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DNA topoisomerases are present in all domains of life 
to resolve a wide variety of topological problems aris-
ing from the length of the human double-​helix DNA 
polymer (about 3 × 109 bp) as it is folded, bent and 
highly compacted into the cell nucleus while remaining 
accessible to RNA and DNA polymerases. In addition, 
each human cell contains 100–1,000 copies of circular, 
~16,000 bp mitochondrial DNA (mtDNA), as well as 
long and folded RNAs that are even more abundant than 
DNA and present in all subcellular compartments.

Human topoisomerases and the associated repair 
enzymes tyrosyl-​DNA phosphodiesterases (TDPs; TDP1 
and TDP2) are located both in the nucleus and in mito-
chondria; in addition, cytoplasmic RNAs are handled 
by TOP3B and TDP2 (refs1,2) (Supplementary Table 1).

In this Review, we first provide basic information 
on the six human topoisomerases. We discuss their 
specific and overlapping roles as regulators of nucleic 
acid topology and metabolism, thereby complement-
ing other recent reviews1,3–8. We emphasize the need to 
further define the roles of topoisomerases in genome 
organization and stability, as well as the increasingly 
recognized implication of topoisomerases in generating 
deleterious genomic lesions associated with irreversi-
ble topoisomerase cleavage complexes (TOPccs). We 
describe the molecular mechanisms by which abortive 
TOPccs damage the genome and the multiple pathways 
that repair those cellular lesions and how they relate to 
genomic instability.

DNA and RNA topological problems
To manage the topology of the long, folded and inter-
twined DNA and RNA polymers that are attached 
to scaffolding structures and are metabolically and 
dynamically processed by large molecular machines 
(such as transcription, DNA replication, chromatin 
remodelling and DNA repair complexes), human cells 
use their six topoisomerases often redundantly, but also 
in specific ways depending on the topological problem, 
the surrounding cellular structures and the differentia-
tion status of the cell. This section outlines topological 
problems and the molecular solutions provided by each  
of the topoisomerases. Additional details are provided 
for the TOP3 enzymes, which were not covered in depth 
in our previous Review1.

DNA and RNA topological conversions by topoisomer­
ases. One of the most common changes in DNA topol-
ogy is the opening of the double helix by helicases 
during transcription and replication and by ATPase 
translocase ‘motors’ during chromatin remodelling 
(Fig. 1a,b). In addition, each nucleosome absorbs about 
two left-​handed (negative) supercoils. Due to the length 
of the genome, its attachment to the nuclear scaffold and 
the viscosity of the nuclear milieu, DNA cannot freely 
rotate on its axis and the opening of the double helix 
generates DNA overtwisting (positive DNA supercoiling 
(Sc+)) in front (downstream) of the helicase or other 
motor proteins, and DNA under-​twisting (negative 
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supercoiling (Sc–)) behind (upstream) them. Excessive 
torsional strain first changes the helical twist (number 
of crossovers of the two strands across each other) until 
the entire duplex of DNA (or RNA) winds around itself 
(writhe) and flips into alternative plectonemic structures 
with crossover segments and entanglements. TOP1, 
TOP1MT, TOP2A and TOP2B readily remove both Sc+ 
and Sc– (Fig. 1; Supplementary Fig. 1) until the torsional 
strain is eliminated. The other two topoisomerases, 
TOP3A and TOP3B, just relax hyper-​negative super-
coiling, as they can only form cleavage complexes in 
single-​stranded nucleic acids (Fig. 1a,e–g).

Other topological difficulties arise during replica-
tion and chromatin loop formation when duplex DNA 
molecules form catenanes. Decatenation reactions are 

carried out by TOP2 enzymes1 (Fig. 1c; Supplementary 
Fig. 1d,m). TOP2 enzymes can also resolve precatenanes 
formed behind replication forks (Fig. 1b) and unknot 
duplex DNA molecules (Fig. 1d). Such knots have been 
proposed to contribute to chromatin organization9,10 and 
recombination11 in yeast models.

The eukaryotic type IA topoisomerases, TOP3A and 
TOP3B, catalyse a unique range of topological changes 
requiring the passage of a single strand of nucleic acid 
through another (Fig. 1e–g). DNA hemicatenanes are the 
preferential substrate for TOP3A6 (Fig. 1e). A transcript 
isoform of TOP3A is also essential for mtDNA replication 
and segregation12,13 (Box 1). Unique among the human 
topoisomerases, TOP3B — similar to its yeast and bacte-
rial paralogs Top3 and Topo III, respectively — acts as a 
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Fig. 1 | Topological problems solved by human topoisomerases. Sites of action of topoisomerases (red, blue and green 
circles), duplex nucleic acids (parallel lines) without their double-​helix structure and DNA segments whose ends are not 
free to rotate on their helical axis due to steric and physical constraints (parallel pegs) representing topological domains.  
a | Twin supercoiled domain model54. Opening the DNA duplex by helicases and ATPase translocases within a topological 
domain during transcription and chromatin remodelling generates positive DNA supercoiling (Sc+) ahead of the moving 
helicase (or translocase) and negative supercoiling (Sc–) behind it. Excessive supercoiling generates writhe that brings 
together distant regions of DNA that form crossovers. Topoisomerase 1 (TOP1), mitochondrial TOP1 (TOP1MT), TOP2A 
and TOP2B remove both Sc+ and Sc– by incising double-​stranded DNA; TOP3B (and TOP3A) relax hyper-​negative 
supercoiling by nicking and closing single-​stranded DNA segments. b | Replication forks generate Sc+ in front of the 
translocating replisome, which is removed by TOP1 and TOP2A. If the replisome swivels due to the twisting force,  
Sc+ diffuses behind the replisome and generates precatenanes, which are removed by TOP2A37. TOP3A may also remove 
precatenanes if they include single-​stranded DNA segments. c | TOP2A and TOP2B decatenate topological domains by 
passing one DNA molecule through the double-​stranded DNA break made in the other DNA molecule (double-​strand 
passage). d | TOP2A and TOP2B resolve DNA knots by double-​strand passage. e | TOP3A in association with the Bloom 
syndrome protein (BLM)–TOP3A–RecQ-​mediated genome instability proteins (RMI1/2) (BTR) dissolvasome complex  
(not shown) resolves DNA hemicatenanes arising during replication and recombination by passing a single strand of DNA 
through a break made in another DNA strand (single-​strand passage)6,357. f | TOP3B is the only RNA-​only topoisomerase14;  
it resolves intramolecular RNA intertwines (knots) by single-​strand passage. g | TOP3B can also resolve RNA catenanes  
by single-​strand passage197. See Supplementary Fig. 1 for biochemical, molecular and structural details.

DNA supercoiling
The amount of DNA twist, 
which is the number of 
crossovers of the two strands 
across each other; writhe is a 
measure of the double helix 
winding around itself. Positive 
DNA supercoiling (Sc+) is 
defined by increased twist  
and/or writhe; negative DNA 
supercoiling (Sc–) is the 
opposite.
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dual DNA and RNA topoisomerase14,15. RNA knots and 
catenanes are the likely cellular substrates for TOP3B14 
(Fig. 1f,g).

Topoisomerase biochemistry. All topoisomerases act by 
cleaving and rejoining the nucleic acid backbone using a 
tyrosine nucleophilic residue1 (Supplementary Fig. 1a,b). 
Each break results from the formation of a covalent bond 
between the topoisomerase catalytic Tyr residue and one 
end of the broken nucleic acid. The polarity is specific 
for each topoisomerase: 3′ end bonding for TOP1 and 
TOP1MT, and 5′ end bonding for the other topoisomer-
ases. The covalent catalytic intermediates are referred to 
as the TOPccs. Vertebrate TOP2A and TOP2B and yeast 
Top2 (type II topoisomerases) function as homodimers 
and generate DNA double-​strand breaks (DSBs) with a 
canonical 5′ base overhang1,16,17 (Supplementary Fig. 1d).

Four main biochemical characteristics differen-
tiate topoisomerases: polarity (3′ versus 5′ tyrosyl 
linkage); substrate specificity (single-​stranded versus 
double-​stranded DNA or RNA); nucleic acid relaxa-
tion mechanisms (DNA strand rotation in the case of 
TOP1 and TOP1MT versus crossover inversion in the 
case of TOP2A, TOP2B, TOP3A and TOP3B, and RNA 
crossover inversion in the case of TOP3B); and cofactor 

requirements (ATP and/or magnesium) (Supplementary 
Fig. 1d,e; Supplementary Table 1).

TOP1 and TOP1MT (type IB topoisomerases) 
cleave only one strand of double-​stranded DNA by 
forming the 3′-​phosphotyrosyl linkage (3′ DNA–
protein crosslinks (DPCs)) (Supplementary Fig. 1a; 
Supplementary Table 1), which relates them to the 
prokaryotic Tyr recombinases18,19. Unlike type IA topoi-
somerases (TOP3A and TOP3B) (see below), TOP1 
and TOP1MT only process double-​stranded DNA and 
relax DNA supercoils processively and without metal 
or protein cofactor by controlled rotation of the broken 
strand around the intact strand20,21, with a preference 
for nucleosome-​free DNA10,22 (Supplementary Fig. 1c).  
Hence, TOP1 and TOP1MT are also referred to as 
‘swivelases’ or ‘DNA untwisting enzymes’23.

TOP2A and TOP2B (type IIA topoisomerases) act 
as ‘writhases’ or ‘crossover invertases’, which enables 
them to resolve not only supercoils but also catenanes 
and knots by passing one DNA duplex through the DSB 
made in another duplex at crossover points between 
the two duplexes (Fig. 1c,d; Supplementary Fig. 1d,m; 
Supplementary Table 1). Note that TOP2A and TOP2B 
also generate DNA single-​strand breaks (SSBs) when 
only one protein of the dimer breaks the DNA1. The 
main differences between TOP2A and TOP2B are in  
the polypeptide sequence of their carboxy-​terminal 
domains (CTDs) (Supplementary Fig. 1g), their cell cycle 
regulation (TOP2A increases in abundance throughout 
S phase, is degraded at the end of mitosis and is dispen-
sable in terminally differentiated cells)8,24 and the fact 
that TOP2A preferentially relaxes Sc+ whereas TOP2B 
relaxes Sc– and Sc+ similarly17,25.

