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Abstract

Censored survival data are common in clinical trial studies. We propose a unified framework 

for sensitivity analysis to censoring at random in survival data using multiple imputation and 

martingale, called SMIM. The proposed framework adopts the δ-adjusted and control-based 

models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection 

of censoring not at random assumptions. Also, it targets a broad class of treatment effect 

estimands defined as functionals of treatment-specific survival functions, taking into account 

missing data due to censoring. Multiple imputation facilitates the use of simple full-sample 

estimation; however, the standard Rubin’s combining rule may overestimate the variance for 

inference in the sensitivity analysis framework. We decompose the multiple imputation estimator 

into a martingale series based on the sequential construction of the estimator and propose 

the wild bootstrap inference by resampling the martingale series. The new bootstrap inference 

has a theoretical guarantee for consistency and is computationally efficient compared to the 

nonparametric bootstrap counterpart. We evaluate the finite-sample performance of the proposed 

SMIM through simulation and an application on an HIV clinical trial.
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1 | INTRODUCTION

Censored survival outcomes are common in clinical trial research of chronic diseases. Three 

assumptions about the censoring mechanism have been proposed: censoring completely 

at random (CCAR), censoring at random (CAR), and censoring not at random (CNAR). 

Common survival analysis methods assume CCAR and CAR that patients censored at t and 

patients uncensored at t with the same history have the same distribution of the entire current 

and future variables. This assumption will be violated if sicker subjects are more likely to 

Correspondence: Shu Yang, Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA. syang24@ncsu.edu. 

SUPPORTING INFORMATION
Web Appendices and Tables referenced in Sections 3 and 4 and the R package for implementing the proposed methods are available 
with this paper at the Biometrics website on Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2023 February 27.

Published in final edited form as:
Biometrics. 2023 March ; 79(1): 230–240. doi:10.1111/biom.13555.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



withdraw from the study, even after accounting for their observed history, leading to CNAR. 

Unfortunately, the censoring assumptions are often not testable empirically. Inappropriate 

assumptions may lead to biased conclusions. Regulatory agencies, such as the FDA, and 

the national research council (NRC, 2010) recommend sensitivity analyses to assess the 

robustness of study conclusions to unverifiable assumptions.

In this article, we distinguish different reasons for censoring including administrative 

reasons and nonadministrative reasons. For the latter, we consider patient premature dropout, 

which could be a case of CNAR. Many sensitivity analysis approaches have been developed 

for CNAR survival data. One approach is to specify a range of the residual dependence 

of the hazard of censoring times on the event times for the sensitivity parameter; see, 

for example, Rotnitzky et al. (2001), Scharfstein and Robins (2002), and Rotnitzky et 
al. (2007). A different approach is to directly specify pattern mixture models (Little, 

1993) for event times for censored and uncensored patients and impute the missing 

outcomes for the censored subjects. Zhao et al. (2014) considered Kaplan–Meier curves 

to impute data, which, however, cannot include covariates. Alternatively, the δ-adjusted 

(Jackson et al., 2014; Lipkovich et al., 2016) and control-based (Lu et al., 2015; Atkinson 

et al., 2019) models are flexible to accommodate auxiliary information for sensitivity 

analysis of unverifiable missing data assumptions. Due to the transparency, these models 

have been widely used in applied research to handle missing data (e.g., NRC, 2012; 

Ratitch et al., 2013). For generality, we consider a class of δ-adjusted/control-based Cox 

models for censoring due to premature dropout, indexed by sensitivity parameter δ. In 

δ-adjusted models, δ is a parameter comparing the outcome distribution of the subjects 

after nonadministrative censoring with the outcome distribution of the same subjects had 

they remained on study. Our framework extends readily to multiple reasons by adopting 

different δ’s for different groups. Control-based models assume that the event hazard for 

censored subjects in the active treatment group is higher (more conservative) or similar to 

those in the control group (Gao et al., 2017). In superiority trials, the control-based models 

are appealing to clinical scientists since they would procedure conservative conclusions 

about the treatment effect if the experimental treatment is hypothesized to be better than the 

control treatment.

Another important question arises regarding the estimand of interest for treatment 

comparison in the presence of missing data. Following the International Council for 

Harmonization (ICH) E9 (R1) addendum, estimands should be clearly defined that describe 

the quantity to be estimated including how to handle intercurrent events such as premature 

dropout (ICH, 2019). In this article, we consider a treatment policy strategy, which evaluates 

treatment effect for all randomized patients on time to event endpoint regardless of the 

deviation of treatment such as taking rescue medication or treatment switch. When the time 

to event data are censored due to premature dropout, the primary analysis often assumes 

CAR which implicitly assumes that the hazard function for a dropout patient is the same as 

that for a non-dropout patient after adjusting for baseline variables included in the model. 

For survival sensitivity analysis using δ-adjusted models, Lipkovich et al. (2016) considered 

a marginal proportional hazards parameter, an additional structural assumption entailing a 

constant ratio of the hazard rates between the treatment groups. However, this parameter 

may be misleading (Hernán, 2010) if the proportional hazards assumption is violated as in 
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the δ-adjusted models. Alternatively, we consider a broad class of treatment effect estimands 

defined as functionals of the treatment-specific survival functions, such as the restricted 
mean survival time (RMST, Chen and Tsiatis, 2001), that is, the expectation of survival 

time restricted to a finite time τ. Instead of focusing on a constant hazards ratio, the RMST 

provides a time-evolving profile of survival times for evaluating the treatment effect, without 

requiring additional model assumptions.

