Skip to main content
. 2022 Feb 14;12:782988. doi: 10.3389/fonc.2022.782988

Table 3.

Segmentation performance evaluation on Mask-RCNN and U-Net.

Methods Mask-RCNN U-Net
DSC (%) HD DSC (%) HD
Baseline 75.70 ± 3.792 121.75 ± 44.292 64.87 ± 2.066 159.48 ± 15.185
RefMeth_1 75.98 ± 3.271 110.84 ± 14.223 65.28 ± 2.245 179.32 ± 6.2712
RefMeth_2 77.34 ± 1.774 79.803 ± 8.744 65.55 ± 1.757 164.46 ± 7.9453
RefMeth_3 78.88 ± 3.000 73.920 ± 13.632 63.82 ± 3.299 169.90 ± 9.9893
RefMeth_4 80.52 ± 2.718 66.865 ± 14.626 66.85 ± 3.422 171.41 ± 11.353
PropMeth_1 85.36 ± 1.156 43.523 ± 2.7343 77.30 ± 2.900 66.869 ± 4.6270
PropMeth_2 85.16 ± 1.459 44.410 ± 6.5669 78.61 ± 2.616 59.627 ± 8.068
PropMeth_3 85.44 ± 1.062 44.641 ± 4.7393 79.08 ± 2.654 66.070 ± 2.1231