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Abstract
To measure stomatal traits automatically and nondestructively, a new method for detecting

stomata and extracting stomatal traits was proposed. Two portable microscopes with different

resolutions (TipScope with a 40× lens attached to a smartphone and ProScope HR2 with a 400×
lens) are used to acquire images of living stomata in maize leaves. FPN model was used to detect

stomata in the TipScope images and measure the stomata number and stomatal density. Faster

RCNN model was used to detect opening and closing stomata in the ProScope HR2 images, and

the number of opening and closing stomata was measured. An improved CV model was used to

segment pores of opening stomata, and a total of 6 pore traits were measured. Compared to

manual measurements, the square of the correlation coefficient (R2) of the 6 pore traits was

higher than 0.85, and the mean absolute percentage error (MAPE) of these traits was 0.02%–
6.34%. The dynamic stomata changes between wild-type B73 and mutant Zmfab1a were

explored under drought and re-watering condition. The results showed that Zmfab1a had a

higher resilience than B73 on leaf stomata. In addition, the proposed method was tested to

measure the leaf stomatal traits of other nine species. In conclusion, a portable and low-cost

stomata phenotyping method that could accurately and dynamically measure the characteristic

parameters of living stomata was developed. An open-access and user-friendly web portal was

also developed which has the potential to be used in the stomata phenotyping of large

populations in the future.

Introduction

Maize (Zea mays L.) is one of the three most important crops. The

stomata of maize leaves are formed by specialized epidermal cells

that act as a main channel for gas exchange between the interior

and external environments of maize plants (Wagner et al., 2011).

Leaf stomata play an important role in the regulation of the

carbon and water cycles during maize plant growth and affect

the strength of transpiration and photosynthesis of maize plants

(Hepworth et al., 2018; Qu et al., 2017). Measuring stomatal

traits, including the number of stomata, pore shape and stomata

distribution, is important in the research on maize cultivation,

yield growth and stress resistance (Bertolino et al., 2019; Rudall

et al., 2013; Zarinkamar, 2007).

The stomata imaging can be included two types: destructive

and nondestructive. The most traditional method of stomata

imaging is blotting, belonging to destructive, which the stomatal

morphology is fixed with a fixator for observation with a

microscope (Gitz and Baker, 2009; Iodibia et al., 2017). In recent

years, some works have been done to improve these traditional

methods. Eisele et al. (2016) used Rhodamine6G to pre-stain the

leaves and combined with the method of protoplast isolation,

which not only did not influence the closing or opening of

stomata, but also simplified the measurement of stomatal traits.

Bourdais et al. (2019) used the spinning disc automated Opera

microscope to image the leaves on 96-well plates, which had a

high imaging efficiency. Millstead et al. (2020) mounted the

imprint on the microscope slide to improve the common nail

polish imprint method, which could reduce any unevenness of

the leaf imprint and allow shallow depth-of-field sensors to keep

larger areas of the sample in focus. Although images acquired by

traditional methods are clear, these methods are time-

consuming, vulnerable to human error and destructive to plant

leaves. The other stomata imaging method is nondestructive,

such as acquiring images of living leaf by Keyence VHX-200

(Song et al., 2020) or by a portable microscopy 3R-MSUSB601

(Sun et al., 2021). This method can achieve higher imaging

efficiency with no need to prepare samples. However, the

images acquired by this method are lower quality than the

destructive method.

With the development of computer vision, image processing

technology has been widely used in detecting stomata and

measuring the stomatal size of plant leaves. Sanyal et al. (2008)

studied the stomatal morphological features of different tomato
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cultivars based on scanning electron microscopy (SEM) images.

They used a watershed algorithm and morphological processing

to separate a single stoma from other neighbouring stomata

and measured the area, centre of gravity and compactness of

the single stoma. Laga et al. (2014) used template matching to

detect individual stomatal cells and local analysis to measure the

stomatal features of wheat, but the template they used was not

suitable for other crops. Liu et al. (2016) applied maximum

stable external regions (MSERs) to measure the pore size of vine

leaf stomata and developed a smartphone-based system.

Jayakody et al. (2017) developed a cascade object detection

learning algorithm to identify multiple stomata and combined

segmentation and skeletonization with the ellipse fitting tech-

niques to measure stomatal pore openings in microscopic

images of grapevines. Zhu et al. (2018) used the object-

oriented method of the eCognition software to extract the

stomata of plant leaves. However, the detection accuracy of

these threshold-based image processing methods was vulnerable

to the contrast of the images (Li et al., 2019). Nassuth et al.

(2021) calculated stomatal density and stomatal index of leaves

of different grape species based on ImageJ software. The results

showed that stomatal parameters were significantly affected by

species or cultivar and growing conditions. Li et al. (2019)

developed a stomatal segmentation method based on the Chan-

Vese (CV) model for single stoma images of different plants. The

CV model was superior to the existing traditional image

processing methods, such as the threshold and skeletonization

methods, in terms of versatility.