To implement sensitivity analysis, multiple imputation (MI) is the most popular method. It 

consists of three steps: first, fill the missing values by plausible values to create multiple 

complete data sets; second, apply standard full-sample methods to analyze the multiple 

imputed data sets; and third, use Rubin’s combining rule to summarize the results for 

inference. Because of its intuitive appeal, MI is recommended by the NRC as one of its 

preferred approaches to addressing missing data (NRC, 2012). However, many studies have 

realized that Rubin’s variance estimator is not always consistent for general purposes (e.g., 

Yang and Kim, 2016). A sufficient condition for the validity of the MI inference is the 

congeniality condition. Roughly speaking, it requires the imputation model to be correctly 

specified and the subsequent analysis to be compatible with the imputation model. Even 

with a correctly specified imputation model, Yang and Kim (2016) showed that MI is 

not necessarily congenial for the method of moments estimation, so common statistical 

procedures may be incompatible with MI. This phenomenon becomes pronounced for 

adopting MI for general sensitivity analysis in clinical trials.

Lu et al. (2015) and Liu and Pang (2016) demonstrated that Rubin’s combining rule is 

often conservative in control-based imputation. To overcome the conservative of Rubin’s 

combining rule, several authors suggested the nonparametric bootstrap to obtain the standard 

errors (e.g., Lu et al., 2015); however, the nonparametric bootstrap requires repeating 

imputation and analysis for all bootstrap samples and therefore causes a huge computation 

burden. Recently, Guan and Yang (2019) proposed the wild-bootstrap inference of a 

martingale representation of the MI estimator; however, their method is only applicable 

to continuous or binary outcomes but not censored survival outcomes. The standard 

nonparametric bootstrap requires resampling individual observations and repeating the 

imputation and analysis procedures; on the contrary, the wild-bootstrap uses an auxiliary 

zero-mean, unit variance random multiplier on the martingale residuals for variance 

estimation without re-imputation.

In this article, we propose a unified framework of survival sensitivity analysis for a class 

of functional estimands via MI. Specifically, the missing event times are imputed by 

a δ-adjusted or control-based Cox model for each treatment group. We derive a novel 

martingale representation of the proposed MI estimator. The martingale representation is 

inspired by the sequential construction of the MI estimator, namely, model parameter 

estimation and imputations. This new representation invokes the easy-to-implement wild-

bootstrap inference with a theoretical guarantee for consistency. Moreover, unlike the 

nonparametric bootstrap, we do not require repeating imputation and analysis for the 

bootstrap resamples and therefore largely reduce the computation burden. The new SMIM 

(Survival sensitive analysis using Multiple Imputation and Martingale) framework is fairly 
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flexible to accommodate a wide collection of censoring assumptions and treatment effect 

estimands.

2 | SETUP

2.1 | Notation and estimands

Without loss of generality, we focus on randomized clinical trials that compare a new 

treatment to a control treatment. We assume that the subjects constitute a random sample 

from a larger population. Let Xi be a vector of covariates for subject i, and let Ai be a binary 

treatment, 1 for the active treatment and 0 for the control treatment. Let Ti and Ci denote the 

time to a clinical event and the time to censoring, respectively. The full set of variables is Fi 

= (Xi, Ai, Ti, Ci). In the presence of censoring, denote Ui = Ti ∧ Ci, where ∧ represents the 

minimum of two values, and Ii = 1(Ti ≤ Ci). To distinguish different reasons for censoring, 

denote Ri = 1 if censoring is due to administrative reasons and Ri = 2 if censoring is due 

to premature dropout. The observed set of variables is Oi = {Xi, Ai, Ui, Ii, (1 − Ii)Ri}. We 

use O1:k to denote the k copies {O1, … , Ok}. For the total of n subjects, let n1 = ∑i = 1
n Ai and 

n0 = ∑i = 1
n 1 − Ai . Let the treated subjects be indexed by i = 1, … , n1, and let the control 

subjects be indexed by i = n1 + 1, … , n.

For treatment comparison, define λa(t) = limℎ 0ℎ−1ℙ(t ≤ T < t + ℎ ∣ T ≥ t, A = a) and 

Sa(t) = ℙ T ≥ t ∣ A = a  as the treatment-specific hazard rate and survival function at time 

t, respectively, for a = 0, 1. Under a proportional hazards assumption, one can focus on 

estimating the log hazard ratio β = log{λ1(t)/λ0(t)}. However, the proportional hazards 

assumption may be problematic, especially when two survival curves cross. Alternatively, 

we focus on treatment effect estimands defined as functionals of treatment-specific survival 

distributions, Δτ = Ψτ{S1(t), S0(t)}with some prespecified constant τ. This formulation 

covers a broad class of estimands favored in the context of nonproportional hazards; see 

examples of Δτ below.