Both the type IIA topoisomerases and the type 
IA topoisomerases — TOP3A and TOP3B — cleave 
nucleic acids by forming 5′ DPCs with the help of 
magnesium positioning nucleic acids in their active 
site3,6 (Supplementary Fig. 1g,h). However, type IA 
topoisomerases differ from type IIA topoisomerases 
in their selectivity for binding single-​stranded rather 
than double-​stranded nucleic acids, their lack of ATP 
requirement and the activity of TOP3B as a dual DNA 
and RNA topoisomerase6,14,26 (Fig. 1e–g; Supplementary 
Table 1). TOP3 enzymes are also dependent on protein 
scaffolding cofactors: RecQ-​mediated genome instabil-
ity protein 1 (RMI1) and RMI2 for TOP3A, and Tudor 
domain-​containing protein 3 (TDRD3) for TOP3B6,15,27. 
TOP3A, RMI1 and RIM2 form the heterotrimeric 
Bloom syndrome protein (BLM)–TOP3A–RMI1/2 
(BTR) dissolvasome complex for recombination28 and 
resolution of double Holliday junctions associated with 
DNA replication6. TOP3A can also associate with other 
helicases and translocases including the helicase Fanconi 
anaemia group M protein (FANCM) to suppress sister 
chromatid exchanges and promote replication restart29. 
The TOP3B partner TDRD3 forms a multimeric RNA 
regulator complex with fragile X mental retardation 
protein15. In addition to its role in TOP3B recruitment, 
TDRD3 has also been shown to increase the processivity 
of TOP3B27,30 (Supplementary Fig. 1n).

TOPccs are normally transient and ‘self-​reversible’, 
as the deoxyribose hydroxyl ends of the cleaved DNA 

Holliday junctions
Branched DNA structures 
consisting of four double-​ 
stranded arms joined together. 
Double Holliday junctions  
form hemicatenanes that  
are resolved by the Bloom 
syndrome protein (BLM)–
topoisomerase 3A (TOP3A)–
RecQ-​mediated genome 
instability proteins (RMI1/2) 
(BTR) dissolvasome complex.

Box 1 | Mitochondrial topoisomerases

Each human mitochondrial DNA (mtDNA) molecule consists of circular DNA of 
16,569 bp assembled in a nucleoid, which is tethered to the inner mitochondrial 
membrane338,367 Replication of the G-​rich ‘heavy’ strand originates from the OriH 
sequence in the ~1 kb non-​coding region. Replication proceeds unidirectionally for 
approximately two thirds of the mitochondrial genome until it reaches the light  
strand replication origin (OriL), after which it becomes bidirectional338,367. Bidirec
tional replication and transcription of mtDNA represent model systems for DNA  
supercoiling, R-​loops, G quadruplexes and decatenation. Termination of replication  
in the non-coding region generates hemicatenated daughter molecules12. The  
mitochondrial isoform of topoisomerase 3A (TOP3A)186,368 is required at the end  
of replication to decatenate the daughter mtDNA molecules, which are intertwined 
across their OriH regions, a process that is facilitated by mitochondrial TOP1  
(TOP1MT) and is independent of the usual TOP3A-​interacting Bloom syndrome  
protein (BLM)–TOP3A–RecQ-​mediated genome instability proteins (RMI1/2) (BTR)  
dissolvasome complex12. Mutations in TOP3A have been reported in individuals  
with combined Bloom and mitochondrial syndromes characterized by dilated  
cardiomyopathy, mtDNA depletion in muscles and progressive external ophthal
moplegia syndrome13,187. In the fruit fly, inactivation of mitochondrial TOP3A results  
in defective genome integrity and mitochondrial functions with accelerated ageing 
and infertility186,193 (Table 1).

TOP1MT efficiently relaxes both positive DNA supercoiling (Sc+) and negative DNA 
supercoiling (Sc–)369,370, and therefore complements TOP3A, which can only remove  
Sc–. Cells lacking TOP1MT accumulate Sc– mtDNA173, and dual depletion of TOP3A and 
TOP1MT further reduces mtDNA decatenation and the number of nucleoids12. TOP1MT 
is not required for mtDNA transcription175,176,324 and for mouse development173,325, 
implying that other topoisomerase(s) relax Sc+ in mtDNA173. TOP1MT also facilitates 
mitochondrial translation176,177.

TOP2A and TOP2B, which efficiently remove Sc+, have been reported in mitochondria 
of human cells, and in bovine mitochondria and mouse brain and sperm 
mitochondria173,370,371. However, mitochondrial TOP2 polypeptides were undetectable  
in another study following stringent biochemical mitochondrial fractionation12. Hence, 
mitochondrial localization and activity of TOP2A and TOP2B may depend on specific 
cell growth conditions and tissue, purification procedures or are present at the surface 
of mitochondrial membranes.

Both tyrosyl-​DNA phosphodiesterase 1 (TDP1)372 and TDP2 (ref.373) are active in 
mitochondria. However, similar to the majority of mitochondrial proteins, they do  
not bear identifiable mitochondrial targeting sequences.
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act as nucleophiles towards the tyrosyl–DNA phospho
diester bonds1. Efficient substrate resealing requires 
the alignment of the ends of the broken DNA inside 
the TOPcc (Supplementary Fig. 1a,b). Such alignment 
is provided both by the base pairing and stacking of 
duplex DNA and by atomic interactions with the topoi-
somerase. If the TOPccs fail to reseal, they become 
topoisomerase DNA–protein crosslinks (TOP-​DPCs): 
stalled (abortive or irreversible) TOPccs consisting of a 
DNA–protein (topoisomerase) crosslink at the end of 
a break, which require DNA repair for their resolution 
(see below). Trapping of TOP-​DPCs is the mechanism 
of action of widely used anticancer and antibacterial 
chemotherapies17,31,32 (Supplementary Box 1). Multiple 
endogenous and environmental factors also induce 
TOP-​DPCs1,17.

Roles in replication and transcription
Transcription and replication constantly change 
DNA topology, and thus require the activities of 
topoisomerases.

Replication of the nuclear and mitochondrial genomes. 
As expected for genes involved in regulating DNA rep-
lication, TOP1, TOP2A and TOP3A transcript levels are 
linked with cell proliferation6,33–35, and their expression 
is correlated with the proliferation marker Ki67 and rep-
licative polymerases and helicases in the cancer cell line 
encyclopaedia database36 (Supplementary Fig. 1).

During replication fork progression, topoisomer-
ases dissipate the supercoiling generated by DNA 
unwinding37. Without topoisomerase activity, the for-
mation of Sc+ in front of the replication fork and the 
resulting tightening of the DNA duplex with the poten-
tial formation of plectonemes would block replisome 
movement. Being a highly processive swivelase, TOP1 
can remove supercoils in short DNA segments devoid 
of nucleosomes, whereas TOP2A, acting as a writhase, 
likely acts at crossover points where the DNA enters 
and exits nucleosomes22,38 (Fig. 1b). Yeast Top2 has also 
been shown to efficiently remove Sc+ in single-​molecule 
model systems39, and yeast Top1 was shown to act 
at replication pause sites in ribosomal gene arrays40. 
Unexpectedly, yeast Top1 (and Top2 when acting as 
a Top1 backup) enforces replication pausing by the 
topoisomerase 1-​associated factor (Tof1) at replica-
tion fork barriers by binding to Tof1 and preventing 
head-​on collisions between replication and transcrip-
tion machineries40. Whether the vertebrate paralog of 
Tof1 has the same coordinated functions with TOP1 and 
TOP2A requires testing41.

The topology of DNA behind replisomes depends on 
whether the frontal Sc+ forces the replisome to rotate 
around the DNA axis. Such rotation diffuses the Sc+ 
behind the replisome, generating braided daughter 
strands that are referred to as precatenanes37 (Fig. 1b), 
and can only be resolved by TOP2 (or potentially by 
TOP3 if the precatenanes contain a single-​stranded seg-
ment of DNA)42. Rotation of the replisome is believed 
to be rare during replication due to the large protein 
complexes assembled around the replisome and the 
removal of Sc+ by TOP1 and TOP2. However, rotation 

has been reported in yeast43,44 as replisomes converge or 
in mammalian cells at common fragile sites, which are 
chromosomal regions that are sensitive to replication 
stress and prone to DNA breaks45,46. In addition to its 
role in replication fork pausing, Tof1 can also stabilize 
replisomes by preventing fork rotation43.

The role of TOP2A in replication termination 
appears to be limited, as newly replicated DNA is decate-
nated during replication (Fig. 1b), and most decatenation 
is complete upon entry into prophase8. Nevertheless, 
Top2 and TOP2A may be crucial for replication termi-
nation in highly repetitive sequences, such as telomeres, 
centromeres and ribosomal DNA, where Top2 and 
TOP2A activity may maintain segments of sister chro-
mosomes catenated to assist in their condensation and 
cohesion, while subsequently allowing segregation at  
anaphase8.

As replication proceeds within replication domains  
(of 400–800 kb) that match topologically associating domains 
(TADs)47, daughter DNA molecules are catenated due 
to the helical structure of the replicating DNA. TOP2A 
is essential for decatenating daughter DNA molecules 
and resolving sister chromatid intertwines1,8,48 (Fig. 1c). 
In Xenopus laevis oocytes, following dissociation of the 
replicative CMG helicase at converging replisomes, cat-
enated DNA loops are disentangled at their crossover 
points by TOP2A49.

