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Abstract

Maternal obesity (MO) and gestational diabetes mellitus (GDM) are common in western societies, 

which impair fetal development and predispose offspring to metabolic dysfunction. Placenta is 

the organ linking the mother to her fetus, and MO suppresses the development of vascular 

system and expression of nutrient transporters in placenta, thereby affecting fetal development. 

For maintaining its proper physiological function, placenta is energy demanding, which is met 

through extensive oxidative phosphorylation. However, the oxidative capacity of placenta is 

suppressed due to MO and GDM. Recently, several studies showed that physical activity during 

pregnancy enhances oxidative metabolism and improves placental function, which might be 

partially mediated by exerkines, referring to cytokines elicited by exercise. In addition, as an 

endocrine organ, placenta secretes cytokines, termed placentokines, including apelin, superoxide 

dismutase 3 (SOD3), irisin and adiponectin, which mediate fetal development and maternal 

metabolism. Possible molecular mechanisms linking ME and placentokines to placental and fetal 

development are further discussed. As an emerging field, up to now, available studies are limited, 

mostly conducted in rodents. Given the epidemics of obesity and metabolic disorders, as well 

as the prevalence of maternal sedentary lifestyle, the effects of exercise of pregnant women on 

placental function and placentokine secretion, as well as their impacts on fetal development, need 

to be further examined.
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Placenta mediates the delivery of oxygen and nutrients from the mother to her fetuses, and also 

exerts endocrine functions. To maintain its physiological functions, placenta is energy demanding, 

which is mainly met by oxidative phosphorylation. Physical activity during pregnancy enhances 

placental oxidative metabolism and function, which is partially mediated by exercise-derived 

cytokines (exerkines). In addition, exercise stimulates the secretion of cytokines from placenta, 

termed as placentokines, which further mediate fetal development and may exert long-term effects 

on the metabolic health of offspring.
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1. Introduction

The population of women at reproductive age with overweight and obesity is rapidly 

increasing [1], accompanied with increased cases and rates of gestational hypertension 

(number of cases: 122,667 cases; incidence rate: 29.7%) and preeclampsia (number of 

cases: 132,800; incidence rate: 32.1%) in the United States in 2004 [2, 3]. Even worse, 

these deleterious maternal disorders affect fetal development, which predisposes children 

to metabolic diseases later in life [4, 5]. Furthermore, gestational diabetes mellitus and 

preeclampsia during pregnancy negatively affect birth size [6]. A number of previous reports 

have been reviewed, showing the association between birth size and impairment of glucose 

and insulin metabolism [7]. In particular, low birth weight predisposes offspring to increased 

insulin resistance and decreased insulin sensitivity, thereby leading to increasing incidence 
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of type 2 diabetes mellitus [8]. The accumulating evidence of developmental origins of adult 

diseases highlights the importance of gestational management.

Given placenta as a mediator between mother and fetus, a reasonable explanation of 

intergeneration effects is that the fetus absorbs more glucose and lipids delivered through 

the placenta, which promotes fetal white adipose tissue development and elicits chronic 

inflammation [9–11], while suppressing muscle and brown adipose tissue development [12, 

13]. Another possibility is due to the decreased levels of cytokines released from placenta 

into the fetal circulation, affecting fetal development [14]. These placenta-oriented cytokines 

are named as placentokines (PLACENTa + cytOKINE) [15]. Several studies suggest the 

importance of placentokines in regulating placental and fetal development [16–18]. In 

addition to nutritional and hormonal changes, maternal obesity induces mitochondrial, 

dysfunction, which impairs the generation of adenosine triphosphate (ATP) by oxidative 

phosphorylation, a critical source of energy for placenta [19]. Inversely, these disorders can 

be effectively reversed by physical activity during pregnancy [20].

