25.2 15.6 28.6 16.2

WSIB 23.0 23.0 20.5 20.5

Peer_E 86.7 43.7 82.4 41.0

Peer_P 49.6 30.4 40.0 15.2

EN 54.1 22.2 57.6 30.0

PN 27.4 10.4 28.1 13.3
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Fig. 1 Results of the random forest regression analysis for measures of volume and number of fiber streams in each segment of the
corpus callosum in males and females. The graph indicates at each age the variable importance of exposure to the type of maltreatment
having maximal importance at that age. Arrows are drawn next to ages in which a particular type of maltreatment (labeled) at that specific
age emerged as a statistically significant predictor variable (or risk factors). The arrows indicate the directionality of the association, that is
whether increasing exposure to that type of maltreatment at that age was associated with increasing or decreasing CC measures based on the
saved random forest. Abbreviations. EN emotional neglect, NVEA non-verbal emotional abuse, Peer_E peer emotional bullying, Peer_P peer
physical bullying, Phys physical abuse, PN physical neglect, PVA parental verbal abuse, SexA sexual abuse, WIPV witnessing interparental
violence, WSIB witnessing violence to siblings.
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and females had greater λ⊥ values (F1,43= 5.90, p= 0.017) in the
anterior segment.

DISCUSSION
This study confirms in adults the previous finding in children
that CC volume appears to be more significantly associated
with maltreatment in males than the female CC [18, 55, 56].

The findings also fit with the observation that male CC volume
appears to be particularly susceptible to neglect [18].
More importantly, several new findings emerged. First, there

were 23 statistically significant associations between MACE scores
and measure of λ// in males but only one significant association
between MACE and λ// in females. Indeed, in males there were
significant associations between λ// and maltreatment at 4–7 years
in the anterior, 6–12 years for the midposterior, and 14–16 years

Fig. 2 Results of the random forest regression analysis for diffusion parameters of fractional anisotropy (FA), axial diffusivity (λ//), radial
diffusivity (λ⊥), and mean diffusivity (MD) in each segment of the corpus callosum in males and females. The graph indicates at each age
the variable importance of exposure to the type of maltreatment having maximal importance at that age. Arrows are drawn next to ages in
which a particular type of maltreatment (labeled) at that specific age emerged as a statistically significant predictor variable (or risk factors).
The arrows indicate the directionality of the association, that is whether increasing exposure to that type of maltreatment at that age was
associated with increasing or decreasing corpus callosum measures based on the saved random forest. See Fig. 1 for abbreviations.
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Table 2. Males: important predictors and the direction of effects on DTI measures.