TOP3A is a key enzyme for the completion of rep-
lication because it is the sole topoisomerase capable of 
removing hemicatenanes arising from converging rep-
lication forks42 and from recombination intermediates1,6 
(Fig. 1e). The BTR dissolvasome complex has been 
shown to sense replication protein A (RPA)-​coated 
single-​stranded DNA, which may explain its role in 
restarting stalled replication forks50,51. At the end of  
S phase, in addition to its role in resolving ultra-​fine 
DNA bridges between sister chromatids52, TOP3A in 
coordination with the helicase Plk1-​interacting check-
point helicase (PICH; also known as ERCC6L) has been 
shown to generate replicated DNA Sc+ segments, which 
are preferential substrates for TOP2A-​mediated decat-
enation, thereby enabling the segregation of chromatin 
fibres during anaphase53. These observations suggest 
that TOP3A can couple its activity with different heli
cases: BLM in the dissolvasome, FANCM at stalled 
replication forks and PICH during mitosis. The poten-
tial activity of TOP3A for removing hemicatenanes 
during replication in human cells needs to be further  
established.

In mitochondria, TOP3A acts as a hemicatenane 
resolvase; in its absence, newly replicated mtDNA 
molecules remain intertwined at the mtDNA replica-
tion origin, a phenotype which is further accentuated 
in the absence of TOP1MT.12 (Box 1). Notably, TOP3A 
acts independently of the BTR dissolvasome (as BLM, 
RMI1 and RMI2 do not enter mitochondria), which 
could imply that a mitochondrial helicase replaces the  
dissolvasome in working together with TOP3A.

Topoisomerases and transcription. Topoisomerases 
are needed to resolve the topological tensions arising 
during transcription. The classical twin domain model 

Topologically associating 
domains
(TADs). In interphase 
chromosomes, genomic 
regions in which interactions 
between loci are enriched 
compared with interactions 
with loci outside the domain.
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predicts a requirement for topoisomerase activity to 
relax Sc+ ahead of the RNA polymerase and Sc– behind 
it54,55 (Fig. 1a). Both TOP1 and TOP2 can act behind 
transcription complexes to remove Sc– (Fig. 2a): TOP1 in 
underwound duplex DNA segments and TOP2 at cross-
overs between DNA duplexes. Whereas the Sc+ gener-
ated ahead of the RNA polymerase II (Pol II) complex is 
readily removed by TOP1 (ref.56), the Sc– behind Pol II  
(Fig. 2a) appears to be less efficiently processed. This 
disparity provides an explanation for the generation of 
‘transcription-​induced supercoiling’57. Transcription-​
induced Sc– has been mapped genome-​wide using 
psoralen, which binds DNA proportionally to  
Sc– levels58–61. It is plausible, but not formally demon-
strated, that the accumulation of Sc– could be attenu-
ated when transcription complexes follow each other in 

tandem, as the Sc– generated by a transcription complex 
could be absorbed by (and facilitate the translocation of) 
the following transcription complex (Fig. 2b).

TOP1 has recently been shown to bind the heptad 
repeats of the Pol II CTD in association with the 
chromatin regulator bromodomain-​containing pro-
tein 4 (BRD4)56 (Fig. 2a). Based on these data, a model 
was proposed in which TOP1 is recruited to promot-
ers, but kept inactive until phosphorylation of Pol II 
CTD Ser2 by BRD4 releases Pol II and TOP1 from 
promoter-​proximal pausing into productive transcript 
elongation56. The TOP1 requirement in front of tran-
scription complexes to remove Sc+ (Fig. 2a) may account 
for its role in activating long genes such as neuronal and 
inflammatory genes62–65. Accordingly, TOP1 inhibition 
by topotecan (Supplementary Box 1) has been reported 
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Fig. 2 | Functions of topoisomerases in transcription. a | Transcription induces positive DNA supercoiling (Sc+) ahead of 
RNA polymerase II (Pol II) and negative supercoiling (Sc–) behind it54. Topoisomerase 1 (TOP1) directly binds the carboxyl 
terminus domain (CTD) of Pol II (dashed arrows) and is activated by bromodomain-​containing protein 4 (BRD4), which 
phosphorylates the Pol II CTD (P)56. This interaction can efficiently remove Sc+ and allow translocation of Pol II. Behind the 
transcription complex, excessive Sc– must be removed to prevent formation of R-​loops and alternative DNA structures169 
(not shown). Recruitment of TOP3B by Tudor domain-​containing protein 3 (TDRD3), which interacts with the Pol II CTD, 
suppresses R-​loops27. TOP1 deficiency also leads to increased levels of R-​loops owing to Sc– accumulation behind Pol II169. 
b | In theory, polymerases transcribing in tandem could cancel supercoiling between them, which would facilitate 
transcript elongation. c–f | Removal of topological constraints by TOP2 and TOP1 (part c) facilitates close interactions 
between enhancers and promoters: enhancer–promoter interaction within a topologically associating domain (TAD)  
(part d); a single enhancer activating two promoters (P1 and P2) in the same TAD (part e); and activation of two promoters 
(P1 and P3) in different TADs (part f).
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to suppress transcription-​mediated lethal inflammation 
during SARS-​CoV-2 infection66. TOP2 also appears to 
be required for the transcription of long genes, both in 
mammals62 and in yeast7.

Behind the transcription complex, hyper-​negative 
supercoiling resulting from insufficient TOP1 activity 
has been proposed as a source of R-​loops67–69, G quadru-
plex structures70, left-​handed Z-​DNA71 and nucleosome 
destabilization59,61. The accumulation of R-​loops in the 
context of TOP1 deficiency is a potential source of DNA 
breaks and genomic instability72,73. Excessive Sc– — similar  
to excessive Sc+ — can block transcription55, suggesting 
that TOP1, in addition to its role in removing Sc+, has a 
preferential role for removing Sc– behind transcription  
complexes (Fig. 2a,b).

TOP3B is also likely to suppress excessive 
transcription-​induced Sc– and R-​loops by passing a 
single strand of DNA through a break made in another 
DNA strand (single-​strand passage). The recruitment of 
TOP3B has been attributed to its interaction with TDRD3, 
which binds methylated Arg residues: on histones H3 and  
H4 (H3R17me2a and H4R3me2a) at active promoters, 
and on the Pol II CTD (R1810me2a)27,74 through its Tudor 
domains (Fig. 2a,b). However, it is not known whether the 
potential role of TOP3B in resolving R-​loops is related  
to its dual DNA and RNA topoisomerase activities.

In addition to its topological activity, TOP2 has  
been shown to regulate neuronal immediate-​early 
response genes75,76 and the transcription of hormone-​ 
responsive genes (including genes activated by andro-
gens, oestrogens, corticoid hormones, retinoic acid 
and more) by forming TOP2Bccs at promoters75–83. 
Both TOP2B and TOP2A have been proposed to reg-
ulate the promoter-​proximal pause and release of Pol II 
at immediate-​early response genes84–87, as does TOP1 
(ref.56). TOP2 has also been shown to activate the tran-
scription of MYC by oestrogens, which has been linked 
with oncogenesis80,85–88. Further research is needed to 
determine why TOP2ccs tend to be stalled at promot-
ers and whether the TOP2 cleavage-​rejoining activity 
responds to post-​translational modifications, such as 
phosphorylation and oxidation. The potential role of 
DNA repair factors (including TDPs, ataxia telangi-
ectasia mutated (ATM) and DNA-​dependent protein 
kinase (DNA-​PK)) in ligand-​induced gene activation 
also remains to be elucidated.

Because genes are activated by enhancers that are 
generally located quite a distance in cis from promoters, 
enhancer–promoter interactions require the formation 
of chromatin loops89. Such chromatin loops generate 
DNA topological and torsional constraints, which are 
substrates for topoisomerases (Fig. 2c–f).

Roles in genome organization
Advanced microscopy methods and chromosome 
conformation capture-​based techniques that identify 
DNA sequences in close proximity, owing to chroma-
tin folding, have revealed the high-​order organization 
and dynamic folding of the genome in interphase cells 
and led to the identification of chromatin loops and 
TADs89–91. Structural maintenance of chromosomes (SMC) 
complexes are crucial for the formation of chromatin 

loops and TADs. They comprise condensins, cohesins 
and the SMC5–SMC6 complexes89,92–94. Cohesin and 
condensin are loaded onto DNA in nucleosome-​depleted 
promoter regions during interphase, and were pro-
posed to move in the same direction as transcription93. 
Whereas condensins organize chromatin loops and 
provide compaction and elasticity to chromosomes 
during mitosis, cohesins establish chromatin loops in 
interphase and sister chromatid cohesion from S phase 
to mitosis (Fig. 3). The functions of the SMC5–SMC6 
complex are less known and are discussed only briefly 
here. SMC5–SMC6 has been proposed to function in 
promoting Top2-​mediated resolution of sister chromatid 
intertwines, and for recruiting the yeast dissolvasome 
complex94,95. The human SMC5–SMC6 complex has also 
been proposed to resolve TOP2A-​mediated DSBs during 
replication96, and to promote homologous recombina-
tion between sister chromatids by recruiting the cohesin 
SMC1–SMC3 complex to DSBs97.

Because TOPccs are protein-​associated DNA strand 
breaks, they can be mapped by pulling down the topoi-
somerase polypeptides to retrieve the bound DNA 
segments or by directly mapping the DNA breaks (the 
different techniques used to map TOPccs are summa-
rized in Supplementary Box 2). Genome-​wide mapping 
techniques relying on massive parallel sequencing have 
been used to locate the sites of action of topoisomer-
ases in relationship to SMC complexes and high-​order  
chromatin structures.

Structural maintenance  
of chromosomes
(SMC). SMC complexes are 
ATPase complexes that tether 
and organize chromatin by 
forming chromatin loops and 
ensuring sister chromatid 
cohesion.