Example 1 (Treatment effect estimands).—With a proper choice of Ψτ(·), Δτ 
represents the following measures of treatment effect: (a) the difference in survival at a 

fixed time point τ, Δτ = S1(τ) − S0(τ); (b) the difference of treatment-specific τ-RMSTs 

(restrictive mean survival times) Δτ = μ1,τ − μ0,τ, where μa, τ = ∫0
τSa(t)dt for a = 0, 1; 

(c) the difference of weighted τ-RMSTs Δτ = ∫0
τω(t) S1(t) − S0(t) dt, where the nonnegative 

weight function ω(t) provides differentiable importance at different times; (d) the ratio of 

τ-RMTLs (restrictive mean time lost) Δτ = τ − ∫0
τS1(t)dt / τ − ∫0

τS0(t)dt ; (e) the difference of 

τth quantiles (e.g., medians) of survivals Δτ = q1,τ − q0,τ, where qa,τ = infq{Sa(q) ≤ τ}.

For identifiability, τ should be chosen properly. For the estimands in (a)–(d), we restrict τ to 

be smaller than tmin, the minimum of the largest observed survival times in the two treatment 

groups. Similarly, for the τth quantiles in (e), we require τ >max{S0(tmin), S1(tmin)}.
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2.2 | Simple full-sample estimator and asymptotic linearity

If the event times are fully observed, standard full-sample estimators can apply. To estimate 

Sa(t), a simple estimator is the sample proportion Sa, n(t) = na
−1∑i = 1

n 1 Ai = a  1 T i ≥ t , for a = 0, 

1. Then, a plug-in estimator of Δτ is Δτ, n = Ψτ S1, n(t), S0, n(t) .

To establish a unified framework, it is important to note that Δτ, n is asymptotically linear for 

all estimands given in Example 1. Under mild regularity conditions, we have

Δτ, n − Δτ = ∑
a = 0

1 ∫
0

τ

ψa(t) Sa, n(t) − Sa(t) dt + op n−1/2 , (1)

for bounded variation functions ψa(·).

Lemma 1 (Asymptotic linear characterizations).—For all estimands in Example 

1, the full-sample estimators have the following asymptotic linear characterizations. 

(a) For the difference in the survivals at a fixed time point τ, Δτ, n = S1, n(τ) − S0, n(τ), 
corresponding to (1) with ψ1(t) = −ψ0(t) = 1(t = τ). (b) For the difference of τ-RMSTs, 

Δτ, n = ∫0
τ S1, n(t) − S0, n(t) dt, corresponding to (1) with ψ1(t) = −ψ0(t) = 1. (c) For the 

difference of weighted τ-RMSTs, Δτ, n = ∫0
τω(t) S1, n(t) − S0, n(t) dt, corresponding to (1) with 

ψ1(t) = −ψ0(t) = ω(t). (d) For the ratio of τ-RMTLs, Δτ, n = τ − ∫0
τS1, n(t)dt / τ − ∫0

τS0, n(t)dt , 

corresponding to (1) with ψ1(t) = − τ − ∫0
τS0, n(u)du −1

 and ψ0(t) = − Δτ τ − ∫0
τS0, n(u)du −1

. (e) 

For Δτ = q1,τ − q0,τ, Δτ, n = q1, τ − q0, τ, where qa, τ = infq Sa, n(q) ≤ τ , corresponding to (1) with 

ψ1(t) = Ṡ1 q1, τ
−11 t = q1, τ  and ψ0(t) = − Ṡ0 q0, τ

−11 t = q0, τ , where Ṡa(q) = dSa(q)/dq.

2.3 | MI and the outline of the proposed SMIM framework

To facilitate applying full-sample estimators, MI proceeds as described in Table 1. It is well 

known that Rubin’s combining rule may overestimate the variance of the MI estimator when 

the full-sample estimators are not self-efficient. We provide an alternative decomposition of 

the MI estimator, which invokes the wild bootstrap for consistent variance estimation for 

general imputation models and estimands.

In Step MI-1, we consider δ-adjusted and control-based Cox imputation models for 

sensitivity analysis. For example, the δ-adjusted Cox model assumes the treatment-specific 

hazard rate of failing at time t is λa(t | Xi) without premature dropout and δλa(t | Xi) after 

dropout, for a = 0, 1.

Based on the MI with Rubin’s combining rule in Step MI-3, the variance estimator 

overestimates the true variance of Δτ, mi. For rectification, we propose a wild bootstrap 

variance estimator (Wu, 1986) to replace Rubin’s combining rule; Theorem 2 in Section 

4 shows that the proposed variance estimator is consistent for general imputation models 

and treatment effect estimands. The wild bootstrap procedure does not require repeating the 

missing data imputation step (i.e., Step MI-1) and recalculating the point estimator (i.e., Step 
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MI-2) using resampling data, therefore it is computationally efficient compared with the 

naive bootstrap.

The wild bootstrap variance estimator is motivated by a novel martingale representation of 

the MI estimator. Specifically, we show in Section 3 that the MI estimator of Δτ can be 

represented as n1/2 Δτ, mi − Δτ = ∑k = 1
(1 + m)n ξn, k + op(1), where the series ∑i = 1

k ξn, i, 1 ≤ k ≤ (1 + m)n
along with properly defined σ-fields is a martingale array. This representation invokes the 

wild bootstrap procedure that provides valid inference of the MI estimator of Δτ (Pauly, 

2011).