Exercise has been recognized as a medicine [21], which is partially mediated by 

exercise-induced cytokines, termed exerkines [22]. In addition, maternal exercise enhances 

the secretion of apelin, an exerkine, which improves placental and fetal development, 

partially through enhancing oxidative metabolism [16, 23]. Recent studies further suggest 

that mitochondrial oxidative metabolism has key roles in mediating placental function 

and placentokine secretion [24–26]. In this review, we focus on studies examining the 

importance of placental oxidative function in mediating fetal development. In addition, the 

endocrine roles of placenta, via placentokines, in mediating placental and fetal development 

are also discussed.

2. Placenta as a key regulator of fetal development and maternal/fetal 

interaction

2.1. Placental structure and vascular system

The placenta is a unique organ mediating maternal and fetal interaction. The chorionic 

villi which are made of two cellular layers: the outer syncytiotrophoblast layer and the 

inner cytotrophoblast layer, are the basic functional units of the placenta [27]. In the 

maternal side, the uterine and ovarian arteries deliver blood through the arcuate arteries, 

radial arteries and spiral arteries to the intervillous space [27, 28]. In the fetal side, 

a syncytiotrophoblast layer separates maternal blood from the fetal components, which 

contain additional cytotrophoblasts, connective tissue from extraembryonic mesoderm, and 

fetal capillary endothelium [27, 28]. Nutrients and oxygen in maternal blood crosses 

syncytiotrophoblasts into the fetal side, and then delivered to the fetus through the umbilical 

vein [27]. Insufficient oxygen delivery due to placental functional deficiency exposes fetuses 

to hypoxic stress and nutrient deficiency, restricting fetal development [29, 30]. The nutrient 

uptake by placenta is mediated by nutrient transporters, including glucose transporters 

(GLUTs), amino acid transporters and fatty acid transporters (FATPs) [31]. Glucose is a 

critical nutrient for fetal development [32], and fetal glucose uptake is mainly mediated by 

GLUT1 [33], which is highly expressed in placenta [34]. GLUT1 level is increased due to 
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insulin-dependent gestational diabetes mellitus (GDM) [35], whereas oxidative stress and 

SIRT1 activation down-regulate GLUT1 expression [36]. Hypoxic environment stimulates 

GLUT1 expression in placenta, which is mediated by hypoxia inducible factor-1a (HIF-1a) 

[37].

Successful pregnancy requires the proper development of placental vascular systems, which 

mediates gas and nutrient exchanges between the mother and her fetus [38]. The placental 

vascular system is developed through vasculogenesis and angiogenesis [39]. In the early 

stage of placental development, under the stimulus of vascular endothelial growth factor 

(VEGFA) primarily secreted by cytotrophoblasts, mesenchymal cells in the villous core are 

differentiated into hemangioblasts, which are then differentiated into endothelial cells (ECs) 

and hematopoietic cells (HSs). Then, these ECs organized into new vessels, referred as 

vasculogenesis [40]. Afterwards, the vascular system expands through angiogenesis [41, 42]. 

The major regulators of angiogenesis include placental growth factor and angiopoietins, in 

addition to oxygen tension as a key mediator [43].

2.2. Placenta as an endocrine organ

Beside nutrient and gas exchange, the placenta has a key endocrine function by producing 

various peptides and lipid hormones/cytokines [44]. Syncytiotrophoblasts secrete numerous 

placental hormones: human chorionic gonadotropin (hCG), progesterone, estrogen, placental 

lactogen and growth hormone, which are critical for maintaining pregnancy [45].

Human chorionic gonadotropin (hCG) is a heterodimeric protein with two linked subunits: 

α and β, which is an important hormone during early pregnancy, synthesized by 

syncytiotrophoblasts [46]. hCG binds to luteinizing hormone/choriogonadotropin receptor 

(LHCGR), a G protein-coupled receptor (GPCR), which activates Gs subunit and adenylyl 

cyclase (AC), concomitant with activation of protein kinase A (PKA) [47]. At the early stage 

of pregnancy, hCG promotes differentiation of cytotrophoblasts into syncytiotrophoblasts 

via stimulating PKA signaling [48]. hCG-induced endothelial cell migration promotes 

capillary formation in placenta [49] by stimulating placental VEGF signaling pathway [50] 

and microvascular endothelial cell proliferation to form the vascular system [51]; it also 

mediates maternal immunotolerance via stimulating the proliferation of uterine natural killer 

cells [52].