Fig. 3 | Functions of topoisomerases in genome 
organization. a–d | The loop extrusion model, with 
proposed roles for topoisomerase 1 (TOP1) and TOP2B.57: 
cohesin holds two ends of a chromatin loop containing  
an enhancer, TOP1 preferentially removes positive DNA 
supercoiling induced by enhancer RNA (eRNA) synthesis, 
the resulting negative DNA supercoiling is proposed to  
pull the ends of DNA through the cohesin complex, and 
TOP2B bound to CCCTC-​binding factor (CTCF) may allow 
this translocation by removing topological obstacles such 
as knots and supercoils (part a); as eRNA transcription 
continues, the extruded loop increases in size, and 
extrusion of one end (left) is arrested when cohesin 
encounters CTCF (part b); following further loop extrusion, 
the enhancer comes into contact with a promoter, and 
mRNA synthesis begins (part c); CTCF at the second end  
of the loop comes into contact with the cohesin complex 
and the chromatin loop is fully extruded, with TOP1 shown 
acting next to the promoter and TOP2 at DNA crossovers 
(part d). e–g | Proposed roles of cohesins, TOP1 and TOP2B 
in assembly of chromatin loops and topologically 
associating domains (TADs): cohesin and condensin 
complexes are loaded onto DNA during G1 phase of cell 
cycle, along with transcription resumption after mitosis 
(part e); transcription-​driven negative DNA supercoiling is 
proposed to extrude chromatin loops (parts a–d) and form 
TADs, with TOP2B removing associated topological 
barriers such as DNA crossovers and catenanes (part f), 
resulting in TAD formation (part g). h | During mitosis, 
TOP2A is part of the chromosome scaffold comprising 
condensin complexes, whereas TOP1 is present in loop 
domains. i | Transversal axial view of chromatin scaffolded 
around TOP2A and condensins, with TOP1 in loop domains 
to remove supercoiling tension. Pol II, polymerase II.  
Sc, supercoiling.

◀
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TADs and roles of TOP1 and TOP2 in loop extru­
sion. Cohesins extrude chromatin into loops that are 
delineated by CCCTC-​binding factor (CTCF) sites 
(Fig. 3a–d). Loop extrusion requires the ATPase activ-
ity and the translocation of cohesins, which stops upon 
cohesin encountering a CTCF protein bound to DNA 
in a convergent orientation98–101. When CTCF sites are 
convergent, the C termini of their bound CTCFs are 
positioned to interact with the cohesins at TAD borders57 

(Fig. 3d). The tightness of the cohesin central pore may 
not allow free axial rotation of the DNA102, and the two 
DNA segments at the basis of TADs were proposed to 
be held together by two cohesin rings in a ‘handcuff-​
like’ arrangement103 (Figs 2c–f,3a–g). Hence, CTCF and 
cohesin define the borders of TADs104.

TOP2 chromatin binding is dependent on and 
proportional to cohesin binding100. However, cohesin 
binding is not TOP2-​dependent, indicating that TOP2 
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is recruited to chromatin downstream of cohesins100. 
Genome-​wide mappings of TOP2B sites by chromatin 
immunoprecipitation followed by sequencing (ChIP–
seq) and End-​seq (Supplementary Box 2) show a sig-
nificant overlap between TOP2B, CTCF and cohesin 
binding sites75,99–101,105–107. These sites co-​localize with 
the ChIP–seq peaks of the cohesin subunit SCC1 (also 
known as RAD21)89. The coincidence of TOP2B loca-
tions with TAD borders has been related to an interac-
tion of TOP2B with the amino terminus of CTCF99,100,106 
(Fig. 3a–d). Although the TOP2Bccs at CTCF–cohesin 
sites may form independently of transcription, their 
conversion to DSBs appears to be enhanced by tran-
scription, and by the ‘debulking’ of the TOP2ccs by 
the ubiquitin–proteasome system (UPS) and TOP2 
excision by TDP2 (ref.100). The preferential location of 
TOP2B at TAD boundaries coincides with chromosomal 
translocations100,101, and the repair of aborted TOP2cc by 
TDP2 was shown to suppress genomic breaks induced 
by androgens in prostate epithelial cells108.

It is plausible that the presence of TOP2B at TAD 
borders resolves the topological issues arising from loop 
extrusion57. As the DNA is threaded through the cohesin 
complex, TOP2B would be strategically positioned to elim-
inate topological barriers and DNA entanglements such 
as knots, plectonemes and catenanes before the DNA can 
translocate through the cohesin complexes (Fig. 3a–d). 
Transcription-​induced Sc– within TADs has been proposed 
to be generated by RNA production at enhancers57,58,109–111 
(Fig. 3a,b). Sc– and plectonemes can be viewed as facili-
tators of promoter–enhancer contacts within the same 
TAD57,112,113 (Fig. 3c,d), as observed in bacterial systems57.

Mitotic chromosomes and the decatenation checkpoint.  
The removal of cohesin at prophase through the  
so-​called ‘prophase pathway’ is crucial for successful 
mitosis as condensins replace cohesins93. In fission yeast, 
this pathway depends on the Smc5–SMC6 complex, 
replication signals and Top2 activity114. The prophase 
pathway is poorly understood in human cells. TOP2A 
dysfunction has been proposed to activate a decatenation 
checkpoint that arrests cells at G2–M phase transition  
to protect them against chromosomal damage8.

Top2 activity is required during mitosis115 and ver-
tebrate cells treated with the TOP2 inhibitor ICRF-193 
(Supplementary Box 1) die with severe chromosomal 
alterations116. TOP2A, but not TOP2B, is cell cycle 
regulated1,16,24,34: it increases sharply from mid S phase 
through mitosis through transcriptional activation of 
TOP2A, stabilization of TOP2A mRNA and activation  
of the deubiquitylase USP15, which prevents the tar-
geting of TOP2A for proteasomal degradation8,117. 
Following mitosis, TOP2A is rapidly degraded following 
its ubiquitylation by the anaphase promoting complex 
and its activator CDH1, and USP15 is inactivated8,117.

During prophase, condensin is the primary driver 
of chromosome condensation as it scaffolds DNA 
loops (Fig. 3h,i). Condensin also generates Sc+ in an 
ATP-​dependent manner within those loops, which fur-
ther contributes to chromosome compaction. TOP2A, 
but not TOP2B, readily relaxes this Sc+25, suggesting the 
existence of a fine-​tuned balance between TOP2A and 

condensins8. TOP2A may minimize DNA entangle-
ments as condensin organizes mitotic DNA loops9,118–121. 
However, yeast Top2 has recently been shown to pro-
mote sister chromatid intertwines during prophase while 
removing them at the onset of anaphase122. Whereas 
TOP2A and Top2 are essential components of the chro-
mosome mitotic scaffold, TOP1 has also been observed 
within mitotic chromosomal loops, where it may act to 
dissipate excessive supercoiling123,124 (Fig. 3h,i).

Centromeric and telomeric regions and riboso-
mal DNA appear to retain catenated segments until 
anaphase8. In addition to TOP2A and condensins, reso-
lution of ribosomal DNA regions requires the activity of 
the helicase PICH, of the poly(ADP-​ribose) polymerase 
tankyrase 1 and of TOP3A125. The translocase activity of 
PICH was recently reported to extrude Sc– DNA loops, 
which are relaxed by TOP3A to provide Sc+ substrates 
for sister chromatid disjunction by TOP2A and for the 
rapid disjunction of sister centromeres at anaphase53.

Recent studies provide evidence that, as part of the 
dissolvasome complex, the helicase activity of BLM 
coupled with the single-​strand passage activity of 
TOP3A ensures telomere integrity both in alternative 
lengthening of telomeres cells, which represent approx-
imately 10–15% of cancers, and in normal cells that 
use telomerase to maintain their telomeres126,127. These 
data are consistent with the prior finding that TOP3A 
is involved in the alternative lengthening of telomeres 
pathway of telomere maintenance128. TOP2A has also 
been shown to cooperate with telomeric repeat-​binding 
factor 2 and Apollo to protect telomeres from replicative 
damage129. The roles of topoisomerases in centromeres 
and telomeres warrant further investigations, as these 
regions consist of DNA repeats prone to recombination 
and formation of non-​canonical DNA structures130,131.

It has been proposed that cells possess a ‘decatenation 
checkpoint’ that limits chromosomal instability and ane-
uploidy in response to TOP2A dysfunction8. However, 
the molecular pathways that activate this checkpoint 
are poorly understood; they may be related to abnormal 
regulation of TOP2A by SUMOylation, ubiquitylation 
and protein kinases that modify its C terminus8,132–134.

Chromatin remodelling and heterochromatin. In 
addition to their role in organizing chromatin and 
chromosomes and minimizing DNA entanglements, 
topoisomerases associate with chromatin remodel-
ling complexes. TOP2A was found associated with the 
SWI/SNF complex BRG1-​associated factor to facilitate 
decatenation135 and chromatin remodelling for both res-
olution and formation of facultative heterochromatin136. 
TOP2A has also been found in association with cohesin 
and BAZ2A, an essential component of the chromatin 
remodeller nucleolar remodelling complex, to regulate 
chromatin accessibility and expression of developmental 
genes in mouse embryonic stem cells137.

Studies with TOP2B-​deficient cells34 are warranted 
to explore the potential connection between chromatin 
remodelling and TOP2B activity and the role of TOP2B 
in the formation of chromatin loops and TADs.

TOP3B has also been implicated in heterochro-
matin formation by interacting with the RNAi 
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machinery to promote transcriptional gene silencing 
in Drosophila melanogaster4,138, and TOP3A has been 
suggested to act with PICH to condense chromatin 
at centromeres53. BRG1 (also known as SMARCA4) 
itself has also been shown to recruit TOP1 to suppress 
transcription-​associated genomic instability139.

It is tempting to speculate that persistent TOPccs 
may provide anchors for tethering DNA segments to 
nuclear structures. Such ‘functional’ DPCs would be 
self-​reversible, and if not reversible they would be removed 
by the repair pathways described below. Post-​translational 
modifications of topoisomerases such as phosphoryla-
tion133,140, oxidation141,142, acidification143 and acetylation133 
could regulate the stability and reversibility of the TOPcc, 
and thus maintain such genomic anchor points.

Topoisomerases and genome instability
Topoisomerases can both damage the DNA when they 
abort their catalytic cycle in response to anticancer 
drugs, environmental agents or reactive metabolites1,17 

and contribute to DNA repair. Consequently, topoi-
somerases modulate genome stability, and their dys-
function causes chromosomal rearrangements and 
contributes to cancer.