Currently, deep learning algorithms are used for object

detection and not only perform well in agricultural macro

phenotyping but also have broad application prospects in micro

phenotyping, such as for stomata detection in plant leaves

(Aono et al., 2019; Higaki et al., 2014). Vialet-Chabrand and

Brendel (2014) used the cascade classifier to identify and

extract the coordinates of oak stomata and characterized the

clustering of stomata with the expectation maximization (EM)

algorithm. Sakoda et al. (2019) used the single-shot multibox

detector (SSD) to automatically detect soybean stomata. Bhugra

et al. (2019) compared several existing stomatal feature

detection methods (Bhugra et al., 2018) and proposed an

automated pipeline leveraging deep convolutional neural net-

works for the stomata phenotyping of plant leaves based on

SEM images with low contrast. Toda et al. (2018) developed a

program called ‘DeepStomata’ for the automatic measurement

of the stomatal diameter. Fetter et al. (2019) developed the

‘StomataCounter’ tool to detect stomata in different micro-

scopic images. Casado-Garcı́a et al. (2020) developed ‘LabelS-

toma’, an open-source and simple-to-use graphical user

interface that employs the YOLO model. Andayani et al.

(2020) used the convolutional neural network (CNN) method

to identify Curcuma plant stomata, with the Gabor filter

algorithm to preprocess microscopic images and the grey-level

cooccurrence matrix to extract features. Meeus et al. (2020)

used a deep neural network for stomata detection in 35

species. Jayakody et al. (2021) proposed a methodology to

detect stomata for a wide variety of plant type combinations of

an FPN-backed mask RCNN with a statistical filter algorithm.

The Mask RCNN algorithm was also used to detect the stomata

of citrus and black polar plants (Costa et al., 2020; Song et al.,

2020). Recent works on leaf stomata detection based on deep

learning are listed in Table S1. However, based on the

microscopes used in the laboratory, most of these methods

are destructive because stomatal imprints were peeled off from

plant leaf surface and mounted on glass slides for observation;

hence, high-throughput and nondestructive phenotyping of leaf

stomatal traits is urgently needed.

In this study, a StomataScorer installed with two portable and

high-throughput microscopy devices was developed for acquiring

leaf stomata images with different image resolutions (~6 and

~1.5 μm/pixel). An image analysis pipeline was implemented for

extracting the number of stomata and stomatal pore traits by

combining deep learning (Faster RCNN and FPN) with an

improved CV model. In addition, the proposed method was

tested to monitor the stomata change of drought response and

also can be applied to measure the leaf stomatal traits of other

species. Studying stomatal traits of plant leaf through the whole

growth stage could explore the plant response mechanism to

environmental changes.

Results

The stomatal traits measurement pipeline

In this study, two portable microscopes (TipScope, Kenweijiesi

Wuhan Technology Co., Ltd, Wuhan City, China and ProScope

HR2, Bodelin Technology Co., Ltd, Oregon City, OR, USA) were

used to measure the living stomatal traits of maize. The images

acquired by TipScope had a large field of view (4608 × 3456

pixels) and relatively lower resolution (~6 μm/pixel). A stomata

detection model based on the FPN algorithm was established to

measure the number of stomata and stomatal density. TipScope

image processing for extracting stomata number was shown in

Figure 1a–f.
Compared to TipScope, the images acquired by ProScope HR2

had a small field of view (640 × 480 pixels) and relatively higher

resolution (~1.5 μm/pixel). A dual-object detection model based

on the Faster RCNN was established to detect opening stomata

and closing stomata. The number of opening stomata, number of

closing stomata and the ratio of opening stomata number to total

stomata number were obtained (Figure 1l). For the opening

stomata, an image analysis pipeline was proposed to automat-

ically segment and measure the pore traits for living stomata

based on an improved CV model. ProScope image processing for

extracting stomatal pore traits was shown in Figure 1g–r. The

operating procedure for stomatal trait extraction is provided in

Video S1. The main instructions of the stomatal trait extraction

are shown in Note S1.