3 | DELTA-ADJUSTED AND CONTROL-BASED MODELS

3.1 | Primary analysis with the CAR benchmark assumption

To motivate the imputation models for sensitivity analysis, we first consider a CAR 

assumption that Ci ᚇ Ti | (Ai, Xi), analogous to the missingness at random assumption 

(Rubin, 1976) or the coarsening at random assumption (Tsiatis, 2006). Under CAR, we have 

λa t ∣ Xi = limℎ 0ℎ−1ℙ t ≤ Ui < t + ℎ, Ii = 1 ∣ Ui ≥ t, Xi, Ai = a , for a = 0, 1. Then, we can derive 

Sa t ∣ Xi = exp −∫0
tλa u ∣ Xi du .

Following the common survival analysis literature (e.g., Chen and Tsiatis, 2001), we posit a 

conditional treatment-specific Cox regression with covariate Xi; that is,

λa t ∣ Xi = λa(t)eβaTXi, (2)

where λa(t) is an unknown baseline hazard function and βa is a vector of unknown 

parameters for a = 0, 1. Importantly, under model (2), we do not impose the restrictive 

proportional hazards assumption on the treatment effect because both λa(t) and βa can 

be different for the two treatment groups. Let θ = {λa(·), βa : a = 0, 1} summarize the 

infinite-dimensional parameter in the Cox model. Under CAR, we can estimate θ from the 

standard software such as “coxph” in R.

We adopt the counting process framework (Andersen and Gill, 1982) to introduce the 

estimators and their large sample properties. Define the counting process Ni(t) = 1(Ui ≤ 

t, Ii = 1) of observing the event and the at-risk process Yi(t) = 1(Ui ≥ t). Let β a be the 

maximum partial likelihood estimator of βa, for a = 0, 1. We can estimate Λa(t) = ∫0
tλa(u)du by 

the Breslow (1974) estimator

Λa(t) = ∫
0

t
λa(u)du,

λa(u)du = ∑j = 1
n 1 Aj = a dNj(u)

∑j = 1
n 1 Aj = a eβa

TXjY j(u)
,

and estimate Sa(t | Xi) by Sa t ∣ Xi = exp −Λa(t)eβa
TXi .
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3.2 | Sensitivity analyses with δ-adjusted and control-based models

CAR is not empirically testable and may be questionable for censoring due to premature 

dropout. We propose sensitive analysis using δ-adjusted and control-based models.

Assumption 1 (Delta-adjusted Cox model).—The treatment-specific hazard rate of 

failing at time t is λa(t | Xi) given in (2) without premature dropout and is δλa(t | Xi) after 

premature dropout (Ri = 2), for a = 0, 1, where δ > 0.

It can be seen that δ quantifies the degree of the departure from the CAR assumption. If 

δ = 1, we have CAR. If δ > 1, the hazard increases after dropout, indicating a worsening 

of condition after dropout. If δ < 1, the hazard decreases after dropout, indicating an 

improvement of condition after dropout. The larger the magnitude of δ, the larger the 

deviation from CAR. Without retrieving information for the nonadministratively censored 

subjects, δ cannot be ascertained. Therefore, it is recommended to vary δ in a wide range of 

plausible values for sensitivity analysis. To fix ideas, we use the same δ for both treatment 

groups, but it is easy to accommodate different δ values depending on the worsening/

improvement condition for different treatment groups. For example, if the control group is 

a placebo group, it is reasonable to choose δ to be one for the control subjects who were 

nonadministratively censored. We illustrate the use of different δ for different treatment 

groups in Sections 5 (an application) and S7 (simulation studies).

Control-based models (e.g., Carpenter et al., 2013) are another popular and appealing class 

of sensitivity models because of their reduced bias in favor of the experimental treatment.

Assumption 2 (Control-based Cox model).—The treatment-specific hazard rate of 

failing at time t is λa(t | Xi) given in (2) for a = 0, 1 and is δλ0(t | Xi) after dropout (Ri = 2) 

for the treated, where δ ≤ 1.

The control-based Cox model with δ = 1 becomes the jump-to-reference model (Atkinson et 
al., 2019). It assumes that censored subjects on the active arm follow the same distribution 

as similar subjects in the control group after the censored time. This model is, for example, 

plausible for superiority trials if subjects on the control arm received the standard care, and 

censoring on the active arm is because subjects revert to the standard of care. For generality, 

we also allow δ to be less than 1, such that the treatment effect can be bracketed by the 

treatment effect under CAR and that for the control arm (Lu et al., 2015).

In fact, censoring due to dropout can be interpreted as a time-dependent binary covariate, 

and δ-adjusted and control-based sensitivity models entail time-dependent Cox models. Let 

the history of the information up to time t be Hi(t) = {Xi, Ri, Ni(u), Yi(u) : u < t}. Because 

we use Ri = 2 to indicate premature dropout, Assumption 1 describes the time-dependent 

Cox model

λ1 t ∣ Hi(t); δ, θ = λ1(t)δ1 Ri = 2 & t > Ui eβ1
TXi . (3)

Assumption 2 describes the time-dependent Cox model with the hazard function, for a = 0, 

1,
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λa t ∣ Hi(t); δ, θ =
λ0(t)eβ0

TXi  if a = 0,
δλ0(t)eβ0

TXi  if a = 1, Ri = 2, t > Ui,
λ1(t)eβ1

TXi  otherwise.
(4)

The de facto estimand for treatment policy takes into account the likely attenuation of 

the treatment effect after dropout. By (3) and (4), the de facto survival function is 

Sa
sen(t) = E exp −∫0

tλ u ∣ Hi(u); δ, θ du , for a = 0, 1. Here we use the superscript “sen” to 

denote either “δ-adj” or “cb” for the delta-adjusted or control-based sensitivity model. 