Roles in DNA repair and genome stability. TOP1 is a 
potent ribonuclease at single ribonucleotides or short 
stretches of ribonucleotides incorporated into the 
genome by DNA polymerases144,145. The canonical path-
way of ribonucleotide excision repair is primarily car-
ried out by RNAse H2 (ref.146). However, the frequency 
of ribonucleotide misincorporation is so high147,148 that, 
when embedded ribonucleotides are not removed by 
RNAse H2, TOP1 converts them into SSBs with 3′ ends 
bearing a 2′,3′-​cyclophosphate145 (Figs 4,5). Such blocked 
ends are processed by apurinic endonuclease 2 (APE2), 
as a potential backup gap repair pathway for the ribo-
nucleotide excision repair pathway149,150. Subsequently, 
a TOP1cc formed 5′ adjacent to the ribonucleotide 
(possibly by the same TOP1 molecule sliding back on 

Catenanes
(TOP2Δ, TOP3Δ)
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TOP3A: 90 kDa
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Fig. 4 | Genotoxic and pathogenic topoisomerase lesions. Catalytic intermediates of topoisomerases are normally 
transient because topoisomerase cleavage complexes (TOPccs) are self-​reversible (Supplementary Fig. 1). Irreversible 
TOPccs are generated by trapping of TOPccs by anticancer drugs (Supplementary Box 1) and by pre-​existing DNA 
alterations1,17. TOPccs produce complex nucleic acid alterations, including DNA–protein crosslinks (DPCs) and RNA–
protein crosslinks (RPCs), DNA breaks and topological defects. a | DPCs form either at 3′ DNA ends (topoisomerase 1 
(TOP1) or mitochondrial TOP1 (TOP1MT)) or 5′ DNA ends (TOP2A, TOP2B, TOP3A or TOP3B). They also form at 5′ RNA 
ends for TOP3B2. TOP1, TOP1MT, TOP2A and TOP2B bind double-​stranded DNA; TOP3A and TOP3B bind single-​stranded 
DNA or RNA. DPCs and RPCs generally need to be proteolysed or debulked (denatured) before their excision201,244. b | DNA 
single-​strand breaks (SSBs) formed by stalled or irreversible TOP1ccs (top). TOP1 can also generate SSBs by converting 
ribonucleotides incorporated by DNA polymerases into nicks with 2′,3′-​cyclophosphate blocking ends (red triangle) 
(middle)144,145,211. Cleavage of DNA by TOP2 can be asymmetrical, with only one component of the TOP2 homodimer 
forming a TOP2cc (bottom). This situation is commonly observed following treatment with etoposide227,358. c | DNA 
double-​strand breaks (DSBs) formed by trapping of TOP2A and TOP2B1,32,359 following their proteasomal degradation 
(top)201,249. TOP1 can also generate DSBs, when it nicks the DNA opposite to a nick211,360 or when collision with a replisome 
produces ‘replication run-​off’ with a single-​ended DSB (seDSB) (middle)221. R-​loops forming due to insufficient TOP1 
activity induce DSBs (bottom)72. d | Insufficient topoisomerase activity can result in excessive positive DNA supercoiling 
(Sc+) that arrests transcription and replication, and in negative supercoiling (Sc–) that induces formation of R-​loops and 
alternative DNA structures, including G quadruplexes (G4) and Z-​DNA67,165. Catenanes and knots, which also stop DNA 
(and possibly RNA) transactions, increase in conditions of TOP2 and TOP3 deficiency. Unresolved recombination 
intermediates owing to TOP3A deficiency lead to sister chromatid exchanges and genomic instability6.
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Fig. 5 | Topoisomerase-induced mutagenesis and recombination events. 
a | Model for formation of topoisomerase 1 (TOP1)-​mediated deletions at  
sites of ribonucleotide incorporation within short tandem repeats. Incorpora
tion of ribonucleotides by DNA polymerases is one of the most common 
abnormalities in the DNA218. A ‘primary’ TOP1 cleavage complex (TOP1cc) 
forms on a ribonucleotide. The 2′-​hydroxyl of the ribose sugar reverses the 
bond with TOP1 (not shown) and generates a nick with a 2′,3′-​cyclophosphate 
end. A ‘secondary’ TOP1 forms a TOP1cc 5′ of the nick, and the resulting short 
oligonucleotide bearing the 2′,3′-​cyclophosphate is released. The 5′ end of 
DNA is captured by TOP1, which is followed by rejoining of the two ends and 
release of TOP1, thus generating a short deletion144,151,152. The ribonuclease 
activity of TOP1 has been linked with the ‘Indel Signature 4′ (ID4) in the 
Catalogue of Somatic Mutations in Cancer (COSMIC) database361, which 
consists of 2–5 base pair deletions. The ID4 signature has been proposed to 
be named the ID-​TOP1 mutational signature362. b | TOP1-​mediated large 
deletions. A replication fork collides with a TOP1cc on the leading (bottom) 
strand (Y represents the covalently linked catalytic Tyr at the 3′ end of the 

break). Replication fork regression induced by poly(ADP-​ribose) polymerase 1  
(PARP1)363 promotes TOP1cc self-​reversal or fork stabilization and replication 
restart with RAD51 and breast cancer-​associated type 2 (BRCA2). Alternative 
to fork regression, ‘replication run-​off’221 generates a single-​ended DNA 
double-​strand break (seDSB), and ligation of two distant seDSBs by 
non-​homologous end joining (NHEJ) produces large deletions226.  
c | TOP2-​mediated short duplications203. Processing of TOP2cc by proteolysis 
and tyrosyl-​DNA phosphodiesterase 2 (TDP2) produce DSBs. The 3′ ends of 
the break can undergo resection followed by gap filling. Ligation through 
NHEJ results in 4-​bp duplications. An indel signature consisting of 2–4 base 
pair duplications and due to a TOP2A mutation (K473N) that traps TOP2A has 
been found in patient tumours and proposed to be named as the ID-​TOP2A 
signature364. d | Simplified model of TOP2B-​mediated chromosomal rear-
rangements based on the loop extrusion model100. Schematic depicts 
chromatin loops with cohesin, CCCTC-​binding factor (CTCF) and TOP2B at 
base of loops. Stalled or irreversible TOP2Bccs generate DSBs that disjoin the 
loops. Rejoining of two adjacent DSBs produces a translocation.
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the DNA) (Fig. 5a) can release a short 2–5 bp DNA frag-
ment and form a single-​stranded gap (Fig. 5a). Following 
the excision of this secondary TOP1-​DPC by TDP1 
or APE2, gap filling has been suggested to restore the 
DNA1,146,149,151–153. However, the flexibility of the single-​
stranded DNA segment, especially in DNA sequences 
with short repeats, may also allow the 5′-​hydroxyl 
(5′-​OH) to attack the TOP1–tyrosyl–DNA bond and 
reverse the TOP1cc144 (Fig. 5a). Although this reaction is 
primarily viewed as a source of genomic instability151,152, 
the ribonuclease activity of TOP1 may serve as a backup 
pathway for the removal of ribonucleotides in DNA152–154.

The above TOP1 sequential cleavage model has 
also been invoked for TOP1-​mediated repair of 
ultraviolet-​induced DNA damage in nucleotide excision 
repair-​deficient cells and for base excision repair and 
removal of 6–4 photoproducts (pyrimidine dimers)155. 
Because of its potent ligase activity across non-​canonical 
and non-​homologous structures152,156,157, including 
Holliday junctions158, TOP1 may have additional DNA 
repair and rejoining activities, warranting further 
investigations. In addition, a recent study showed that 
TOP1 interacts with cyclic cGMP–AMP synthase and 
promotes its binding to DNA, thereby eliciting innate 
immune responses and cell senescence159.

TOP3A, in addition to its roles in resolving double 
Holliday junctions and suppressing sister chromatid 
exchanges, is involved in DNA end resection160 and 
homology-​directed repair (HDR)6,28,161,162. Recent studies 
suggest that TOP3A senses RPA-​coated single-​stranded 
DNA and contributes to the restart of replication forks50. 
In addition, by resolving recombination intermediates, 
TOP3A may prevent telomere exchanges and crossovers, 
leading to telomere erosion126,127.

To our knowledge, there is no evidence for a direct 
repair role of TOP2 enzymes. Yet their association with 
chromatin remodelling complexes could contribute to 
DNA repair135–137. Moreover, TOP2B binds to DSB sites163 
and its activity at chromatin loops could serve to regulate 
DNA repair domains164.

Genome instability related to insufficient topoisom­
erase activity. Insufficient activity of the topoi-
somerases has profound effects on DNA and RNA 
metabolism (transcription and replication), and on the 
accumulation of non-​canonical DNA structures such 
as R-​loops, G-​quadruplexes, Z-​DNA, catenanes and  
knots67,165 (Fig. 4d).

TOP1 is essential both for early development in 
mice and for viability of vertebrate cells166 (Table 1; 
Supplementary Table 1). Studies in mice with 
neuron-​specific TOP1 inactivation demonstrate the 
crucial roles of TOP1 in postmitotic cells65. The cerebral 
cortex develops normally, but neurons exhibit reduced 
transcription of long genes and, ultimately, undergo 
degeneration at postnatal day 7, which is accompa-
nied by accumulation of the DNA damage response 
biomarker γH2AX167. DNA breakage results, at least in 
part, from the formation of R-​loops72,168. Indeed, TOP1 
depletion increases R-​loop abundance in heterochro-
matin domains of human HEK293 cells169 and at tran-
scription termination sites of highly expressed genes in 

HeLa cells69. Although R-​loops induce DSBs mainly by 
interfering with DNA replication forks170, they can also 
generate DSBs in postmitotic cells72,73,171,172.

Unlike TOP1, TOP1MT is dispensable for mouse 
development173 (Table 1). Yet knocking out TOP1MT 
impairs liver regeneration and tumour growth by 
reducing the translation of genes encoded in mito-
chondria174–177. Notably, TOP1MT is transcriptionally  
activated by the oncogene MYC178.