Detection accuracy of stomata number based on a
single-object detection model using images acquired by
TipScope

Detecting the stomata number dynamically would enable the

evaluation of the physiological status of maize leaves. In this

study, a single-object detection model using images acquired by

TipScope was established based on the FPN algorithm. The results

of stomata detection based on the FPN model are shown in

Figure 2b. Two hundred images were used to validate the model,

and the detection precision, recall, accuracy and F-score were

1.00, 0.99, 99% and 0.99 respectively. The stomata number was

determined, and the square of the correlation coefficient (R2)

value and the mean absolute percentage error (MAPE) of the

automatic measurement versus manual measurement were 0.99

and 1.03% respectively (Figure 2c).
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Detection accuracy of the dual-object detection model
using images acquired by ProScope HR2

The stomatal status (opening or closing) was vulnerable to the

changes of the environment. In this study, a dual-object detection

model was established based on the Faster RCNN algorithm for

images (Figure 3a) acquired by ProScope HR2. The results of

stomata detection based on the Faster RCNN model are shown in

Figure 3b, where the red box indicates opening stomata and the

blue box indicates closing stomata. Two hundred images were

used to validate the model. The detection precision, recall,

accuracy and F-score for opening stomata were 1.00, 0.97, 97%

and 0.98 respectively. The detection precision, recall, accuracy

and F-score for closing stomata were 0.96, 0.97, 93% and 0.96

respectively. Compared to manual measurements, the R2 and

MAPE for the number of opening stomata were 0.99 and 2.93%

respectively (Figure 3d); the R2 and MAPE for the number of

closing stomata were 0.98 and 5.95% respectively (Figure 3e);

and the R2 and MAPE for the ratio of opening stomata number to

total stomata number were 0.98 and 3.27% respectively

(Figure 3f).

Measurement accuracy of pore traits

The pore shape of the opening stoma reflects the strength of gas

exchange between the interior of the leaf and the external

environment. In this study, two hundred images with a single

stoma were analysed. Compared to manual measurements, the

R2 for the pore length, pore width, pore eccentricity, pore

opening degree, pore area and pore perimeter ranged from 0.85

to 0.96, and the MAPE for the pore length, pore width, pore

eccentricity, pore opening degree, pore area and pore perimeter

ranged from 0.02% to 6.34% (Figure 4a–f).

Figure 1 Stomatal traits measurement pipeline. (a–f) The stomata number and stomatal density extraction pipeline for the images acquired by TipScope.

(g–r) The stomatal traits extraction pipeline for the images acquired by ProScope HR2.

Figure 2 Results of stomata detection and the stomata number. (a) The cropped original image. (b) The stomata detection results. (c) The scatter plots of

the automatic measurement versus manual measurement of the number of stomata.
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Measurement efficiency

In this study, two portable microscopes were used to measure

stomatal traits, both of which acquire stomata images directly

from living leaves. A total of 500 TipScope images were used to

evaluate the performance of FPN model, and it took about 42 s.

That is the average time for measuring the stomata number in

each TipScope image was approximately 0.084 s.

There was no need to preprocess the samples, and the time to

acquire one image was approximately 5–10 s by ProScope HR2.

A total of 500 ProScope images were used to evaluate the

performance of Faster RCNN model and pore segmentation

algorithm, and it took about 40 min. That is the average time for

detecting opening/closing stomata, segmenting pores of opening

stomata and measuring stomata traits was approximately 4.8 s

(Windows 10 environment, MATLAB 2019a, 3.4 GHz CPU,

64.0 GB of RAM). Thus, the total time consumption for

extracting all stomata traits for each leaf was approximately

10–15 s.

EXE software and open-access web portal for stomatal
trait extraction

The software interface of EXE software was illustrated in

Figure 5a. The original colour image, the stomata detection

results image, the mask image, stomatal traits and the image ID

were displayed on the interface. The software included three

main parts: stomata detection, pore segmentation and stomatal

traits extraction which were carried out simultaneously based on

multithread technique. It could process a batch of images in one

folder and displayed the stomatal traits on the interface and also

saved the traits in the predefined Excel file. The software could

work in two modes: one-key operation and step-by-step

operation. In the one-key operation mode, users could obtain

all stomatal traits after clicked ‘One-Button Start’ button. In the

step-by-step operation mode, users could obtain stomata num-

ber, opening or closing stomata number after clicked ‘Stomata

Detection’ button and obtained pore traits after clicked ‘Pore

Segmentation’ button. The software operation procedure of the

maize leaf stomata detection and pore segmentation was shown

in Video S2. The whole program was packaged as an EXE

executable software using PyInstaller software. The EXE exe-

cutable software could be installed on other computer without

the need to configure a deep learning environment.

A user-friendly web portal was also developed for stomatal

researchers around the world to easily use the method to extract

stomatal traits. The webserver was available at http://

x40833180q.zicp.vip. To use the Stomatascorer, users upload

single.jpg image or a zip file of their.jpg images. Then, the image

of stomata detection results, mask image and stomatal traits were

returned which were displayed on the web interface (Figure 5b)

and saved in which users could download them. The web portal

operation procedure was shown in Video S3. The detailed

information for developing web portal was shown in File S1.