Leptin, a peptide hormone mainly secreted by adipose tissue, was introduced as a novel 

placenta-derived hormone, which regulates placental development and function through 

para/autocrine actions [53]. Placenta is one of the dominant organs secreting and releasing 

leptin into bloodstream [54]. Leptin has a pivotal role in mediating the feto-placental 

interface during the first trimester [55], which promotes trophoblast cell proliferation [56] 

and prevents apoptosis of trophoblast cells [57]. Moreover, leptin fundamentally acts as a 

modulator of immune system in the placenta [58], leading to enhancing innate and adaptive 

immunity in the placenta [59]. However, mechanisms stimulating leptin secretion in placenta 

remains to be defined.

Progesterone is a steroid hormone synthesized by oxidation of cholesterol inside 

mitochondria of syncytiotrophoblasts [60], and an endosome protein, metastatic lymph node 
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64 (MLN64), mediates cholesterol transferring into mitochondria [61]. In the mitochondrial 

inner membrane, the type 1 3beta-hydroxysteroid dehydrogenase (3β-HSD) isomerase, 

stimulated by p38 phosphorylation [62], converts pregnenolone into progesterone [63]. 

Progesterone is required for maintenance of pregnancy [64, 65].

Placental estrogens, made up of four steroid hormones: estrone (E1), 17β-estradiol (E2), 

estriol (E3) and estetrol (E4), are produced by corpus luteum during the first week of 

gestation [66], and these hormones are then secreted by the placenta [67]. The estrogens 

mediate several hormonal events during gestation via their nuclear estrogen receptors, ERα 
and β [45]; in addition, estrogens also activate a G-protein coupled receptor which mediate 

intracellular Ca2+ mobilization and PKA activation [68, 69]. ERα and β in the placenta 

are differentially activated: ERα is mainly expressed in the cytotrophoblasts, but ERβ in 

syncytiotrophoblasts [70]. As the most abundant estrogen, estradiol not only stimulates 

proliferation of mammary epithelial cells for preparation of breastfeeding [71], but also 

inhibits lipolysis and elevates fat storage [72]. In addition to estrogens, the placental 

lactogen (PL) and growth hormone (PGH) are placental polypeptide hormones, which are 

mainly synthesized within syncytiotrophoblasts [73, 74].

2.3. Importance of placental mitochondriogenesis in mediating its nutrient transportation 
and endocrine function

Placental functions, including substrate exchange and endocrine functions, as well as its 

development, require energy [75]. As multifunctional organelles, mitochondria produce ATP 

by oxidative phosphorylation [76]. Although ATP is produced during placental glycolysis, 

mitochondrial oxidative phosphorylation provides most ATP. As a result, pregnant women 

with mitochondrial dysfunction have high risks of pregnancy complications including pre-

eclampsia, GDM and miscarriage [77]. Thus, maintaining mitochondrial homeostasis and 

oxidative function have profound impacts on placental function.

Mitochondrial adaptation in placenta occurs during pregnancy to support fetal development 

[78], which correlates with peroxisome proliferator-activated receptor γ coactivator-1α 
(PGC-1α) activation in the labyrinth zone of placenta [79]. Consistently, markers of 

placental mitochondrial biogenesis, including the expression of PGC-1α and mitochondrial 

transcription factor A (TFAM), are up-regulated in response to maternal caloric restriction 

[80], suggesting maternal nutrient-dependent mitochondrial adaptation. In addition, a 

hypoxic environment leads to placental angiogenesis, which is partially mediated by 

mitochondrial oxidative stress and the production of mitochondrial reactive oxygen species 

[79, 81]. Placental angiogenesis improves the placental vascular system, which facilitates 

oxygen and nutrient delivery [82]. In short, the mitochondria-vascular system axis indirectly 

enhances the efficiency of nutrient delivery of placenta.