The de facto treatment effect estimand becomes Δτ
sen = Ψτ S1

sen(t), S0
sen(t) . If the sensitivity 

parameter δ is not one, Δτ
sen differs from Δτ in general. By varying δ over a certain range, 

Δτ
sen provides valuable insights into the impact of possible departures from CAR, allowing an 

investigator to assess the extent to which the censoring assumption alters the treatment effect 

estimator.

MI requires generating the missing values from the imputation model in Step MI-1. From 

(3) or (4), one can derive the conditional survival function Sa{t | Hi(t); δ, θ} for imputation. 

Consider the δ-adjusted model for example, if a treated subject i withdrew from the 

treatment, the conditional survival at t > Ui is

S1 t ∣ Hi(t); δ, θ = e−∫Ui
t δλ1 u ∣ Xi du . (5)

Unlike the parametric models, sampling from the semiparametric Cox model is difficult. 

Following Lipkovich et al. (2016), we introduce a general inverse transform sampling 

scheme. Suppose we would like to generate T i
* from (5) for t ≥ Ui. First, generate a random 

number ui from Unif[0, pi], where pi = {S1(Ui | Xi)}δ. Second, solve S1 T i
* ∣ Xi

δ = ui for T i
*. 

Then, we show that given the observed data O1:n,

ℙ T i
* ≥ t ∣ O1:n = ℙ S1 T i

* ∣ Xi
δ ≤ S1 t ∣ Xi

δ ∣ O1:n

= ℙ ui ≤ S1 t ∣ Xi
δ ∣ O1:n

= S1 t ∣ Xi
δ/pi = e−∫Ui

t δλ1 u ∣ Xi du

is the target imputation model (5).

In practice, we need numerical approximations to obtain T i
*. Let Ta,max be the largest 

observed event time in treatment group a for a = 0, 1. Because Sa(t | Xi) is semiparametric, 

Sa t ∣ Xi  is only available for t ≤ Ta,max. Thus we require τ to be smaller than 

T max = T0, max ∧ T1, max, and then the imputed value T i
* can be truncated at T max.

To summarize, the MI procedure proceeds as in Table 2, where Step MI-1–3 and Step 

MI-1–3’ are used for δ-adjusted imputation model and control-based imputation model, 

respectively.
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4 | WILD BOOTSTRAP INFERENCE BASED ON MARTINGALE SERIES

4.1 | A novel martingale representation

For variance estimation, the key insight is that the MI estimator is intrinsically created 

in a sequential manner: first, the imputation model is fitted based on the observed data; 

second, the missing data are drawn from the imputation model conditioned on the observed 

data. This conceptualization leads to a martingale representation of the MI estimator by 

expressing the MI estimator in terms of a series of random variables that have mean 

zero conditional on the sigma-algebra generated from the preceding variables. We provide 

heuristic steps below toward linearizing the MI estimator and forming the proper sigma-

algebra and regulate details to the Web Appendix.

We first focus on treatment group a = 1. To unify the notation, let T i
* (j) denote the jth imputed 

value for subject i if subject i was censored and the observed Ti if we observe subject i’s 

event time. By the imputation mechanism, T i
* (j) follows the conditional survival distribution 

S1 t ∣ Hi(t); θ  for t ≥ Ui, where θ = {λa(·), βa : a = 0, 1}. Then, for t ∈ [0, τ], it is insightful 

to express

n1/2 S1, mi(t) − S1
sen(t)

= n1/2

mn1
∑
j = 1

m
∑
i = 1

n
Ai 1 T i

* (j) ≥ t − S1
sen(t)

= n1/2

mn1
∑
j = 1

m
∑
i = 1

n
Ai 1 − Y i(t)

× 1 T i
* (j) ≥ t − S1 t ∣ Hi(t); θ

(6)

+ n1/2

n1
∑
i = 1

n
Ai S1 t ∣ Hi(t); θ − S1

sen(t) . (7)

Here, we use the total sample size n for scaling; we will use the same scaling for the 

estimators for the control group and the treatment effect.

We analyze the two terms in (6) and (7), separately. First, because the imputations 

are independent given the observed data, it follows that the individual terms in (6) are 

independent mean-zero terms conditional on the observed data. Second, because the term in 

(7) depends on θ , by exploiting the counting process theory, we express

n1/2

n1
∑
i = 1

n
Ai S1 t ∣ Hi(t); θ − S1

sen(t)

= n1/2

n1
∑
i = 1

n
Ai Y i(t) + 1 − Y i(t) 1 − Ii S1 t ∣ Hi(t); θ −S1

sen(t)
(8)
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+ n1/2

n1
∑
i = 1

n
Aiϕ11, i(t) + n1/2

n1
∑
i = 1

n
1 − Ai ϕ10, i(t) + op(1), (9)

where the exact expressions of ϕ11,i(t) and ϕ10,i(t) are given in Section S4. Importantly, 