Genetic studies show that TOP2 is required for chro-
mosome condensation and segregation and for hetero-
chromatin assembly in cell line models179. The essential 
role of TOP2A in mitosis is consistent with the embryo-
genic lethality of TOP2A-​deficient mice at the four-​cell 
or eight-​cell stages180.

TOP2B-​deficient mice develop in utero, as TOP2A 
can compensate for the loss of transcriptional gene regu
lation in cycling cells33,181. However, TOP2B-​deficient 
mice die at birth because the nerves that innervate their 
diaphragm do not form dendrites to connect to the 
muscles. The mice also fail to form laminar structures 
in their cortex182,183 (Table 1).

TOP3A is essential for the nuclear and mitochon-
drial genomes184–186 (Box 1; Table 1). Bloom syndrome 
has recently been linked with genetic alterations in 
TOP3A187 and in the dissolvasome component RMI2 
(ref.188), which is consistent with the fact that TOP3A 
and BLM cooperate in the dissolvasome complex6,189 to 
suppress sister chromatid exchanges161,190 and HDR191 
and contribute to the resolution of stalled replication 
forks192. The mitochondrial isoform of TOP3A is cru-
cial for mtDNA replication12, fertility186,193 and, owing to 
its mitochondrial functions, the viability of postmitotic 
cells185 (Box 1; Table 1).

TOP3B is not essential, but mice lacking TOP3B have 
a shortened lifespan, a higher incidence of aneuploidy 
in germ cells, increased autoimmunity194–196, abnormal 
synapse formation197 and behavioural impairments198 
(Table 1). Individuals with genetic inactivation of TOP3B 
suffer from severe neurological symptoms, including 
cognitive impairment, which have been related to the 
RNA topoisomerase activity of TOP3B26,197. TOP3B inac-
tivation has also been reported in a person with renal 
carcinoma199. The molecular mechanisms underlying 
these phenotypes and how they are related to the RNA 
and DNA functions of TOP3B2,4,15,138,198,200 are important 
issues for future studies.

Topoisomerase trapping by metabolic and environmen­
tal perturbations and drugs. Many environmental and 
metabolic perturbations induce TOPcc trapping1,17,201, 
which produces highly deleterious DNA lesions ema-
nating from TOP-​DPCs associated with SSBs and DSBs 
(Fig. 4). Studies with anticancer drugs that target TOPccs 
and with self-​poisoning topoisomerases provide com-
plementary approaches to elucidate the DNA damaging 
effects of trapped TOPccs and the repair pathways of 
and cellular responses to TOP1ccs31, TOP1MTccs202, 
TOP2ccs203,204 and TOP3Bccs2.

Trapping of TOP1ccs is the mechanism of action 
of the anticancer drugs derived from camptothecins 
and indenoisoquinolines205,206 (Supplementary Box 1), 

Homology-​directed repair
(HDR). A replication-​associated 
DNA double-​strand break 
(DSB) repair pathway that uses 
a homologous sequence as a 
template for resynthesizing  
a missing DNA segment. Its 
classical form is homologous 
recombination and its common 
effector is RAD51.

γH2AX
Histone H2AX phosphorylated 
at Ser139; a sensitive 
biomarker of DNA 
double-​strand breaks (DSBs).

TOPcc trapping
Stabilization of topoisomerase 
cleavage complexes (TOPccs) 
by inhibition of DNA end 
rejoining by a drug molecule 
bound at the interface of the 
DNA break and the enzyme or 
by DNA lesions that misalign 
the broken DNA ends, thereby 
preventing the release of the 
topoisomerase.
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Table 1 | Pathogenicity of topoisomerase malfunctions and phenotypic dysfunctions

Gene Clinical 
manifestations

Vertebrate cell line models Mouse knockout phenotypes Fruitfly knockout 
phenotype

Yeast knockout 
phenotypes

TOP1 TOP1 antibody (SCL70) 
autoimmune syndromes

Aicardi–Goutières 
syndrome147

Autism62

Reduced TOP1 expression 
causes replication stalling, 
R-​loops and genome 
instability67,165

Essential for early embryogenesis166

Genomic instability and early 
neurodegeneration in the brain65

TOP1 is essential 
for multiple cellular 
functions319,320

Top1 knockout 
causes slow 
growth and 
accelerated 
ageing phenotype 
(ribosomal DNA 
circles)321

TOP1MT Unknown. SNPs are 
frequent322

TOP1MT overexpression 
reduces mtDNA 
transcription323,324

Expression of TOP1MT 
(mouse T546-​N550H; 
human T554A-​N558H) 
producing irreversible 
TOP1MTccs induces mtDNA 
degradation202

Dispensable174,176,325,326

Reduced tissue regeneration174

Carcinogenesis176

Reduced spermatogenesis327

Reduced mtDNA replication174

Reduced mitochondrial 
transcription175,324

Reduced mitochondrial translation176

TOP2A Amplified in 
HER2-​positive breast 
cancers (chromosome 
17q amplicon)

TOP2 antibodies found 
in the autoimmunity 
syndrome lupus328  
and in cancer329

Selectively expressed and 
essential in proliferating 
cells33,330

Non-​essential in quiescent 
cell lines

 – – Top2 is essential 
for termination of 
DNA replication 
and chromosome 
segregation at 
mitosis115,321

TOP2B Mutations associated 
with B cell deficiency, 
global developmental 
delay and autism 
spectrum disorder331–333

Non-​essential in cell lines34,334 Perinatal lethality owing to defects 
in neuronal differentiation and 
connectivity182,183,335

Conditional knockout: role in 
corticogenesis182, and retinal173  
and ovarian development336

Depletion by local injection: defective 
consolidation of fear memory337

TOP3A Bloom syndrome13,187,188

Mitochondrial 
disease12,13,338

mtDNA deletions12

MLL gene fusion  
in AML339

TOP3A inactivation produces 
sister chromatid exchanges, 
defective chromosome 
segregation, ultrafine 
anaphase bridges and mitotic 
catastrophy6,52,187

Resolves stalled replication 
forks with FANCM192

Essential for early embryogenesis184 TOP3A is 
essential185,186;  
the mitochondrial 
isoform is required 
for fertility and 
maintenance of 
mtDNA186,193

Top3 knockout 
causes low growth 
and hyper-​ 
recombination340,341

Rescued by 
knocking out Sgs1, 
the yeast RECQ 
orthologue342

TOP3B Neurological disorders, 
intellectual deficiency 
and psychosis26,197

Carcinogenesis199

Premature ageing4

Genomic instability (R-​loops)199

Defective neuronal synapses343

Genetically engineered 
TOP3B (R338W) producing 
irreversible TOP3Bccs induces 
DNA damage and R-​loops2

Dispensable194–196

Splenomegaly, immune infiltrates194 
and autoimmunity196

Infertility and aneuploidy195

Neurological defects198

Defective synapse formation197

Tumours

Defective synapse 
formation197

Defect in 
heterochromatin 
formation138

TDP1 Spinocerebellar 
ataxia with axonal 
neuropathy344,345

Knockout reduces mtDNA 
transcript abundance323

Deficiency causes broad 
sensitivity to DNA damaging 
agents346

Age-​dependent cerebellar atrophy347

Potentiates with ATM 
neurodegeneration250

Reduced lifespan 
and climbing 
ability in females348

TDP1 knockout 
(there is no TDP2) 
is hyper-​sensitive 
to TOP1ccs349,350

TDP2 Seizures, intellectual 
deficiency and 
ataxia264,351

TDP2 repairs TOP1ccs in the 
absence of TDP1 (refs264,352)

Required for picornavirus 
replication353,354

Suppresses genomic 
instability induced by 
androgens and oestrogens108

Genomic instability and neuronal 
defects280,355

Increased incidence of thymic 
cancers in Atm–/– mice356

AML, acute myeloid leukaemia; ATM, ataxia telangiectasia mutated; FANCM, Fanconi anaemia group M protein; MLL, myeloid/lymphoid or mixed-​lineage 
leukaemia; mtDNA, mitochondrial DNA; TDP, tyrosyl-​DNA phosphodiesterase; TOP1, topoisomerase 1; TOP1cc, topoisomerase cleavage complex; TOP1MT, 
mitochondrial TOP1.
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which are classically used to study the DNA damaging 
effects of and cellular responses to TOP1ccs in cellular 
models. Topotecan and irinotecan are widely used for 
cancer therapy and tumour-​targeted TOP1 inhibitors 
are promising novel chemotherapies31. Local structural 
DNA perturbations can trap TOP1ccs as well207,208. These 
include the incorporation of ribonucleotides and of anti-
cancer nucleoside analogues such as cytarabine (Ara-​C) 
and gemcitabine, and DNA adducts by platinum deriv-
atives such as cisplatin and carboplatin209–212. TOP1cc 
can also be stabilized near DNA mismatches, abasic sites 
and 7,8-​dihydro-8-​oxoguanine (8-​oxoG) base oxidation, 
ultraviolet damage and single-​strand nicks in the strand 
not cleaved by TOP1 (refs1,155,201,213–217) (Fig. 4c).

Trapped TOP1ccs are a well-​established source 
of mutations and genomic instability (Figs 4,5). 
TOP1-​mediated deletions at short repeated sequences 
(Fig. 5a) can be initiated by ribonucleotides incorporated 
into the DNA by replicative polymerases148,218 (Fig. 5a). 
TOP1 converts them to SSBs (Fig. 4b), and following the 
formation of a second TOP1cc on the same DNA strand 
(Fig. 5a), TOP1 readily generates short deletions144,151,152 
due to its potent DNA ligation activity154,213,219,220. This 
recombination property is routinely used for molec-
ular cloning with TOP1 (ref.145). The occurrence of 
TOP1ccs across nicks can also induce recombinogenic 

DSBs1,211,213 (Fig. 4c). Another mutagenic consequence of 
irreversible TOP1ccs results from their collisions with 
replication forks (Figs 4c,6). When the TOP1cc is on the 
leading strand, it produces ‘replication run-​off ’221 result-
ing in the formation of a single-​ended DSB (seDSB) 
(Figs 4c,5b). Such seDSBs are highly cytotoxic204, unless 
the replication fork reverses (Fig. 5b), and can produce 
large deletions and chromosomal translocations through  
non-​homologous end joining (NHEJ)222–226 (Fig. 5b).