The dynamic process of wheat and maize leaf pore from
closing to opening

To observe the dynamic process of pore from closing to opening,

the images of maize leaf were acquired continually from 0 AM to

2 PM on 26 July 2021 and the images of wheat leaf continually

from 0 AM to 2 PM on 18 April 2021 respectively. The image

acquisition equipment and the parts of images were shown in

Figure 6. The movies of the dynamic process of wheat leaf pore

and maize leaf pore were shown in the Video S4 and S5

respectively.

Figure 3 Results of stomata detection based on the dual-object detection model. (a) The original image. (b) The stomata detection results, where the red

box is for opening stomata and the blue box is for closing stomata. (c) An opening stoma and a closing stoma. (d–f) The scatter plots of the automatic

measurement versus manual measurement of the number of opening stomata (d), number of closing stomata (e) and the ratio of opening stomata number

to total stomata number (f).
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Leaf stomatal traits to reflect drought response among
B73 and mutant Zmfab1a

Stomatal traits were also used to explore the differences of

drought response between B73 wild-type and Zmfab1a mutant

(Figure S1) (Wu et al., 2021) under well-watered (WW) and

drought-stressed (DS) conditions. The important role of Zmfab1a

was found to regulate maize photosynthesis, WUE and drought

tolerance in our previous work (Wu et al., 2021).

Stomatal traits were extracted, and the ratio of opening

stomata number to total stomata number, total pore areas, pore

opening degree and single pore area were used to explore the

Figure 4 Scatter plots of the automatic measurements versus the manual measurements of pore traits, including the pore length (a), pore width (b), pore

eccentricity (c), pore opening degree (d), pore area (e) and pore perimeter (f).
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different drought response between B73 and Zmfab1a. The

results were shown in Figure 7, and the results with error arrange

were shown in Figure S2. The average of the 4 stomatal traits of

4 days were calculated which the ratio of opening stomata

number to total stomata number, and the total pore areas

showed significant differences (** means P < 0.05 and ***
means P < 0.01, Figure 7c) and the other two were not

significant. From Figure 7c, the ratio of opening stomata number

to total stomata number and the total pore area of B73 were

higher than Zmfab1a under WW condition and had the negative

results under DS condition. This was consistent with the results

described in the literature by Wu et al. (2021). The values of DS/

WW of the 4 traits for B73 and Zmfab1awere calculated

respectively (Figure 7d). The results showed that the ratio of

opening stomata number to total stomata number and the total

pore area of Zmfab1a were higher than B73 under DS condition

and after re-watering, which indicated that Zmfab1a had a higher

resilience than B73 on leaf stomata.

Discussion

Performance of the improved CV model for pore
segmentation

In this study, a fast, nondestructive and accurate stomata

detection method was proposed. The segmentation method

proposed by Li (Li et al., 2005) was used to segment pores of the

Figure 5 Software interface of EXE

software and the open-access web portal.

(a) The software interface of the EXE

executable software which was packaged

with the whole program by PyInstaller

software. (b) The open-access web portal

to extract stomatal traits.
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Figure 6 Image acquisition equipment (ProScope HR2) and the parts of stomata images. (a) The image acquisition equipment. (b) Parts of stomata images.

Figure 7 Dynamic stomata response of wild-type B73 and mutant Zmfab1a under well-watered (WW) and drought-stressed (DS) conditions. (a) The

stomata images of B73 wild type on D32, D35, D36 and D37 with the soil moisture content of 15%, 10%, 25% and 35% respectively. (b) The stomata

images of Zmfab1a mutant plants on D32, D35, D36 and D37 with the soil moisture content of 15%, 10%, 25% and 35% respectively. (c) The mean value

of 4 days for the 4 stomatal traits (the ratio of opening stomata number (OSN) to total stomata number (TSN), total pore area, pore opening degree, single

pore area) for B73 and Zmfab1a on well-watered and drought-stressed condition respectively. Statistical significance was determined by Student’s test:

**P < 0.05; ***P < 0.01. (d) The change curve of DS/WW of the 4 traits for B73 and Zmfab1a during 4 days respectively.
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stomata images of maize leaves acquired by ProScope, and the

results are shown in Figure 8d. The grey-level images segmented

with the CV model were preprocessed with the Lucy–Richardson
deblurred method and contrast-limited adaptive histogram equal-

ization (CLAHE) method. The results of clear images with high

contrast between the pores and other regions were satisfactory.

However, the pores of the blurred images could not be

segmented. Observing the procedure of the segmentation

method, each pore was segmented at the beginning of each

iteration. However, with the increase in the number of iterations,

the pores became connected to the other areas (Figure 8d),

because of which the pores could not be extracted effectively.

Based on the CV model proposed by Li et al. (2005), an improved

CV model was proposed to segment pores of the stomata

images, the results of which are shown in Figure 8c. The results

showed that the improved CV model could segment pores

effectively from both clear images and blurred images. The

dynamic process of pore segmentation based on the improved CV

model was shown in the Video S6.

