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No teacher in medicine is better than experience. Observational studies that examine large 

repositories of data, such as electronic health record (EHR) databases and multicenter 

registries, afford a vantage of collective experience beyond what any individual can gain 

at the bedside. Recent years have seen a surge of observational literature propelled by 

increasing accessibility to EHR databases and a growing familiarity and availability of 

observational research tools such as the open-source R programming language and software 

libraries that facilitate advanced modeling.(1) Observational insights through pattern 

identification and statistical tests of association share both a bedside and mathematical 

space with causation. However, association and causation are not the same. Awareness of the 

potential role of confounding is essential when working to distill meaningful insights from 

observational data and studies, a task that can seem particularly daunting with the bloom 

of increasingly esoteric “machine learning” analyses throughout the medical literature, 

including Pediatric Critical Care Medicine.

In this issue of the Journal, a study by Beshish and colleagues describes an association 

between hyperoxemia during cardiopulmonary bypass and operative mortality among 

children with heart disease.(2) In the accompanying editorial, Dr. Peters highlights the 

natural temptation that we all have to infer causal relationships from patterns proximate to 

one another in time and space.(3) Indeed, several studies have examined the relationship 

between hyperoxemia and outcome among critically ill children and identified associations 

between supra-physiologic oxygen levels and mortality.(2, 4-12) It is a research question 

with a biologically plausible basis in that reactive oxygen species are recognized to 

wreak molecular havoc in cells and tissue. It is also a question readily investigated in 

data-rich intensive care unit registries and databases, in which multiple observations of 

FiO2, PaO2, SpO2 (fractional inspired oxygen, arterial partial pressure of oxygen, pulse 

oximetry oxyhemoglobin saturation, respectively) abound and can be analyzed in relation to 

outcome. But the fact remains that sicker patients are in general exposed to greater amounts 

of oxygen, either out of necessity or as part of resuscitation bundles. Hence, oxygen has 

been deemed a highly suspicious culprit, but just because oxygen is dressed in stripes does 

not make it a convict! So how does one derive meaningful information from observational 

studies while disentangling associations from confounding to form actionable insights?

One can start by considering the basic definition of confounding, which is “a blurring or 

mixing of effects.”(13, 14) A confounder has an association with both the disease, and/or 

predictor, and/or exposure, and the outcome of interest – but is not an effect of the exposure 

or a factor in the outcome or property of the underlying disease. For example, a large forest 
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fire causes substantially more damage than a small bush fire and requires far more fire 

fighters to combat the blaze. Without knowledge of the causal mechanisms at play, one 

might identify that a greater number of fire fighters is associated with more catastrophe and 

could erroneously infer a causal relationship along the lines of more fire fighters results in 

more damage.

Since causal relationships are the relevant targets for treatments and interventions, we need 

strategies to control for confounding. Let us consider these using the example of pediatric 

hyperoxemia studies. As already mentioned, illness severity is an important confounder in 

many studies examining the relationship between hyperoxemia and outcome. A common 

technique to control for illness severity is multivariable modeling, often incorporating 

some version of a validated measure of disease severity, such as the pediatric risk of 

mortality score (PRISM), pediatric index of mortality (PIM) or pediatric logistic organ 

dysfunction score (PELOD).(2, 4, 6, 8-11) Each of these scoring systems has a track 

record that includes external validation and robust predictive performance. However, the 

development of each of these scores has had to account for the competing aims of being 

sufficiently comprehensive representations of illness severity while also being calculable 

using checklists and commonly available data. Further, the relatively low rate of mortality in 

pediatric critical care means that these models are trained on imbalanced datasets, with more 

to teach about life than death. Accordingly, these models only account for a subset, and 

certainly not all, of data representing illness severity. Modeling last rites as a variable, for 

example, may be associated with mortality after adjusting for severity with an established 

score, but does not indicate a causal relationship between last rites and death. Instead, 

identifying an association is only the first step, and further steps are necessary to tease out 

potential causality. Fortunately, readers can ask some relatively straightforward questions of 

their own before drawing conclusions from observational data.