ϕ11,i(t) reflects the estimation of {λ1(·), β1}, ϕ10,i(t) reflects the estimation of {λ0(·), β0}, 

and E ϕ11, i(t) = E ϕ10, i(t) = 0. Note that in the sensitivity analysis using the δ-adjusted 

models, the imputation for the treated group uses the information only from the treated 

group, so ϕ10,i(t) = 0 for all i; while in the sensitivity analysis using the control-based 

models, the imputation for the treated group uses information from both treatment groups, 

so ϕ11,i(t) ≠ 0 and ϕ10,i(t) ≠ 0 for all i. Also, by definition, the expectation of the term in 

(8) is zero. Together, n1/2 S1, mi(t) − S1
sen(t)  decomposes into the summation of three terms (6), 

(8), and (9) with (conditional) mean zero, and converges to a Gaussian process in [0, τ]. 

Similarly, we obtain a similar asymptotic linearization of S0, mi given in (S3)–(S5).

We now leverage the unified linear characterization (1) to express the MI estimator for 

various treatment effect estimands. Combining (1) and the above decompositions of S1, mi(t)
and S0, mi(t), we derive

n1/2 Δτ, mi − Δτ = n1/2 Ψτ S1, mi(t), S0, mi(t) − Δτ

= ∑
k = 1

(1 + m)n
ξn, k + op(1), (10)

ξn, k = n1/2

n1
∫

0

τ

ψ1(t)Ai ϕ11, i(t) + Y i(t)
+ 1 − Y i(t) 1 − Ii S1 t ∣ Hi(t); θ − S1

sen(t) dt,
 for k = i 1 ≤ i ≤ n1 ,

(11)

ξn, k = n1/2

mn1
∫

0

τ

ψ1(t)Ai 1 − Y i(t)

× 1 T i
* (j) ≥ t − S1 t ∣ Hi(t); θ dt,

 for k = n1 + (i − 1)m + j 1 ≤ i ≤ n1, 1 ≤ j ≤ m ,

(12)

ξn, k = n1/2

n0
∫

0

τ

ψ0(t) 1 − Ai ϕ10, i(t) + ϕ0, i(t) + Y i(t)
+ 1 − Y i(t) 1 − Ii S0 t ∣ Hi(t); θ − S0

sen(t) dt,
(13)

fork = (1  + m)n1 + i,  (n1 +  1 ≤ i ≤ n),
ξn, k = n1/2

mn0
∫

0

τ

ψ0(t) 1 − Ai 1 − Y i(t)

× 1 T i
* (j) ≥ t − S0 t ∣ Hi(t); θ dt,

for k = (1 + m)n1 + n0 + (i − 1)m
+ j n1 + 1 ≤ i ≤ n, 1 ≤ j ≤ m .

(14)
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To gain intuitions, based on the decomposition in (10), the first n1 terms of ξn,k contribute 

to the variability of S1, mi because of the unknown parameters, and the next mn1 terms of ξn1, k

contribute to the variability of S1, mi because of the imputations given the estimated parameter 

values, reflecting the sequential MI procedure. Other terms have similar explanations.

We form the sigma-algebra ℱn, k:1 ≤ k ≤ (1 + m)n  s.t. E ξn, k ∣ ℱn, k − 1 = 0 for all k; thus,

∑
i = 1

k
ξn, i, ℱn, k, 1 ≤ k ≤ (1 + m)n

 is a martingale for each n ≥ 1. 
(15)

We focus on the ξn,k terms in (11) and (12) for treatment group a = 1, because the discussion 

for the ξn,k terms in (13) and (14) for treatment group a = 0 is similar and is presented in 

the Web Appendix. Obviously, for k = i (1 ≤ i ≤ n1) and ξn,k in (11), we have E ξn, 1 = 0
and E ξn, k ∣ O1:k − 1 = E ξn, k = 0, and thus we let ℱn, k = σ O1, …, Ok . For k = n1 + (i − 1)m + j, 

where i = 1, … , n1 and j = 1, … , m, and ξn,k in (12), under the regularity conditions, we 

have E ξn, k ∣ O1, …, On1, T1
* (1), …, T i

* (j) = 0, and thus we let ℱn, k = σ O1, …, On1, T1
* (1), …, T i

* (j) .

The martingale representation allows us to characterize the asymptotic distribution of Δτ, mi

with the proof presented in Section S4.

Theorem 1.—Under Assumptions 1/2, and S1 (regularity conditions), 
n1/2 Δτ, mi − Δτ N 0, V τ, mi

sen , as n → ∞, where V τ, mi
sen  is a finite variance given in (S23).

4.2 | Wild bootstrap for the MI estimator

The martingale representation invokes the wild or weighted bootstrap procedure (Wu, 1986; 

Liu, 1988) that provides valid variance estimation and inference of the linear statistic 

for martingale difference arrays. Pauly (2011) proved the validity of the wild bootstrap 

re-sampling under the conditions of a general central limit theorem (CLT). Guan and Yang 

(2019) applied the wild bootstrap for a martingale series in the context of causal inference 

with observational studies.