Besides nutrient transport efficiency, mitochondrial adaptation further regulates endocrine 

function of the placenta [45, 79]. Obesity and metabolic dysfunction during pregnancy 

increase risks of pregnancy complications such as pre-eclampsia and GDM [83], which 

might be associated with mitochondrial dysfunction of the placenta [84]. High fat diet-

induced obesity during pregnancy decreases mitochondrial biogenesis [85, 86], which 

impairs placental function and fetal development [86]. Mitochondrial oxidative stress 

Chae et al. Page 5

FEBS J. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negatively affects secretion of endocrine hormones by placental syncytiotrophoblasts [87]. 

In summary, placental mitochondrial oxidation is important for placental endocrine function, 

which is negatively affected by poor environmental conditions, including malnutrition, 

hypoxia and obesity during gestation [88].

3. Maternal exercise, cytokines and their impacts on placental 

development and function.

3.1. Maternal exercise, obesity and other physiological changes

The beneficial effects of exercise during pregnancy are affected by duration and types 

of physical activities [85, 89–93]. Depending on the duration and intensity, exercise can 

be systematically separated into aerobic and anaerobic. During aerobic exercise, ATP 

is generated through oxidative phosphorylation within mitochondria. Anaerobic exercise, 

on the other hand, utilizes glycolysis to provide energy. Furthermore, regular aerobic 

exercise enhances cardiovascular function and muscle endurance capacity [94], while 

anaerobic exercise stimulates muscle hypertrophy and strength, which is more beneficial 

to the secretion of myokines [22]. Aerobic exercise with 40 to 60% of maximal oxygen 

consumption rates (VO2max) for 60 to 150 min/week is recommended for pregnant women 

[95, 96]. For anaerobic exercise, resistance exercise at moderate intensity is recommended 

for pregnant women [97–99]. In animal studies, voluntary wheel running (VWR) and forced 

treadmill exercise are commonly used for studying maternal exercise and fetal development 

[90–92], and the intensity of treadmill exercise during pregnancy is recommended at 40 

to 65% VO2max [14, 16, 85, 93]. In human studies, both aerobic and anaerobic exercise 

training with intensity ranging from light to high have been tested in pregnant women in 

previous studies [97, 100].

Generally, exercise is beneficial for individuals with metabolic diseases such as obesity, type 

2 diabetes mellitus and cardiovascular disorders [101]. Consistently, the recent meta-analysis 

of clinical trials showed that both aerobic and anaerobic exercises during pregnancy reduce 

the risk of gestational obesity and diabetes [20]. Furthermore, maternal exercise (ME) 

reduces risk factors of macrosomia and fetal metabolic dysfunction [102]. Furthermore, 

maternal aerobic exercise improves infant physical capacity, rendering them to be physically 

more active and thereby reducing risk of obesity in the early life [103]. Offspring born to 

exercised mothers have lower body mass index (BMI) compared to sedentary mothers [104, 

105].

Beside human studies, similar beneficial effects of ME were observed in animal studies 

[16, 106]. ME reduces body weight gain and improves glucose tolerance in both mothers 

and their offspring [91, 92]. These benefits might be due to enhanced energy expenditure, 

because ME has long-term effects in improving brown fat thermogenesis and skeletal 

muscle oxidative function of offspring [14, 85]. Consistently, accumulating data suggest 

that maternal exercise pre- and/or during gestation is beneficial for metabolic health of 

female and male offspring, improving glucose tolerance in tissues including liver, muscle 

and pancreas [20, 107].
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Obesity and type 2 diabetes mellitus are recognized as risk factors for placental dysfunction 