TOP2ccs are also a well-​established source of DNA 
damage and carcinogenic mutations by endogenous and 
environmental agents17. Their trapping by TOP2 poisons 
is the target of the anticancer drugs etoposide, doxoru-
bicin, mitoxantrone and amsacrine (Supplementary  
Box 1), which generate TOP2-​DPCs coupled with 
DSBs and SSBs. These drugs are classically used to 
map TOP2ccs and study their DNA damaging effects 
and repair pathways32,48,206,227–230. In addition, the TOP2 
catalytic inhibitors merbarone and ICRF-193 (or 
ICRF-187) prevent the enzymatic activity of TOP2 by 
stabilizing topological TOP2–DNA complexes32,231, 
which are highly cytotoxic or require the intervention 
of DNA repair pathways196,222,231. The conformation of  
TOP2 is sensitive to temperature and biochemical 
perturbations141–143,232. Exposure to etoposide either at 
an elevated temperature (39 °C) or together with an 
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Fig. 6 | Main repair pathways for trapped topoisomerases in humans.  
a | Overall scheme for conversion of topoisomerase DNA–protein crosslinks 
(TOP-​DPCs) into protein-​free DNA breaks201. Association of TOP-​DPCs with 
replication or transcription complexes and phase of the cell cycle (S phase 
versus G1 phase) are likely determinants of pathway choice. Debulking of 
TOP-​DPCs by the three ubiquitin–proteasome pathways includes the 
conserved SUMO-​targeted ubiquitin ligase (STUbL) pathway, in which RNF4 
is the human E3 ubiquitin ligase for TOP1-​DPCs, TOP2A-​DPCs and 
TOP2B-​DPCs249; the TRIM41 E3 ligase pathway for crosslinks between TOP3B 
and DNA or RNA2; and the cullin pathway for TOP1-​DPCs365,366 (step 1). 
Non-​proteasomal TOP-​DPC proteolytic pathways245. The proteases Spartan 
(SPRTN), GCNA (also known as ACRC), FAM111A and DDI debulk 
TOP1-​DPCs and TOP2-​DPCs (step 2). Non-​proteolytic pathway for TOP2, 
driven by SUMO E3 ligase ZNF451 (ref.259) (step 3). Nucleic-​acid excision 

pathways for TOP1 and/or TOP2 include excision by the endonucleases 
MRE11, CtIP and XPF–ERCC1, or excision by tyrosyl-​DNA phosphodie
sterase 1 (TDP1) and TDP2 (step 4). b | TDP1 is activated by poly(ADP-​ribose) 
polymerase 1 (PARP1)268,269,275, and upon cleaving DNA leaves a 3′-​phosphate 
that is further processed by polynucleotide kinase phosphatase (not shown). 
TDP2 leaves a 5′-​phosphate that can be directly ligated or extended by DNA 
polymerases (not shown). Both TDP1 and TDP2 require debulking of 
TOP-​DPCs to gain access to the tyrosyl–DNA links. Additional excision 
pathways involve endonucleases. c | Differential roles of non-​homologous 
end joining (NHEJ) and homology-​directed repair (HDR) in repair of TOP1-​
induced single-​ended DNA double-​strand breaks (seDSBs) and TOP2-​DPC-​
induced DSBs. Whereas seDSB repair by NHEJ is toxic222, possibly by inducing 
large deletions owing to illegitimate end joining of distant seDSBs (Fig. 5b), 
NHEJ is crucial for repair of TOP2-​DPCs. TOP1cc, TOP1 cleavage complex.

Non-​homologous end 
joining
(NHEJ). The prominent DNA 
double-​strand break (DSB) 
repair pathway, which rapidly 
joins adjacent DNA ends. Its 
main effectors are Ku70–Ku80 
and DNA-​dependent protein 
kinase (DNA-​PK).
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inhibitor of heat shock protein 90 (HSP90) enhances the 
abundance of TOP2-​DPCs233,234. Thus, HSP90 appears 
to be required for maintaining the conformation of 
TOP2 and avoiding TOP2 misfolding and the stalling  
of TOP2-​DPCs. In addition to misfolding, TOP2 trap-
ping can occur at sites of endogenous base damage17, 
including abasic sites, oxidized and alkylated bases 
and base mismatches235–238, and at secondary DNA 
structures239. This relation with endogenous base damage 
suggests that physiological TOP2cc trapping occurs more 
frequently than is commonly appreciated240. This conclu-
sion is supported by the finding that loss of MRE11, the 
nuclease that removes TOP2 adducts (Fig. 6a,b), causes 
the endogenous accumulation of TOP2cc80,241–243.

Genomic damage owing to inaccurate repair of TOP1ccs 
and TOP2ccs. Due to the inaccessible location of 
the covalent tyrosyl–DNA bonds inside the TOPccs 
(Supplementary Fig. 1i–k), the removal of topoisomer-
ase adducts requires a debulking step201 so that excision 
repair enzymes can access the topoisomerase tyrosyl–
DNA junctions201,244 (Fig. 6; Supplementary Fig. 1a,b). 
To that effect, TOP-​DPCs are subjected to proteolytic 
degradation2,201,244,245 (Fig. 6a). The UPS is highly active in 
cancer cells, which is exploited for the treatment of mul-
tiple myeloma with proteasome inhibitors. Moreover, it 
has recently become possible to examine proteolysed 
TOP1-​DPCs using a specific antibody that recognizes 
the TOP1–DNA cleavage junctions246–249.

The endogenous accumulation of TOP1-​DPCs has 
been detected in mice deficient in the kinase ATM or 
in the protease Spartan (SPRTN)247,250. Cancer cells 
treated with camptothecin or etoposide undergo 
rapid ubiquitin-​dependent degradation of TOP1 and 
TOP2 (refs249,251,252). Likewise, human embryonic kid-
ney cells proteolyse more than 50% of their cellular 
TOP1, TOP2A and TOP2B upon exposure to camp-
tothecin or etoposide249. Accordingly, proteasome and 
ubiquitin inhibitors delay TOP-​DPC removal2,249,253. 
The UPS-​mediated removal of TOP1-​DPCs is varia-
ble in different cell lines and tends to be more robust 
in drug-​resistant cancer cells than in normal cells251,252. 
Recently, we showed that TOP3B-​DPCs are also 
removed by the UPS pathway2.

TOP2-​DPCs can also be proteolysed by non-​ 
proteasomal pathways245,248,254–256, and non-​proteolytically 
by TDP2 following their SUMOylation and unfolding by 
ZNF451 (refs257–259) (Fig. 6). Non-​proteasomal proteoly-
sis by SPRTN repairs replication-​associated TOP1-​DPCs 
and TOP2-​DPCs245, and genetic inactivation of SPRTN 
causes Ruijs–Aalfs syndrome with progeroid features 
and hepatocellular carcinomas245,247. Further studies are 
warranted to explore whether the sensitivity of malig-
nant tumours to camptothecin and etoposide and the 
carcinogenic consequence of TOPccs are related to  
the UPS or SPRTN pathways, and whether the genomic 
instability of Ruijs–Aalfs syndrome is related to the  
accumulation of unrepaired TOP-​DPCs.

Figure  6a outlines TDP1-​dependent, TDP2-​ 
dependent and exonuclease-​dependent repair of 
TOP1-​DPCs, TOP2-​DPCs and TOP3B-​DPCs, and 
Table 1 lists the disorders and cellular defects related to 

TDP1 and TDP2 deficiencies. Human and yeast recom-
binant TDP1 proteins hydrolyse phosphodiester linkages 
between Tyr residues and 3′-​phosphates of DNA207,260–262 
(Fig. 6b; Supplementary Fig. 1a,b). Although purif
ied TDP2 protein has weak activity as a 3′ TDP263,264, 
human TDP2 contributes to the removal of TOP1-​DPCs 
in vivo. Recent analyses in human B cells show that 
more than 90% of TOP1-​DPCs are removed during 
a 15-​min repair time in wild type and TDP2–/– cells, 
70% in TDP1–/– cells and only 40% in TDP1–/–TDP2–/– 
cells253. Thus, both TDP1 and TDP2 are important for 
TOP1-​DPC removal. The stability of TDP1 is regulated 
by the deubiquitylase UCHL3 (ref.265). TDP1 activity 
is also controlled by its SUMOylation266, its phospho-
rylation by ATM and DNA-​PK267, and its recruitment 
by poly(ADP-​ribose) polymerase 1 (PARP1)268,269. 
ATM-​deficient mice exhibit endogenous accumulation 
of TOP1-​DPCs and neurodegeneration250.

TOP2-​DPCs can also be directly excised by 
endonucleases100,241,270 (Fig. 6a). Additionally, the endo-
nuclease complexes MUS81–EME1 (refs271,272) and 
XPF–ERCC1 (refs273–275) can excise TOP1-​DPCs (Fig. 6). 
Hence, cancer and genetic deficiencies of such nucle-
ases or their scaffolding proteins (for example, SLX4 in 
the case of XPF–ERCC1) may predispose to genomic 
instability by defective excision of TOP-​DPCs275,276. 
Somatic mutations in tumours may also provide ther-
apeutic opportunities related to synthetic lethality, such 
as the use of PARP inhibitors to block the TDP1 repair 
pathway in ERCC1-​deficient cancers treated with TOP1 
inhibitors275 (Fig. 6b).