Performance evaluation of the improved CV model for
segmenting pores of small opening and blurred stomata

To verify the performance of the segmentation method based on

the improved CV model, our method was used to segment 16

microscope images from the literature (Li et al., 2019). These

included images with nonuniform illumination that require

reflection removal before segmentation by the corresponding

method and images with blurred stomata, stomata with too small

of an opening, and obscured stomata that failed according to the

corresponding method. The segmented results of each are shown

in Figure 9. From Figure 9a, the images with nonuniform

illumination were segmented successfully by the improved CV

model segmentation method without reflection removal. From

Figure 9b,c, most of the images discarded in the literature (Li

et al., 2019) were segmented successfully in this work, which

proved that the method used in this study is suitable not only for

images of different resolutions but also for stomata with small

openings and blurred stomata.

Performance evaluation of the improved CV model for
segmenting pores of other species

To estimate the feasibility of the pore segmentation method

based on the improved CV model, other nine species, such as

wheat, rice, rapeseed, lettuce, tobacco, potato, broad bean,

cotton and soybean, were used. The segmented results are

shown in Figure 10a–i, which show that the pore segmentation

method is flexible and could be extended to other species. In

addition, the costs of TipScope with a smartphone (~300
dollars) and ProScope (~1000 dollars) were reasonable, which

means that if multiple sensor arrays were installed, the

presented method could potentially be extended to the pheno-

typing of dynamic stomatal changes for large populations in the

future.

In the future work, to provide more stomatal traits with higher

efficiency, automatically cropping clear image from original

blurred image and extracting stomata closure traits will be

developed. Other imaging sensors, such as hyperspectral imag-

ing, and environmental sensors, such as temperature, humidity

Figure 8 Pore segmentation of a single stoma image of the improved CV model vs Li’s CV model. (a) Original stoma images. (b) Preprocessed grey-level

image obtained with the Lucy–Richardson algorithm and CLAHE. (c) The pores segmented with the improved CV model. (d) The pores segmented with

existing CV model. (e) The contour of C overlayed on the original images. (f) The contour of D overlayed on the original images.
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and illumination intensity, will be integrated to simultaneously

provide more leaf stomatal traits and environmental factors and

promote the study of phenotype–environment interaction of

different genotypes.

Conclusions

In this study, based on two portable microscopes (TipScope and

ProScope HR2) equipped with different magnification lenses and

used to extract living stomata images, StomataScorer, an image

analysis pipeline to extract the stomata number, was developed

to detect opening or closing stomata, and extract 6 stomatal pore

traits with deep learning (Faster RCNN and FPN) and improved the

CV model. Compared with manual measurements, the R2 of

these traits was higher than 0.85. The dynamic stomata change

between wild-type B73 and mutant Zmfab1a was explored under

drought and re-watering condition. The results showed that

Zmfab1a had a higher resilience than B73 on leaf stomata. In

addition, the proposed method was tested to measure the leaf

stomatal traits of other species. The stomata image analysis

pipeline was open-access and was packaged to an EXE software

and could be accessed through free-use web portal. In conclu-

sion, a portable and low-cost stomata phenotyping method was

proposed that could accurately and dynamically measure the

characteristic parameters of living stomata and has the potential

to be used in the stomata phenotyping of large populations in the

future.

Materials and methods

Materials

From July to October 2019, maize leaf stomata image acquisition

experiments were carried out at the Huazhong Agricultural

University Crop Phenotyping Center (Wuhan, China). Two differ-

ent maize accessions, that is inbred lines TY6 and 7381, were

used. All plants were planted in pots, and the soil was dried in the

sun, crushed and sieved to remove stones. Each pot was 30 cm

high and 23 cm in diameter and could hold 15 kg of soil.

Fertilizers were made of urea, potassium dihydrogen phosphate

and potassium chloride at a ratio of 4:3:1.

Figure 9 Results of stomatal pore segmentation by our method for images from the literature by Li et al. (2019). (a) Without reflection removal. (b)

Stomata with small opening degree. (c) Blurred stomata.
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Maize lines of wild-type B73 and mutant Zmfab1a were used

to explore drought response based on stomatal traits. Zmfab1a is

an ethyl methanesulfonate (EMS) mutant based on B73, and its

wild type is Zmfab1a. Wild-type B73 and mutant Zmfab1a with 2

treatments were planted in the pots in Crop Phenotyping Center,

Huazhong Agricultural University, China. Seeds were sown

directly in pots with 5 kg soil on 26 May 2021. From the 6-leaf

stage (D27), the DS group was stopped irrigation, the WW group

was watering normally, and the soil moisture (SM) was measured

by a DELTA-T Soil moisture Kit (Delta-T Devices Ltd., UK). From

the 9-leaf stage (D36), the DS group was watering normally.