Based on the martingale representation (10), we propose the wild bootstrap procedure to 

estimate the variance of Δτ, mi. The martingale representation relies on unknown quantities, 

requiring approximations. We then estimate (i) Sa
sen(t) by Sa, mi, (ii) ϕ11,i(t), ϕ10,i(t), and ϕ0,i(t) 

by ϕ11, i(t), ϕ10, i(t), and ϕ0, i t , and (iii) Sa{t | Hi(t); θ} by Sa t ∣ Hi(t); θ , for a = 0, 1.

Based on the above approximations, the wild bootstrap inference proceeds as in Table 3.

Theorem 2 shows the asymptotic validity of the above bootstrap inference method.

Theorem 2.—Under Assumptions 1/2, and S1 (regularity conditions), we have

sup
r

ℙ n1/2W L
* ≤ r ∣ O1:n − ℙ n1/2 Δτ, mi − Δτ

sen ≤ r 0,
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in probability, as n → ∞.

We provide the proof of Theorem 2 in the Web Appendix, which draws on the martingale 

central limit theory (Hall and Heyde, 1980) and the asymptotic property of weighted 

sampling of martingale difference arrays (Pauly, 2011). Theorem 2 indicates that the 

distribution of the wild bootstrap statistic consistently estimates the distribution of the MI 

estimator.

5 | AN APPLICATION

We apply the proposed semiparametric δ-adjusted and control-based Cox model to an HIV 

clinical trial. The randomized double-blinded ACTG175 trial was conducted to compare the 

treatment effect of a single nucleoside and two nucleosides in adults with HIV (Hammer 

et al., 1996). The data set is available in the R package speff2trial. The event of interest 

was the progression of the disease defined as the first occurrence of more than 50% 

decline in the CD4 cell count or death. For illustration purposes, we compare the treatment 

effect between Zidovudine monotherapy and Zidovudine plus Didanosine combination 

therapy in a subgroup of participants who never took any type of antiretroviral therapy 

before randomization. In this subgroup, there were 197 subjects in the monotherapy group 

and 185 subjects in the combination therapy group. There are 152 (82.2%) subjects in 

the Zidovudine plus Didanosine combination therapy group and 144 (73.0%) subjects in 

Zidovudine monotherapy group censored. We focus on estimating the RMST with the 

truncation time point 24 months because the ACTG175 study required at least 24 months 

follow-up for subjects. While re-analyzing the data, we assume CAR in the primary analysis 

and assume the event times follow a Cox model adjusting for age, and symptomatic 

indicator terms. This model assumption is assessed based on the test of the proportional 

hazards (Grambsch and Therneau, 1994) with a p > 0.05 and thus is adopted in analyses. 

The estimated RMST with 95% confidence interval is 22.1 (21.5, 22.8) months in the 

monotherapy group versus 23.0 (22.6, 23.5) in the combination therapy. The estimated 

between-group RMST difference with 95% confidence interval is 0.92 (0.15, 1.68). p = 

0.019 indicates a statistically significant improvement of the combination therapy compared 

with the monotherapy. We also analyze the data using a direct estimator of RMST (Tian 

et al., 2014) without imputation using the survRM2 package. The results are close to the 

δ-adjusted method when δ = 1, because both methods assume CAR. However, the direct 

estimator does not require a Cox model for missing data imputation.

We conduct the sensitivity analysis based on the δ-adjusted and control-based method to 

evaluate the impact of plausible departures from CAR in the primary analysis. One of 

the main objectives of the ACTG175 trial was to evaluate the additional benefit with the 

combination therapy on top of Zidovudine. Therefore, we treat the Zidovudine monotherapy 

group as the control group and the Zidovudine plus Didanosine combination therapy as the 

test treatment group. In the sensitivity analysis, we consider subjects censored before 24 

months as censored for nonadministrative reasons and subjects censored after 24 months 

as censored for administrative reasons. For the imputation models in both δ-adjusted and 

control-based methods, we assume CAR for nonadministratively censored subjects in the 

combination therapy group or censored in the monotherapy group. In δ-adjusted method, the 
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δ-adjustment is applied to the primary Cox model for subjects who were nonadministratively 

censored in the combination therapy group. The analysis model is the resulting patten-

mixture model carried out by MI with m = 50. We estimate the standard errors by Rubin’s 

combining rule and the proposed wild bootstrap method with B = 100.

Table 4 summarizes the results. The estimated within- and between-group standard errors 

from the wild bootstrap are smaller than that from Rubin’s combining rule for all evaluated 

methods. This is coherent with the findings in the simulation study. From the p-value of 

each δ, the estimated tipping point of the sensitivity analysis is larger than 5 by using wild 

bootstrap and between 4 and 5 by using Rubin’s rule. The results from the proposed wild 

bootstrap method demonstrate stronger evidence for the robustness of the primary analysis 

compared with the conservative Rubin’s rule. From the sensitivity results based on the wild 

bootstrap, to eliminate the statistical significance of the treatment effect, the hazard of those 

subjects who were nonadministratively censored should be more than five times higher 

than subjects with the observed event times in the same group. The control-based method 

also provides p-values smaller than 0.05 by using both Wild Bootstrap and Rubin’s rule. 

Therefore, the findings from the primary analysis are robust to the censoring assumption.

6 | CONCLUDING REMARKS

In this article, we provide a general framework for survival sensitivity analysis based 

on semiparametric δ-adjusted and control-based Cox models to assess the impact of 

plausible departures from CAR. The δ-adjusted/control-based models are flexible enough 

to accommodate different censoring mechanisms by changing the sensitivity parameter. 