Bradford Hill outlined a set of classic criteria to assess causality in observed 

relationships: strength, consistency, specificity, temporality, biological gradient (dose-

response), plausibility, and coherence.(14) Strength refers to the observed effect size of 

an association. In the context of hyperoxemia research, this refers to how much more 

likely death is for patients exposed to hyperoxemia compared to those with apparent 

normoxemia, commonly expressed as odds. Greater odds of death provides some indication 

that the relationship is more likely to be causal, though there is no established threshold 

for declaring a causal relationship. Consistency refers to the reproducibility of the finding. 

As the number of observational studies citing an association between hyperoxemia and 

mortality accumulate from a range of institutions and patient subpopulations, the finding 

appears increasingly consistent. Specificity refers to an association consistently observed 

in a select context, such as hyperoxemia being associated with death post-cardiac arrest. 

The temporality criterion necessitates the timing of the exposure to be sensibly related 

to outcome. For example, hyperoxemia defined by PaO2 obtained during the episode 

of critical illness, rather than during apnea testing when assessing for brain death. The 

biological gradient criterion would require the magnitude of hyperoxemia, measured 

either by cumulative exposure, magnitude of an instance of exposure, or both, to have a 

proportionate effect on the odds of death. Several studies have demonstrated a plausible 

“U-shaped” relationship between oxygen level and outcome, with death more likely at both 
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the extreme highs and lows of PaO2 values, though it is less clear if this is a relationship 

defined by polynomial smoothing rather than true dose-response.(6, 8, 11) Plausibility 
asks whether a biologically sound mechanism underlies the observed association. As noted 

already, substantial pre-clinical evidence, some findings dating back more than a century, 

contributes to the enthusiastic belief that hyperoxemia is causally linked to death.(15) 

Coherence would expect that the outcome of interest, mortality in this case, would be 

altered by removing exposure to hyperoxemia. Guidelines for the management of pediatric 

cardiac arrest recommend judicious use of oxygen in resuscitation, for example, though it is 

difficult to discern the impact of this single intervention amidst many other evolving aspects 

of care.(16)

With these criteria in mind, some additional steps can be taken in the design of observational 

studies to further interrogate potentially causal relationships. Well-constructed propensity 

scores, for example, can allow researchers to incorporate a greater number of potentially 

confounding variables in observational models without problematic overfitting. Following 

identification of a significant association, assessment for lurking confounders can be 

performed, which quantifies the prevalence and effect size of an unmeasured confounder 

that would be necessary to tip the model to fail to reject the null hypothesis of the 

observed association. Observational randomized analyses can also be performed to deal with 

uncontrollable confounders. This is commonly performed by dividing large datasets into a 

training set for model development and a testing set for model assessment. When smaller 

datasets preclude division into train and test groups, data splitting can be performed using 

k-fold cross validation. Intrinsically random, machine-learning approaches such as random 

trees, forests and fields and neural networks may be coupled with feature importance 

analyses to assess whether hyperoxemia is predictive of mortality in large, granular 

databases.(17) Such techniques provide added capabilities for dealing with unmeasured 

confounders in observational data, but such experiments are still subject to the limitations of 

the dataset on which they are being applied.

Ultimately, the gold standard to deal with confounding in clinical experimentation remains 

the randomized controlled trial. By randomizing comparable groups of patients to alternative 

treatment strategies, the intervention of interest ideally becomes the distinguishing 

characteristic of the experimental arms. There are, of course, myriad practical challenges 

to randomized controlled trials in pediatric critical care, including the relative rarity of 

diseases, cost, special ethical considerations, and challenges obtaining consent at the 

appropriate time, among others.(18) However, the same circumstances that have promoted 

the surge in observational studies in recent years, including the increasing usability of EHR 

data, may also pave the way for larger, most efficient trials in our field. As an increasing 

number of Bradford Hill criteria are met in observational studies assessing a link between 

hyperoxemia and outcome among critically ill children, the findings should not be viewed as 

irrefutable causal associations, but rather as supporting the need to invest in more conclusive 

studies of this important topic.
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