Microscopic images of all maize plants using ProScope HR2
microscope were acquired on D32, D35, D36 and D37 respec-

tively. The average SM of drought-stressed group on D32, D35,

D36 and D37 was 15%, 10%, 25% and 35% respectively

(Figure 7a,b). The images were acquired 6 times per day from 8

AM to 18 PM with an interval of 2 h.

Image acquisition

When 6 leaves were fully expanded, stomata image acquisition of

the top three leaves was initiated with the TipScope portable

mobile phone microscope and the ProScope HR2 portable

microscope every three days. The images were acquired from

the middle part of the abaxial leaf surface, and the acquisition

time was from 11:30 AM to 13:30 PM.

TipScope: portable mobile phone microscope

The TipScope portable mobile phone microscope (defined as

TipScope, Figure 1a) was constructed with TipScope (Kenweijiesi

(Wuhan) Technology Co., Ltd) attached to the camera of the

HUAWEI Honor 10 mobile phone (Huawei Technology Co., Ltd,

Shenzhen City, China). The images acquired with this microscope

have a resolution of 4608 × 3456 pixels and ~6 μm/pixel. For

each pot-grown maize plant, the top three leaves and one middle

part of each abaxial leaf surface were chosen to obtain the

stomata images. The images were obtained every three days, and

a total of 21 time points were acquired. Finally, a total of 1512

images were acquired for stomata number extraction.

ProScope HR2: portable microscope

The ProScope HR2 portable microscope (defined as ProScope

HR2, Bodelin Technology Co., Ltd, Figure 1g) was composed of a

ProScope HR2 with a 400× lens. The images (Figure 1h) acquired

with this microscope have a resolution of 640 × 480 pixels and

~1.5 μm/pixel. For each pot-grown maize plant, the top three

leaves and three middle parts of the abaxial surface of each leaf

were chosen to obtain the stomata images. The images were

obtained every three days, and a total of 21 time points were

acquired, yielding a total of 4536 images for further image

analysis and pore trait extraction.

Stomata number extraction using the images acquired
by TipScope

The flow chart of stomata number extraction using the images

acquired by TipScope is shown in Figure 1a–f. (a) Sketches were

cropped in the middle of the original images acquired by

TipScope (Figure 1b). The size of each sketch was 1094 × 795

pixels (Figure 1c). (b) The sketches were labelled manually, and

Figure 10 Results of stomatal pore segmentation for different crops: (a) wheat; (b) rice; (c) rapeseed; (d) lettuce; (e) tobacco; (f) potato; (g) vicia faba; (h)

cotton; (i) glycine max.
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the TFRecord data set was generated (Figure 1d). (c) The object

detection model based on the FPN algorithm was trained using

the TFRecord data set, and the evaluation indexes were

calculated. (d) If the evaluation indexes did not meet the required

accuracy, the model was trained again using augmented data and

tuned model parameters until the evaluation indexes met the

required accuracy. (e) New images were acquired, and stomata

were detected using the final object detection model based on

the FPN algorithm. (f) The detected stomata were counted, and

the stomatal density was calculated using the stomata number

divided by the area of the image (Figure 1f).

Data annotation

Maize living leaf is not flat, and excessive pressure will cause

blade damage. In addition, the image acquisition is sensitive to

the depth of views. So, part of stomata in image are blurred (Note

S1) and a fixed size of ROI with clear stomata should be cropped

from the original image. In this study, the middle part (7 mm ×
5 mm, 1094 pixel × 795 pixel, Figure 2a) with clear stomata

between the adjacent veins of maize leaf was manually cropped

from the original image (4608 pixel × 3456 pixel) using Photo-

shop (Adobe Systems Incorporated, San Jose, CA, USA). Then

from 1512 TipScope images, a total of 500 cropped images were

randomly chosen and labelled. Every individual stoma was

labelled with a minimum rectangular bounding box on the

LabelImg platform (Tzutalin, 2015). If the stomata were at the

border of the image, those stomata whose area exceeded 1/2 of

the whole stomatal area would be labelled; otherwise, they

would not be labelled. All labelled images were saved in XML

format, which contained the coordinates of the annotated

bounding boxes. The labelled files and original images were used

to made up the TFRecord data set, and the ratio of the training

data set to the test data set was 8:2.

Object detection model based on the FPN algorithm

An object detection model based on the idea of a feature pyramid

in a feature pyramid network (FPN) was established, the whole

process of which is shown in Figure 11. The FPN not only

exploited the inherent multiscale, pyramidal hierarchy of deep

convolutional networks to calculate strong semantic features

efficiently but also extracted feature maps with rich semantic

information via a top-down pathway, bottom-up pathway and

lateral connections (Lin et al., 2017). The FPN algorithm was

advantageous for detecting small objects.