[108], which predisposes metabolic dysfunctions in offspring, even when offspring has a 

healthy lifestyle [91, 92]. Indeed, mothers with pre-gestational obesity have higher risks for 

developing GDM and metabolic complications, which impairs placental exchange functions 

[109, 110]. Consistently, obese mothers show less efficient placental function and fetal 

macrosomia, likely due to excessive fatty acid supply [16, 111, 112]. Obesity severely 

impedes placental vascularization, which impairs oxygen and nutrient delivery into the fetus 

[16, 113]. Consistent with the previous studies reporting the beneficial effects of ME on 

placental development [114, 115], we found that gestational exercise enhanced placental 

vascularization and activated nutrient transportation, protecting against the adverse effect of 

maternal obesity on fetal development [16].

3.2. Definitions of exerkines

Organs and tissues secrete their unique cytokines which are termed as myokines (secreted 

by muscle), adipokines (by adipose tissue) and placentokines (by placenta) [22, 116]. Their 

secretion and biological functions can be stimulated by external factors such as physical 

activity [117]. Those cytokines secreted in response to exercise are named as exerkines 

(exercise + cytokines) [118]. Thus, myokines, adipokines and placentokines can also be 

exerkines when their secretion is stimulated by physical activities (Fig. 1). For example, 

irisin is not only a myokine, but also an adipokine [119]; its secretion is further elevated by 

exercise, functioning as an exerkine [120]. Thus, irisin is a myokine, an adipokine and an 

exerkine depending on the contexts.

3.3. Exerkines regulating placental development

Maternal exercise is beneficial to placental development. In clinical trials, maternal aerobic 

exercise enhances placental functional and reduces the risk factors of metabolic dysfunction 

in pregnant women [121, 122]. Consistently, maternal strenuous exercise positively 

associates with placental amino acid metabolism and transport activity in a clinical study 

[123]. Simultaneously, maternally derived exerkines optimize placental development and 

function [23]. Here we reviewed key exerkines regulating placental development and 

function.

Apelin is a peptide hormone, which binds Gαi protein-coupled receptor, APJ 

[85, 124], activating AMP-activated kinase (AMPK) [125]. Exercise-induced apelin 

activation stimulates fatty acid oxidation and improves metabolic homeostasis [126–128]. 

Furthermore, apelin-APJ activation improves placental function [129, 130]. Maternal 

exercise stimulates apelin secretion by placenta, which enhances vascularization and nutrient 

delivery efficiency of placenta [16, 131]. However, the direct role of apelin in mediating the 

effects of maternal exercise on placental function remains to be examined.

Irisin is a cleaved form of fibronectin type III domain-containing 5 (FNDC5), which 

is up-regulated by the activation of PGC-1α [120]. Exercise activates PGC-1α, which 

stimulates irisin secretion. As a novel hormone, irisin enhances energy expenditure of 

skeletal muscle and adipose tissue, improving glucose homeostasis [132–134]. Interestingly, 

irisin also promotes trophoblast differentiation and placental development [135], and its 
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level in circulation increases during gestation [135–137]. However, pregnancy complications 

such as preeclampsia and GDM are correlated with lower levels of circulatory irisin [136], 

suggesting that irisin may mediate placental function impaired due to obesity and GDM. 

Furthermore, irisin is highly secreted by ovary [138] and placenta themselves, suggesting its 

autocrine role for stimulating placental development [139].

Adiponectin, also known as AdipoQ, is an adipokine, with molecular weight at 30 

kDa (ACRP30) [140]. Adiponectin is mainly secreted by white adipocytes [141]. 

Circulatory adiponectin level is negatively associated with obesity in both animals and 

humans [142, 143]. Exercise dramatically increases circulating adiponectin levels in 

patients with metabolic dysfunction, which might improve insulin sensitivity [144]. In 

addition, adiponectin is also secreted by placenta [145], which regulates cytotrophoblast 

differentiation [146] and potentially trophoblast invasion of the decidua [147]. Moreover, 

adiponectin administration during pregnancy reduces placental malfunction resulted from 

obesity [148] (Fig. 2).