DTI measures Predictors CC region Random forest regression Direction

MAL Age Importance p-value

L1 PVA 4 anterior 0.49 0.00005 ↑

PVA 5 anterior 0.41 0.0083 ↑

PVA 6 anterior 0.75 1.14 × 10−7 ↑

PVA 7 anterior 0.57 0.00183 ↑

EN 9 central 0.57 0.00032 ↑

EN 10 central 0.63 0.00001 ↑

EN 11 central 0.70 3.46 × 10−6 ↑

EN 12 central 0.53 0.03680 ↑

EN 16 central 0.69 0.00143 ↑

NVEA 14 central 0.55 0.03542 ↑

PN 1 central 0.70 2.60 × 10−6 ↓

EN 9 midposterior 0.55 0.00042 ↑

EN 10 midposterior 0.64 6.06 × 10−6 ↑

WIPV 6 midposterior 0.43 2.35 × 10−6 ↑

WIPV 7 midposterior 0.67 2.86 × 10−18 ↑

WIPV 8 midposterior 0.48 8.44 × 10−6 ↑

WIPV 9 midposterior 0.21 0.00802 ↑

PN 10 midposterior 0.41 0.00775 ↓

PN 11 midposterior 0.34 0.02207 ↓

PN 12 midposterior 0.34 0.04108 ↓

Phys 18 midposterior 0.48 0.00004 ↑

PVA 8 midposterior 0.66 0.00121 ↑

PVA 9 midposterior 0.68 0.00054 ↑

PVA 10 midposterior 0.86 0.00003 ↑

WIPV 5 posterior 0.39 2.73 × 10−10 ↑

WIPV 8 posterior 0.68 3.89 × 10−12 ↑

NVEA 9 posterior 1.12 8.55 × 10−9 ↑

RD PVA 8 anterior 0.62 0.00114 ↑

WIPV 6 posterior 0.29 0.00011 ↑

Phys 13 posterior 0.54 0.00458 ↑

PVA 5 posterior 0.69 0.00001 ↑

PVA 8 posterior 0.56 0.01857 ↑

FA Peer_E 11 posterior 1.61 1.16 × 10−12 ↑

PVA 5 posterior 0.76 1.93 × 10−9 ↓

MD PVA 4 anterior 0.52 5.36 × 10−7 ↑

PVA 7 anterior 0.87 0.00013 ↑

PVA 8 anterior 1.03 6.04 × 10−17 ↑

PVA 9 anterior 0.71 0.00006 ↑

PN 3 central 0.42 0.00812 ↓

PN 5 central 0.51 0.00102 ↓

WIPV 5 posterior 0.43 4.46 × 10−14 ↑

WIPV 6 posterior 0.48 1.38 × 10−12 ↑

WIPV 7 posterior 0.49 8.26 × 10−6 ↑

NVEA 9 posterior 1.00 9.41 × 10−9 ↑

PVA 8 posterior 1.03 5.72 × 10−6 ↑

PVA 9 posterior 0.67 0.01550 ↑

Volume EN 1 anterior 0.59 0.04352 ↓

EN 3 anterior 0.67 0.00352 ↓

Peer_E 17 anterior 0.60 0.03250 ↓

Phys 7 anterior 0.92 0.00045 ↑
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for the central segments. This suggests that in males that there
were segment-specific waves of susceptibility to maltreatment
that were characterized by increased λ//.
This increase in λ// may seem confusing as maltreatment might

be expected to reduce axon numbers and that would be
associated with a decrease in λ//. A possible explanation arises
from the observation of increased λ// in a neurotoxic model of
selective axon injury which was associated with electron micro-
scopy confirmed reductions of neurofilaments/microtubules in the
axoplasm [57]. These elements are crucial for the growth and
integrity of axons and play a key role in axonal transport. Wei et al
[58] reported that early life stress markedly reduced levels of
neurofilament proteins in an animal model. Reducing neurofila-
ments/microtubules could enhance λ// by providing less inter-
ference with free water diffusion within the axon but would likely
be associated with impaired connectivity as observed in the
neurotoxic model.
The second novel finding was that there were 22 significant

associations between maltreatment and reduced λ⊥ in females,
with evidence for a sensitive period between ages 1–5 when
PN was associated with reduced λ⊥. In males there were no
associations between PN and λ⊥, and the few significant
associations with other types of maltreatment were with
increased rather than decreased λ⊥. The λ⊥ findings in females
were reflected in FA which was increased with type and timing
of maltreatment associated with decreased λ⊥. The extent to
which these sensitive period findings can predict CC parameters
is included in the supplement.
These observations are consistent with a paper by Makita et al

[21] who reported decreased λ⊥ and increased FA in the CC of
youths with reactive attachment disorder, all of whom had
experienced maltreatment, primarily in the form of EA, Phys and
neglect. Frodl et al [14] also reported increased FA with maltreat-
ment in individuals at ultrahigh risk for depression, but reduced FA
with maltreatment in controls. Enhanced myelination would be the
most likely mechanism that would lead to a decrease in λ⊥ and an
increase in FA. An autopsy study by Tanti et al [59] found that
childhood abuse was associated with an increased number of
mature and decreased number of immature myelinating oligoden-
drocytes cells, and they proposed that childhood abuse may foster
an adaptive acceleration in myelination.

The observation that λ⊥ was strongly associated with maltreat-
ment in females but not males is consistent with the literature that
shows prominent gender differences in key components of
myelination. First, the density of CC oligodendrocytes is about
30% greater in male than female rodents [60]. Conversely,
generation of new glia and apoptosis of glia, including oligoden-
drocytes, are approximately two times greater in the female CC
indicating that the lifespan of oligodendrocytes is shorter in
females than in males. Further, calpain, a protease upregulated by
myelin degeneration, is dramatically increased in females [60].
Hence, myelination appears to be a more active and less stable
process in females than males. In contrast, the more prominent
association between maltreatment and λ// in males is consistent
with observations of greater developmental alterations in axonal
diameter in males than females [61, 62].
Normally, we would expect that a decrease in λ⊥ and an