MI facilitates the use of a simple full-sample estimator; however, the standard Rubin’s 

combining rule may be conservative or anti-conservative when the analysis method is 

uncongenial to the imputation model (Robins and Wang, 2000). This is likely to occur 

in our general sensitivity analysis framework when the full-sample estimator is not an 

efficient estimator under the combined data and imputation models. To overcome this issue, 

Wang and Robins (1998) proposed consistent variance estimators for imputation estimators 

in the missing data literature under a parametric imputation model, which, however, is 

not applicable in our survival sensitivity analysis. We reformulate the MI estimator as a 

martingale series based on the sequential construction of the MI estimator and propose 

the wild bootstrap inference based on resampling the martingale series with a theoretical 

guarantee for consistency. The current framework considers only baseline covariates. If 

time-dependent covariates were available, including them makes the CAR assumption more 

plausible. However, the δ-adjusted and control-based models are still useful to conduct 

sensitivity analysis of assumptions about post-censoring behavior. Extending SMIM to 

incorporate time-dependent covariates will be our future work.

The proposed inferential framework targets consistent estimation of the repeated-sampling 

variance of the MI estimator. It appears paradoxical that the repeated-sampling variance of 

the MI estimator may decrease as the missingness rate increases; however, this phenomenon 

can happen given that the true value of the estimand changes with the missingness rate 

under the control-based imputation models. Alternatively, to avoid the seemly paradoxical 

phenomenon, Cro et al. (2019) proposed a novel principle of information anchored analysis 
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in the sense that the information ratio between the analysis with missing data and the 

analysis with full data is similar for the primary analysis and the sensitivity analysis. 

Their research suggested that the control-based imputation with Rubin’s variance estimate 

provides an information anchored analysis. In survival sensitivity analysis using control-

based imputation models, Atkinson et al. (2019) showed by simulation that Rubin’s 

combining rule is information-anchored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TABLE 1

Algorithm of multiple imputation

Step 
MI-1.

Create m complete data sets by filling in missing times to event with imputed values generated from an imputation model.
Specifically, to create the jth imputed data set, generate T i

* (j)
 from the imputation model for each missing Ti.

Step 
MI-2.

Apply a full-sample estimator of Δτ to each imputed data set.

Denote the point estimator applied to the jth imputed data set by Δτ
(j)

.

Denote the variance estimator applied to the jth imputed data set by V (j)
.

Step 
MI-3.

Use Rubin’s combining rule to summarize the results from the multiple imputed data sets. 

The MI estimator of Δτ is Δτ, mi = m−1∑j = 1
m Δτ

(j)
, and Rubin’s variance estimator is 

V mi Δτ, mi = m + 1
(m − 1)m ∑j = 1

m Δτ
(j) − Δτ, mi

2
+ 1

m ∑j = 1
m V (j)

.
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TABLE 2

Algorithm of sensitivity analysis using δ-adjusted and control-based imputation models via multiple 

imputation

Step MI-1–
1.

Fit a Cox model assuming CAR; denoted by Sa t ∣ Xi; θ .

Step MI-1–
2.

For administratively censored subject i with (Ai, Ii, Ri) = (a, 0, 1), compute pi = Sa Ui ∣ Xi; θ .

Draw a uniform random value ut ~ Unif[0, pt].

Impute the event time T i
*
 as the solution of ui = Sa t ∣ Xi; θ .

Numerically, we use T i
* = argmaxt ∈ T Sa t ∣ Xi; θ ≥ ui , where T is the set of realized times to event or censoring with 

the largest value being T max.

This will ensure that the imputed event time falls between the censoring time and T max.

Step MI-1–
3. For nonadministratively censored subject i with (Ai, Ii, Ri) = (a, 0, 2), compute pi = Sa Ui ∣ Xi; θ δ

.

Draw a uniform random value ui ~ Unif[0, pt].

Impute the event time T i
*
 as the solution of ui = Sa t ∣ Xi; θ δ

.

Numerically, we use T i
* = argmaxt ∈ T Sa t ∣ Xi; θ δ ≥ ui .

Step MI-1–
3’.

For nonadministratively censored subject i with (Ai, Ii, Ri) = (0, 0, 2), draw T i
*
 by Step MI-1–3 with a = 0 and δ = 1.

For nonadministratively censored subject i with (Ai, Ii, Ri) = (1, 0, 2), draw T i
*
 by Step MI-1–3 with a = 0 and δ, that is, using the 

corresponding control distribution.
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TABLE 3

Algorithm of wild bootstrap inference based on martingale representation of the MI estimator

Step WB-1. Sample uk, for k = 1,…, (1 + m)n, that satisfy E uk ∣ O1:n = 0, E uk
2 ∣ O1:n = 1 and E uk

4 ∣ O1:n < ∞.

Step WB-2. Compute the bootstrap replicate as

W L
* = n−1/2∑k = 1

(1 + m)n ξ n, kuk, 

where ξ n, k is the empirical version of ξn,k by replacing the unknown quantities with their estimators and the one-dimensional 
integrals by the numerical integration.

Step WB-3. Repeat Steps 1 and 2 B times, and estimate the variance of Δτ, mi by the sample variance of these copies of W L
*
.
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