3.4. Placentokines, fetal development and long-term effects on offspring

3.4.1. Maternal exercise-induced placentokines and fetal development—
Placentokines enhance fetal development and exert long-term effects on offspring metabolic 

health [129, 130, 136], consistent with a recent study showing that ME increased placental 

weight which negatively associated with the risk of preterm birth [149]. Here, we 

briefly review three placentokines with potentials as therapeutic targets, including apelin, 

superoxide dismutase 3 (SOD3) and adiponectin, which improve fetal development.

Exercise during pregnancy elevates apelin levels in fetal circulation and stimulates 

placentokine apelin expression [14], which enhances mitochondrial biogenesis and the 

expression of PGC-1α, facilitating functional development in offspring muscle [85]. At the 

same time, apelin activates fetal brown adipogenesis, which persists in the BAT of offspring, 

improving their metabolic health when challenged by HFD [14, 85].

Besides, it was recently discovered that maternal exercise elevates serum and placental 

SOD3 in both mice and women [150]. Secreted SOD3 releases into the fetal liver 

and activates AMPK/isocitrate dehydrogenase (IDH)/α-Ketoglutarate (α-KG)/ten-eleven 

translocation (TET) axis [151], which results in hypomethylation of promoter regions 

of glucose metabolic genes, thereby leading to improvement of offspring metabolic 

homeostasis [150].

Consistent with the role of SOD3 as a mediator, adiponectin administration during 

pregnancy regulates fetal growth and glucose homeostasis, and protects offspring against 

adverse effects due to maternal obesity [148]. Similarly, irisin is activated by exercise, which 

improves metabolic health of women [152], and also reduces fetal growth abnormalities 

[153]. Furthermore, FNDC5 genetic polymorphisms in mothers are related with preterm 

birth [154], which are associated with elevation of infant mortality and morbidity [155]. 

Consistently, small for gestational age infants have lower serum irisin levels compared to 

counterparts [156].
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In summary, current knowledge about placentokines stimulated by maternal exercise 

remains very limited. Additional placentokines, together with mechanisms linking 

placentokines to placental and fetal development, need to be further explored.

3.4.2. Maternal exercise and long-term improvement of metabolic health in 
progeny.—ME is effective in preventing metabolic dysfunction of offspring born to obese 

mothers [91]. Notably, middle-aged offspring born to mothers fed HFD during pregnancy 

show impaired glucose tolerance [91, 92]. The expression of PGC-1α, a key regulator of 

mitochondrial biogenesis, was down-regulated in offspring muscle due to maternal HFD 

intake, which was prevented by ME [90]. In addition, ME further enhances mitochondrial 

biogenesis in offspring skeletal muscle by persistent activation of apelin-APJ axis, which is 

associated with hypomethylation in the promoter of Ppargc1a gene in offspring muscle [85]. 

Up to now, studies on the long-term effects of ME on offspring metabolic health remain very 

limited and most available studies were conducted in animals; clinical studies are needed 

(Fig. 3).

4. Placental oxidative metabolism in linking maternal exerkines, 

placentokines and placental function

Epigenetic modifications regulate gene expression [157]. DNA methylation and 

demethylation are key mechanisms regulating gene expression [158]. We recently found 

that ME activates AMPK and induces apelin secretion in placenta, which then releases into 

the fetal circulation to stimulate fetal brown fat and skeletal muscle development [14, 85]. 