The experiment was based on the Ubuntu operating system,

and the graphics processing unit (GPU) was an NVIDIA 1660 Ti

(6 GB of graphic memory), while the central processing unit

(CPU) was an Intel Core i7-8700 (8 GB of memory). The open-

source code of the FPN detection algorithm was based on the

TensorFlow framework and can be accessed at https://github.

com/yangxue0827/FPN_Tensorflow.git. The major hyperparame-

ter settings included learning rate of 0.001 and iterations of

100 000. The TFRecord data set was made from the TipScope

stomata microscopic images.

Stomatal trait extraction using the images acquired
ProScope HR2

The flow chart of pore trait extraction using the images acquired

by ProScope HR2 is shown in Figure 1g–r. (a) The images

obtained after deblurring (Figure 1i) the original images acquired

by ProScope HR2 were labelled with three classes: opening

stoma, closing stoma and the background (Figure 1j). For the

generated VOC data set, the size of each image was 640 × 480

pixels. (b) The dual-object detection model based on the Faster

RCNN algorithm was trained using the VOC data set, and the

evaluation indexes were calculated. (c) If the evaluation indexes

did not meet the required accuracy, the model was trained again

using augmented data and tuned model parameters until the

evaluation indexes met the required accuracy. (d) The final dual-

object detection model was established based on the Faster

RCNN algorithm (Figure 1k). (e) The opening stomata and closing

stomata were counted, and the ratio of opening stomata number

total stomata number was calculated. The coordinates of the

minimum rectangular bounding box of the opening stomata were

also obtained (Figure 1l). (f) A single opening stoma was

extracted from the original image (Figure 1m), and the single

stoma image was preprocessed with the Lucy–Richardson and

CLAHE algorithms (Figure 1n,o). (g) The pores were segmented

using the improved CV model (Figure 1p,q) and fitted elliptically.

Then, the MajorAxisLength of each ellipse was defined as the

pore length and the MinorAxisLength of each ellipse was defined

as the pore width. The pore eccentricity and pore opening degree

were calculated using Equation 1 and Equation 2 (Li et al., 2019)

respectively. The area and perimeter of the pores were also

calculated. All these pore traits (Figure 1r) were saved in the

specified Excel file.

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=að Þ2

q
(1)

Pore opening degree ¼ b=a (2)

where a represents the MajorAxisLength of the ellipse, that is the

pore length and b represents the MinorAxisLength of the ellipse,

that is the pore width.

Data set

From 4536 ProScope images, a total of 500 images, which

contained both opening stomata and closing stomata, were

chosen and labelled. On the LabelImg platform, we annotated the

opening stomata and the closing stomata with the minimum

rectangular bounding boxes, and the incomplete stomata at the

edge of the image were not annotated. All labelled images were

saved in XML format, which contained the coordinates of the

annotated bounding boxes. Then data augmentation methods

such as flipping, Gaussian filtering and brightness changes were

used to increase the number of labelled images to 2000. The

labelled files and original images were used to made up the VOC

data set and the training data set to the test data set to the

validation data set was 8:1:1.

Image preprocessing

Because the maize leaves were uneven and the field depth of

ProScope HR2 was insufficient, the stomata images were blurred,

which affected the accuracy of opening stomata detection.

Therefore, it was necessary to deblur the stomata images before

establishing the dual-object detection model. In this study, we

used the Lucy–Richardson algorithm (Fang et al., 2020; Richard-

son, 1972) to deblur the stomata images, and the optimal

number of iterations was 5. The contrast between the pore and

guard cells of the stomata images was low, which affected the

pore segmentation accuracy. CLAHE is an image enhancement

technique that was originally developed for the enhancement of

low-contrast medical images (Thamizharasi and Jayasudha,

2016). In this study, the grey-level image after deblurring was
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divided into 8 × 8 contextual regions, calculated the histogram of

the pixels contained in each contextual region and then optimized

the regions. Then, a bilinear interpolation algorithm was used to

avoid visibility of the region boundaries between the contextual

regions. The contrast enhancement was limited to 0.01.

Dual-object detection model based on the faster RCNN
algorithm

In this study, to obtain the coordinates of the opening stomata, a

dual-object (opening stomata and closing stomata) detection

model was established based on the Faster RCNN algorithm,

which combines the RPN and Fast RCNN (Ren et al., 2017). The

Faster RCNN algorithm is mainly composed of four parts:

convolutional layers that extract image feature maps, a region

proposal network that generates region proposals, ROI pooling

that integrates feature maps and region proposals into proposal

feature maps, and classification that uses the proposal feature

maps to calculate the category of the proposal and regresses the

bounding box to obtain the locations of the final detection boxes.