increase in FA would be associated with enhanced CC interhemi-
spheric communications. We found however that there was a
significant association between λ⊥ in the 5 CC segments and
measures of right/left resting-state functional connectivity (rsFC)
in 16 paired homotopic brain regions (e.g., right and left superior
temporal gyri). In 14 of the 16 homotopic pairings that correlated
significantly with λ⊥ there was a positive association between λ⊥
and rsFC indicating that a reduction in λ⊥ was associated with a
reduction in interhemispheric rsFC. Hence, it is more likely that
maltreatment resulted in a reduced degree of interhemispheric
connectivity, despite the increase in FA.
We have proposed that alterations in brain structure and function

in maltreated individuals represent phenotypic adaptations
selected to enhance survival during childhood and reproductive
success in adulthood [63–65]. Reduced CC connectivity may be
adaptive in some situations by decreasing hemispheric integration
and enabling shifts to occur in hemispheric dominance, with
different emotional perceptions and memories. Such polarized
hemispheric dominance could cause a person to see individuals,
particularly parents and family member in an overly positive way in
one state and in a rather negative way in another, and to react
accordingly. This may be adaptive during childhood in coping with
parents whose behavior might shift dramatically due to substance
use or untreated bipolar disorder, or in reacting to other episodic
threats [63]. However, this form of splitting can be maladaptive later

Table 2. continued

DTI measures Predictors CC region Random forest regression Direction

MAL Age Importance p-value

WIPV 4 midanterior 0.22 0.01753 ↓

WIPV 4 central 0.18 0.01110 ↓

EN 6 midposterior 0.58 0.00015 ↓

EN 7 midposterior 0.48 0.00205 ↓

EN 9 midposterior 0.92 3.42 × 10−12 ↓

EN 10 midposterior 1.09 4.16 × 10−13 ↓

EN 11 midposterior 0.75 7.11 × 10−8 ↓

PVA 15 posterior 0.66 0.01701 ↓

Fiber numbers Peer_P 14 midanterior 0.55 0.00345 ↓

Peer_E 10 midanterior 0.71 0.02899 ↓

PVA 12 midanterior 1.20 1.77 × 10−11 ↓

Peer_E 14 central 0.87 0.01109 ↓

PVA 12 central 0.53 0.04618 ↓

Peer_P 8 midposterior 0.66 0.00001 ↓

Peer_P 9 midposterior 0.56 3.96 × 10−6 ↓

Phys 11 posterior 0.76 0.00020 ↓
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Table 3. Females: important predictors and the direction of effects on DTI measures.