Furthermore, we found that α-ketoglutarate (α-KG), a key mediator of the TCA cycle, 

mediates DNA demethylation the Prdm16 promoter via facilitating ten-eleven translocation 

(TET)-mediated DNA demethylation, which enhances fetal brown fat development [14, 85, 

151]. Thus, activation of mitochondrial oxidative capacity not only provides energy for 

maintaining placental function, but may also facilitate epigenetic modifications in genes 

needed for placental vasculogenesis and nutrient delivery [16]; in addition, placenta secretes 

placentokines to regulate fetal development [14, 159]. Supportively, another possible 

placentokine, irisin, regulates the differentiation of placental trophoblast cells primarily via 

activating AMPK [135], and cord irisin levels were decreased in newborns of small for 

gestational age [153]. Up to now, potential roles of placentokines linking ME to placental 

and fetal development remain poorly defined.

Besides, fuel consumption of the placenta is essential for placental development and 

maintenance of its physiological functions, which is supported by oxidative phosphorylation 

in placental mitochondria [160]. Dysfunction of placental respiratory capacity caused by 

preeclampsia and GDM, indeed, can severely impair placental structure and function 

[160]. Although exercise improves mitochondrial adaptation and oxidative phosphorylation 

in different tissues such as skeletal muscle and adipose tissue [161, 162], the evidence 

supporting exercise in improving placental oxidative metabolism and fetal development 

remains weak, and more studies, especially, human studies are needed (Fig. 4).
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5. Conclusion and future perspectives

The importance of intrauterine condition on fetal development has been well established 

[163, 164]. Placenta, the only tissue linking the mother to her fetus, is critical for proper 

fetal development [28]. As potential mediators for placental development, ME stimulates 

the secretion of exerkines facilitating placental development. Placental oxidative metabolism 

is critical for maintaining placental function, and ME enhances placental mitochondrial 

biogenesis and vascularization, which is partially mediated by placentokines. Placentokines 

in response to exercise during pregnancy regulate placental development and function, as 

well as fetal development, which may generate long-term effects on offspring metabolic 

health. However, additional placentokines need to be further identified and the types 

of placental cells secreting placentokines need to be further examined. Understanding 

molecular mechanisms linking exercise-induced placentokines to placental function and 

fetal development, as well as long-term metabolic health of offspring will help to identify 

therapeutic targets for improving both maternal and offspring health.
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Abbreviations

AC Adenylyl cyclase

ACRP30 adipokine with molecular weight at 30 kDa

AMPK AMP-activated kinase

3β-HSD 3beta-hydroxysteroid dehydrogenase

BMI body mass index

E1 estrone

E2 17β-estradiol

E3 estriol

E4 estetrol

FNDC5 fibronectin type III domain-containing 5

GDM gestational diabetes mellitus

GLUTs glucose transporters

GPCR G protein-coupled receptor

hCG human chorionic gonadotropin

HIF-1a hypoxia inducible factor-1a

LHCGR luteinizing hormone/choriogonadotropin receptor
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ME maternal exercise

MO maternal obesity

VO2max maximal oxygen consumption rates

MLN64 metastatic lymph node 64

SOD3 superoxide dismutase 3

TFAM mitochondrial transcription factor A

PGC-1α peroxisome proliferator-activated receptor γ coactivator-1α

PL placental lactogen

PGH placental growth hormone

PKA protein kinase A

VEGFA vascular endothelial growth factor

VWR voluntary wheel running
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Figure 1. 
Diagram showing the definition of exerkines and organ/tissue secreted cytokines.
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Figure 2. 
Exercise-induced placentokines regulating placental development. Exercise adaptation 

during pregnancy positively stimulates the secretion of placentokines including apelin, irisin 

and adiponectin.
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Figure 3. 
The effects of maternal exercise-derived placentokines on fetal development and its long-

term effects on the offspring.
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Figure 4. 
Potential mechanisms regulating epigenetic modifications of developmental genes in 

placenta in response to exercise during pregnancy. Prenatal exercise-dependently induced 

placental mitochondrial adaptation via providing α-ketoglutarate (α-KG), which facilitates 

TETs-mediated DNA demethylation [conversion of 5-methylcytosine (5-mC) to 5-hydroxy-

methylcytosine (5-hmC)]).
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