The Faster RCNN algorithm has the characteristics of fast

convergence speed and high accuracy and is suitable for stomata

detection (Simonyan and Zisserman, 2015). The server configu-

ration is the same as in 2.3.2. The open-source code of the Faster

RCNN detection algorithm was based on the TensorFlow frame-

work and can be accessed at https://github.com/endernewton/tf-

faster-rcnn.git. ResNet-101 was used as the backbone network of

the Faster RCNN in our research. The major hyperparameter

settings included learning rate of 0.001, mini-batch size of 256

and iterations of 100000. The VOC2007 data set comprises

ProScope HR2 stomata microscopic images.

Improved CV model

The CV model is an active contour model for image segmentation

(Chan and Vese, 2001). The segmentation of the CV model was

mainly realized by the level set algorithm. The level set promotes

the evolution of the active contours and finally stops the evolution

process at the object boundary on the basis of energy minimiza-

tion. The traditional level set method needed to reinitialize the

level set function is costly. Li et al. (2005) proposed a new

variational level set formulation to eliminate the need for a

reinitialization procedure and speed up the curve evolution. They

proposed a region-based initialization of the level set function

that allows for more flexible application. Their source code can be

accessed at https://github.com/gaomingqi/Chan-Vese-model.

Based on the CV model proposed by Li et al. (2005), an

improved CV model was proposed, the flow chart of which is

shown in Figure 12. (a) Set the parameters of Li’s CV model and

calculate the value of the sign distance function (SDF). Then, run

the program of the curve evolution 10 times. (b) Calculate the

coordinates of the centroid, area and bounding box of all objects

in the stomata image. Then, record the coordinates of the

centroid as (xi-1, yi-1) and the area as Si-1. (c) Calculate the

distances from the centroid of all objects with no contact with the

image border to the centre of the stomata image and determine

the pore with the minimum distance. (d) Track the pore using the

principles of |xi-xi-1|<1, |yi-yi-1|<1 and |Si-Si-1|<5. That is, if the

coordinates (xi, yi) and area (Si) of the pore of the i-th iteration

meet the principles, the iteration continues; otherwise, the

iteration is stopped, and the pore image is output. If the

coordinates of the pore satisfy |xi-xi-1|<1 and |yi-yi-1|<1 and the

area of the pore does not change for 30 successive iterations, the

Figure 11 FPN network structure.
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iteration also stops, and the pore image is output (Figure 8c). (e)

Calculate the pore traits.

Evaluation indexes of the object detection model

In this study, the output of the FPN model was a list of bounding

boxes that contained stomata in an image, and the outputs of the

Faster RCNN model were two lists of bounding boxes, one for the

opening stomata and the other for the closing stomata in an

image. Using the FPN model to detect stomata, denoting boxes as

stomata or nonstomata could have one of three potential results:

true positive (TP) – correctly classifying a region as a stoma; false

positive (FP) – incorrectly classifying a background region as a

stoma as well as multiple detections of the same stoma; and false

negative (FN) – incorrectly classifying a stoma as a background

region. Using the Faster RCNN model to detect opening stomata

(as for closing stomata), denoting boxes as opening stomata or

nonopening stomata could have one of four potential results:

true positive (TP) – correctly classifying a region as an opening

stoma; false positive (FP) – incorrectly classifying a background

region or closing stoma as an opening stoma as well as multiple

detections of the same stoma; false negative (FN) – incorrectly

classifying an opening stoma as a background region or closing

stoma; true negative (TN) – correctly classifying a background

region or a closing stoma. In this study, the recall, precision,

accuracy and F1 score were used to evaluate the performance of

the object detection model. These evaluation indexes are defined

in Equations 3-6 (Hasan et al., 2018).

Recall ¼ TP

TPþ FN
(3)

Precision ¼ TP

TPþ FP
(4)

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(5)

F1 Score ¼ 2
Precision∗Recall
Precision þ Recall

(6)

Where the recall measures how many of the stomata in the

image have been captured; the precision measures how many of

the detected regions were actually stomata; the accuracy

evaluates the model’s performance; and the F1 score synthesizes

the recall and precision to evaluate the object detection model.

Compared with manual measurement, R2 and MAPE were

used to evaluate the performance of the model. The MAPE of the

automatic measurement versus manual measurement was

defined in Equation 7.

MAPE ¼ 1

n
∑
n

i¼1

xai � xmij j
xmi

� 100% (7)

Imaging device for observing the dynamic process of
stomata

To observe dynamic process of maize leaf pore from closing to

opening, an imaging device (Figure 6a) was designed. The main

parts of the device are chamber, stand and ProScope HR2 with

400× lens. The chamber and ProScope HR2 with 400× lens were

fixed on the stand. The chamber was used to fix plant leaf and

keep the leaf flat as much as possible. Sponge was used to

protect the leaf surface from damage when lens attached to the

leaf surface. The ProScope HR2 with 400x lens was fixed updown

and was used to acquire stomata image of abaxial leaf surface

continually.
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