DTI measures Predictors CC region Random forest regression Direction

MAL Age Importance p-value

L1 Phys 5 anterior 0.99 4.74 × 10−9 ↓

RD PN 1 anterior 0.92 1.35 × 10−10 ↓

PN 2 anterior 0.76 1.68 × 10−8 ↓

PN 3 anterior 0.84 2.27 × 10−10 ↓

PN 4 anterior 0.48 0.00005 ↓

PN 7 anterior 0.37 0.04520 ↓

PN 2 midanterior 1.23 9.08 × 10−25 ↓

PN 3 midanterior 1.16 9.08 × 10−21 ↓

PN 4 midanterior 1.02 4.14 × 10−16 ↓

PN 5 midanterior 0.52 0.00017 ↓

Phys 2 midanterior 0.55 0.00119 ↓

PN 2 central 1.39 1.01 × 10−18 ↓

PN 3 central 1.42 8.53 × 10−20 ↓

PN 4 central 0.71 5.65 × 10−7 ↓

PN 5 central 0.45 0.00021 ↓

PN 10 central 0.57 3.02 × 10−6 ↓

PN 11 central 0.55 5.25 × 10−7 ↓

IPV 10 midposterior 0.37 0.00002 ↑

Peer_E 6 midposterior 0.66 0.00040 ↑

PN 2 midposterior 0.72 4.87 × 10−8 ↓

PN 3 midposterior 0.64 1.02 × 10−6 ↓

PN 4 midposterior 0.61 0.00011 ↓

EN 7 posterior 0.64 4.29 × 10−7 ↓

FA PN 2 anterior 0.63 0.00035 ↑

PN 3 anterior 0.75 8.12 × 10−11 ↑

PN 4 anterior 0.62 5.00 × 10−8 ↑

PN 5 anterior 0.64 3.99 × 10−11 ↑

PN 6 anterior 0.69 3.78 × 10−10 ↑

PN 7 anterior 0.65 1.12 × 10−6 ↑

PN 2 midanterior 1.07 4.10 × 10−14 ↑

PN 3 midanterior 1.12 6.23 × 10−16 ↑

PN 4 midanterior 1.15 3.15 × 10−31 ↑

PN 5 midanterior 0.64 1.80 × 10−6 ↑

PN 6 midanterior 0.60 9.43 × 10−6 ↑

PN 7 midanterior 0.60 0.00007 ↑

PN 10 midanterior 0.40 0.00318 ↑

PN 2 central 1.18 1.57 × 10−25 ↑

PN 3 central 1.27 3.49 × 10−22 ↑

PN 4 central 0.84 1.51 × 10−8 ↑

PN 5 central 0.58 6.22 × 10−7 ↑

PN 6 central 0.47 0.02031 ↓

PN 7 central 0.50 0.00128 ↑

PN 8 central 0.40 0.01674 ↓

PN 9 central 0.39 0.01393 ↑

PN 10 central 0.79 4.95 × 10−17 ↑

PN 11 central 0.64 1.22 × 10−6 ↑

PN 13 central 0.42 0.00357 ↑

PN 15 central 0.50 0.00791 ↑

PN 17 central 0.60 0.01504 ↓

Peer_E 6 midposterior 0.94 1.30 × 10−9 ↓
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in life. Alternatively, accelerated maturation of the CC may be
another form of adaptive response, particularly in situations in
which there is inadequate nurturing. We had theorized that early
stress could produce precocious maturation of brain regions,
leading to signs of early maturation (e.g. the “parentified child”), but
may also arrest the development of this region and prevent it from
reaching its full adult capacity [19, 66]. Indeed, translational studies
link myelination to inhibition of neurite growth and diminished
experience-dependent plasticity [67].
This study also showed that there were few significant gender

differences in CC parameters. This was true using the entire
sample and using a carefully match sample based on icv. The
consistent differences were in FA and λ⊥ in the anterior segment.
This anterior CC segment in FreeSurfer corresponds closely to

the genu in Witelson’s segmentation [68]. It is the only CC
segment with a significant percentage of unmyelinated fibers and
also has the greatest percentage of small myelinated axons which
appear to be involved in the interhemispheric transfer of
information between prefrontal association areas [69]. The slower
conduction velocity of these small diameter axons may permit a
greater degree of hemispheric autonomy between prefrontal
association areas than other brain areas, and the apparent sex
differences in FA and λ⊥ in the anterior segment may foster an
even greater degree of hemispheric autonomy, on average, in
females than males.
Although there were few differences between genders in

morphometry there were marked differences between genders in
the types of maltreatment associated with alterations in CC
measures. EN, WIPV, and PVA were most frequently associated
with diffusion measures in males, whereas PN was associated with

the majority of diffusion abnormalities in females. The three types
of MAL associated with CC abnormalities in males have in
common aspects of emotional maltreatment. PN on the other
hand may be more reflective of deprivation, which is the absence
of exposure to expected species-typical experiences [70]. The
supplement includes results of a simplified analysis of the
association between measures λ⊥ and λ// with maltreatment
divided into four categories: emotional abuse, emotional neglect,
physical neglect, and physical-sexual abuse. The results are
consistent with the ten-category analysis in highlighting the
influence of physical neglect on λ⊥ in females and emotional
abuse and emotional neglect on λ// in males (Figs. S2 and S3).
Key strengths of this study were the relatively large sample size

of healthy right-handed, unmedicated, emerging adults who were
all scanned on the same instrument. Another strength was the use
of the MACE to obtain reliable data on type and timing
maltreatment and our AI analytical strategy to identify the most
important risk factors.
On the other hand, a key limitation is that maltreatment was

assessed retrospectively, which may produce problems with recall
bias and inaccurate reporting. We know that MACE results are
highly reliable. However, we do not know how accurate their
reports are, particularly regarding events that happened at early
ages. To our knowledge no prospective study has ever been
conducted that provides data on exposure to multiple types of
maltreatment across each year of childhood. And such a study
could not be ethically conducted without reporting certain cases
to protective services and intervening on behalf of the child.
Indeed, although the Adolescent Brain and Cognitive Develop-
ment study assesses exposure to adversity, it omits collecting data