Following the excision of TOP-​DPCs, cells restore the 
DNA by filling the gaps and resealing the DNA breaks. 
Camptothecin generates DSBs in cycling cells when rep-
lication forks encounter TOP1-​DPC (Figs 4c,6c). HDR, 
but not NHEJ, repairs the DSBs using the intact sister 
chromatid as a template. However, error-​prone NHEJ 
frequently occurs in camptothecin-​treated cells upon 
inhibition of ATM226,277, suggesting that genome insta-
bility resulting from endogenous TOP1cc is accentuated 
in the context of ATM and HDR deficiencies.

In contrast to the dominant role for HDR in repair-
ing TOP1-​induced DSBs, NHEJ is preferentially used 
for TOP2-​induced DSBs even in cycling cells222 (Fig. 6c). 
Whereas DSB end resection by HDR efficiently removes 
TOP2-​DPCs278, NHEJ can only ligate TOP2-​DPCs after 
the removal of 5′ TOP2 adducts, which restores the 
3′-​OH and 5′-​phosphate ends279–281. Abnormal rejoin-
ing of TOP2-​induced DSBs has recently been reported 
to account for short duplications203 (Fig. 5c). Following 
hydrolysis of the 5′-​tyrosyl bond by TDP2 (Tdp1 in 
yeast), gap filling by DNA polymerase generates a 
blunt-​ended DSB, which is ligated by NHEJ.

Both TDP2 and MRE11 remove TOP2 adducts 
(Fig. 6b), and their relative contribution varies in differ-
ent conditions. TDP2 removes 50–70% of TOP2 adducts 
generated by 2 h of etoposide exposure in mouse pri-
mary B cells. In mouse embryonic fibroblasts, loss of 
ATM and TDP2 together (but not separately) causes 
a significant delay in the repair of DSBs induced by 
etoposide282. ATM may phosphorylate MRE11 and its 
cofactor, CtIP (also known as RBBP8), as these proteins 
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are known to be phosphorylated by ATM and promote 
NHEJ of etoposide-​induced TOP2-​DPCs in G1 phase283. 
More than 99% depletion of MRE11 and inactivation 
of its nuclease activity is required for the accumula-
tion of endogenous TOP2ccs in human B cells242. Thus,  
a residual amount of MRE11 activity appears sufficient 
for the repair of TOP2ccs. Similar to the complete loss 
of MRE11, neuron-​specific disruption of Nijmegen 
breakage syndrome 1 (NBS1), an essential cofactor of 
MRE11 (with RAD50), also causes the accumulation 
of endogenous TOP2cc242. Overexpression of TDP2 
partially rescues the lethality of MRE11-​deficient cells, 
indicating that stalled TOP2ccs generate lethal DSBs in 
cycling cells. Considering the viability of TDP2-​deficient 
mice280 and the pivotal role of TDP2 in the repair of 
etoposide-​induced TOP2ccs264,280,284, future studies are 
warranted to understand why TDP2 fails to suppress the 
endogenous accumulation of lethal TOP2ccs. Another 
unsolved question is the molecular mechanism(s) link-
ing MRE11 with NHEJ to ensure the accurate repair of 
TOP2ccs, as NHEJ cannot accurately rejoin DSBs carry
ing the 3′ overhangs generated by the endonucleolytic 
removal of TOP2 adducts.

DSB end resection during HDR generates 3′ 
single-​strand tails, and thereby removes 5′ blocking 
adducts such as TOP2-​DPCs. A recent study shows 
that breast cancer-​associated type 1 (BRCA1) and the 
ubiquitin-​associated proteins RAP80 and UBC13 (also 
known as UBE2N), which are involved in DSB end resec-
tion, contribute to the removal of etoposide-​induced 
5′ TOP2-​DPCs independently of their function in 
HDR243,281. RAP80 and UBC13 promote the physical 
interaction between BRCA1 and MRE11 in G1 phase 
as well as in S/G2 phase285. These findings suggest that 
BRCA1 and ubiquitylation promote MRE11-​dependent 
removal of TOP2ccs prior to NHEJ during subsequent 
G0 or G1 phases.

The redundancy and complexity of the pathways 
that repair irreversible TOPccs and their associated 
DNA breaks are consistent with the occurrence of such 
lesions under physiological conditions. Somatic muta-
tions in the pathways that repair these lesions (including 
in XPF, ERCC1, BRCA1 and BRCA2), in MRE11 and in 
other factors, may provide opportunities for synthetic 
lethal interaction treatment of cancers.

Chromosomal translocations and therapy-​related acute 
myeloid leukaemia. Anticancer drugs targeting TOP2 
enzymes (Supplementary Box 1) are associated with 
long-​term undesirable side effects including therapy-​
related acute myeloid leukaemia (t-​AML)17,286,287. 
Although rare compared with the high lethality of the 
initial cancers, t-​AML can be devastating for those indi-
viduals affected. t-​AML occurs following treatment for a 
wide range of primary neoplasia. Breast cancer accounts 
for about 35% of t-​AML cases, presumably owing to the 
relative number of breast cancer cases and the age profile 
of the individuals, and prior haematological malignan-
cies account for approximately 30% of t-​AML cases288. 
As cancer survival statistics have improved, t-​AML cases 
have increased; up to 15% of all acute myeloid leukaemia 
(AML) cases can be classified as t-​AML289.

Therapy-​related leukaemia following treatment with 
TOP2 poisons is presumed to result from genetic dam-
age to haematopoietic progenitor cells leading to the 
emergence of clones exhibiting a differentiation block 
and/or an increase in self-​renewal and proliferation. The 
precise point or points during haematopoietic differen-
tiation where progenitors can be transformed in this 
way is open to debate, but the ‘window of opportunity’ 
is likely between multipotential progenitor cells and  
granulocyte–macrophage progenitors290–294.

Therapy-​associated AML appearing after expo-
sure to TOP2 poisons often contains one of a set of 
recurrent chromosomal translocations giving rise to 
fusion genes that disrupt blood cell development and 
differentiation17,228,295. Thus, errors in the cellular pro-
cessing and repair of TOP2-​DPCs in haematopoietic 
cells are viewed as a common cause of t-​AML. Indeed, 
translocation junction sequences are consistent with 
the erroneous joining of heterologous chromosome 
segments by NHEJ, or by the variant pathway alterna-
tive end joining296,297. The most frequent translocations 
observed in t-​AML involve fusion between the gene 
myeloid/lymphoid or mixed-​lineage leukaemia (MLL; 
also known as KMT2A) at 11q23 and the genes AF9 
(MLLT3) at 9p21, AF4 (AFF1) at 4q21 or, less frequently, 
numerous other genes17,101,295,298. Breakage at the MLL–
AF9 or MLL–AF4 fusion genes is associated with TOP2 
cleavage sites99. Other recurrent translocations include 
t(15;17)(PML-​RARA), t(8;21)(AML-​ETO), t(11q23,var) 
and inv(16)(p13;q22)(CBFB-​MYH11)295,299,300. Thus,  
a simple model for the aetiology of t-​AML associ-
ated with TOP2 poisons involves illegitimate end 
joining between DNA repair intermediates, result-
ing in the formation of leukaemogenic chromosomal 
translocations292,295,299 (Fig. 5d). In addition, there appears 
to be some preference for which translocation (and 
therefore which AML subtype) is induced by different 
TOP2 poisons. For example, etoposide is associated 
with MLL translocations, whereas t(15,17)(PML-​RARA) 
translocations resulting in treatment-​associated acute 
promyelocytic leukaemia have been associated with 
mitoxantrone and epirubicin300–305.

Chromosome break points involved in MLL trans-
locations in AML fall within an 8 kb break-​point 
cluster region, and those derived from t-​AML are 
over-​represented in the distal 1 kb of this break-​point 
cluster region. This break-​point clustering suggests that 
a specific mechanism is associated with therapy-​related, 
but not de novo, AML translocations. The co-​localization 
of TOP2B and CTCF99,106,306 provides one possible expla-
nation for the over-​representation of t-​AML transloca-
tion break sites in the distal 1 kb of the MLL break-​point 
cluster region, as this region is adjacent to a CTCF 
binding site within the MLL gene299,307. The proxim-
ity to nascent mRNAs suggests that the translocations 
occur within transcription hubs228,299,308. Furthermore, 
exposure of cells to large doses of TOP2 poisons results 
in chromosomal breakage in this 1 kb region that can 
be detected by Southern blotting309–312, which strongly 
implicates TOP2 either directly or indirectly313–317 in 
the generation of DSBs that are the precursor of the  
chromosomal translocations.
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Conclusions and future perspective
Topoisomerases are magicians of DNA and RNA15,318, 
and their full range of functions remain to be discovered. 
Unknown functions such as the manipulation of RNA 
topology and how cells use and resolve knots, and the 
roles of topoisomerases in metabolism and mitochon-
dria, are partially understood. Because topoisomerases 
are exploited as targets for a wide range of anticancer 
and antibacterial drugs, understanding the repair path-
ways of TOPccs can provide opportunities for improving 
the rational use of topoisomerase inhibitors and their  
combination with other drugs in cancer treatment.

Topoisomerases are an increasingly recognized source 
of genome instability. In this Review we have discussed the 
emerging range of (redundant) repair pathways that han-
dle the failures of topoisomerases in physiological con-
ditions and following their therapeutic targeting. These 
pathways have to repair highly damaging lesions, con-
sisting of DPCs, SSBs and DSBs. The existence of redun-
dant mechanisms that repair topoisomerase-induced 

genomic damage begs the question of repair pathway 
choice and selection. It is likely that the sites of dam-
age and whether topoisomerases are trapped during 
transcription or replication, or whether the damage 
occurs in highly proliferative cells such as haematopoi-
etic progenitors or in highly differentiated cells such as  
neurons, are germane to repair pathway choice.

Because of the potential danger of topoisomerases, 
it is likely that their activity is controlled and restricted 
to proper sites of action. In that context, further stud-
ies are warranted to elucidate the molecular partners of 
topoisomerases within molecular machines and their 
regulation by post-​translational modifications.

Finally, the detailed location and roles of topoisome
rases at centromeres and telomeres, and how topoisomer-
ases are coordinated with chromatin remodelling factors 
and the architecture of chromatin and chromosomes,  
represent promising areas of investigation.
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