Table 3. continued

DTI measures Predictors CC region Random forest regression Direction

MAL Age Importance p-value

Peer_E 7 midposterior 0.60 0.03446 ↓

PN 2 midposterior 0.51 0.00094 ↓

PN 3 midposterior 0.62 0.00009 ↑

PN 4 midposterior 0.81 4.27 × 10−9 ↑

PN 5 midposterior 0.39 0.01095 ↑

MD Phys 5 anterior 0.85 0.00001 ↓

PVA 14 anterior 0.78 0.00004 ↑

PN 2 midanterior 0.90 4.35 × 10−10 ↓

PN 3 midanterior 0.64 0.00002 ↓

PN 4 midanterior 0.48 0.02270 ↓

Phys 2 midanterior 0.84 0.00507 ↓

PN 2 central 0.82 0.00001 ↓

PN 3 central 0.81 6.39 × 10−6 ↓

IPV 10 midposterior 0.41 0.00001 ↑

Peer_E 4 midposterior 0.24 1.20 × 10−6 ↓

PN 2 midposterior 0.82 5.93 × 10−7 ↓

PN 3 midposterior 0.51 0.00105 ↓

EN 6 posterior 0.44 0.00196 ↓

EN 7 posterior 0.51 1.96 × 10−6 ↓

Volume NVEA 5 central 0.46 0.00274 ↑

PN 3 central 0.51 0.00052 ↑

IPV 10 midposterior 0.29 0.01685 ↓

Fiber numbers WSibA 5 midanterior 0.29 0.00263 ↓

PVA 15 midposterior 1.40 1.05 × 10−20 ↓

SexA 14 midposterior 0.49 1.44 × 10−8 ↓
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on physical, sexual or emotional abuse, witnessing domestic
violence, emotional or physical neglect, or peer emotional or
physical bullying given the complexities of collecting this
information in a longitudinal study. Hence, this limitation may
be difficult to surmount. Nevertheless, these findings will need to
be verified through longitudinal studies that collect relevant
information on some of these proposed type/time risk factors.
Another limitation is that an insufficient number of males and

females reported sexual abuse before age 13 for early SA to be
evaluated as a risk factor. This is unfortunate and should be
assessed in the future in a specifically selected sample. To partially
address this problem we created a new variable for cumulative
exposure to sexual abuse between ages 1–12 and re-ran the
analysis using this as an additional risk factor, but this composite
variable did not emerge as a significant predictor for any of the CC
measures. Prior studies have reported associations between sexual
abuse and CC morphometry, particularly in females. In some of
these studies, participants were specifically recruited with
substantial histories of sexual abuse [25, 71] or had sexual abuse
and were psychiatrically hospitalized [18] or had post-traumatic
stress disorder [55] or borderline personality disorder [13]. Hence,
sexual abuse may emerge as a risk factor for CC alterations in
participants with greater levels of exposure to sexual abuse or in
those with more prominent psychiatric symptomatology. Some
additional minor limitations are reported in the supplement.
Maltreatment is the most important risk factor or disease

modifier for multiple psychiatric disorders such as major depres-
sion [42, 72, 73], post-traumatic stress disorder [46, 73–75],
schizophrenia [76–79], bipolar disorder [80–82], attention deficit
hyperactivity disorder [83–86] and alcohol use disorder [87–89]
that have been associated with abnormalities in CC morphology. A
key question that needs to be addressed is whether CC
abnormalities are universal or specific to the maltreated subtype
of these disorders [90] and if alterations in CC diffusion parameters
mediate a significant portion of the risk associated with
maltreatment. In any case, given the highly significant associations
between maltreatment and CC diffusivity, studies assessing the
contribution of CC abnormalities to psychopathology should
include maltreatment as a potential confounding factor. Findings
from this study suggest that data on type and timing of exposure
would be more informative than overall levels of maltreatment.
This study also makes clear the importance of sex differences in
the potential effects of maltreatment on myelin versus axons.
These sex differences in susceptibility and expression also need to
be taken into account in studies on the neurobiology of
psychiatric disorders.
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