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Abstract

Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone 

receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, 

showing common and distinct lipid dependencies. A growing body of studies identify altered 

lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, 

and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be 

produced in cells via de novo synthesis or acquired from the microenvironment. The three main 

functions of cellular lipids are as essential components of membranes, signaling molecules, and 

nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular 

lipidome has become more prevalent in breast cancer research. In this review, we discuss current 

lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings 

connect to disease progression and therapeutic development, and the potential use of lipidomics 

as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and 

how it changes during drug resistance and tumor progression will allow informed development of 

diagnostics and novel targeted therapies.
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1. Introduction

Metabolic reprograming is a long-standing hallmark of cancer that encompasses diverse 

processes involved in energy production, macromolecule biosynthesis and degradation. 

Abnormally regulated lipid metabolism is relatively understudied compared to other 

branches of cancer metabolism despite playing a critical role in tumor cell biology. 
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Lipid metabolism is notably altered in breast cancer versus normal breast cells, and is 

hypothesized to contribute to tumor cell plasticity, therapeutic resistance, and metastasis [1]. 

However, studies find considerable variation in both lipid anabolic and catabolic pathways, 

potentially due to intertumoral heterogeneity and the existence of distinct disease subtypes, 

and thus there is no clear targetable metabolic signature at present.

Breast cancer is the most common malignancy among women, comprising 30% of newly 

diagnosed cancer cases in the US [2]. Breast cancer is generally stratified into three main 

subtypes based on the presence of estrogen receptor (ER) and progesterone receptor (PR) (or 

hormone receptor (HR) positive), amplification/overexpression of human epidermal growth 

factor receptor 2 (HER2+), or lack of all three markers [triple negative breast cancer 

(TNBC)] [3]. Positivity for HR or HER2 initially stratifies patients into anti-endocrine- 

or HER2-targeted therapies, respectively [4, 5]. Acquired resistance and recurrence occurs 

in 10-41% of HR+ breast cancers depending on grade/stage [6, 7]. Late-stage HR+ tumors 

are treated with inhibitors to CDK4/6 and PIK3CA [8-11]. Treatment of TNBC primarily 

relies on chemotherapy, with limited options for PARP inhibitors or immunotherapy [12]. 

Almost all refractory breast cancers eventually develop resistance to second line drugs 

[13, 14]. Targeting other processes in breast cancer including metabolism has long been 

thought to hold therapeutic potential. Discovery of the Warburg Effect, or the preference 

towards anaerobic metabolism in the presence of oxygen, originally highlighted that tumor 

cell metabolism could be a targetable vulnerability [13, 14]. Unfortunately, development of 

anti-cancer drugs targeting metabolic changes has not been successful in breast cancer to 

date. Lipid regulatory pathways may be effective therapeutic targets, especially in breast 

cancers where lipid metabolism plays a central role both normal mammary gland and tumor 

biology.

Lipid metabolism includes the enzymatic biosynthesis, covalent modification, and 

degradation of fatty acids (FA) and their lipid derivatives. Prior to the use of mass 

spectrometry to identify organic molecules, technical limitations restricted the study of 

cellular lipids [15]. The development of electron spray ionization (ESI) and matrix assisted 

laser desorption ionization (MALDI) techniques 30 years ago improved the ability to 

detect and quantify lipids within biological samples, and the field of lipidomics emerged 

[16, 17]. In the past decade, these techniques have been further refined and their use 

has steadily increased in biological research. At present, there are multiple methods for 

lipid extraction/separation, mass spectrometry, metabolite annotation, and data analysis/

normalization, which provides challenges for data sharing and points to the importance 

of technical "gold standards" [18, 19]. Lipidomics has the potential to provide previously 

unavailable information on cellular lipidomes and lipid metabolism, which can be combined 

with proteomic and genomic data to identify novel therapeutic strategies in breast cancer.

In this review, we cover recent developments in lipid metabolism and the lipidome in the 

three main subtypes of breast cancer, and their potential meaning to cancer biologists. We 

include discussion of various lipidomic methods and data analysis present in the breast 

cancer literature. Lastly, we highlight the role of breast cancer lipid signatures and their 

contribution to disease detection, progression, and treatment.
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2. Mammalian lipid structures and functions

Lipids are hydrophobic or amphipathic (having both hydrophobic and hydrophilic regions) 

small molecules that serve essential functions as membrane components, energy storage, 

and signaling molecules in mammalian cells. Lipids can be broadly classified into 

eight categories, seven of which are found in mammals: fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, saccharolipids, sterols, and prenols (Fig.1) [20]. These 

categories can also be subdivided into either nonpolar, neutral lipids or polar (amphipathic) 

lipids. Hydrophobicity is determined by one or more hydrocarbon chains that vary in 

chain length and degree of saturation. Some lipids contain headgroups and modifications 

that provide amphipathic characteristics. In mammalian cells, a family of enzymes termed 

elongases regulate the length of lipid hydrocarbon tails. Chain length typically ranges from 

4-22 carbons; however, chains with >24 carbons are occasionally present in mammals 

[21]. Hydrocarbon chain saturation, or the number of double bonds, is regulated by 

saturase and desaturase enzymes and thus characterized as unsaturated, monounsaturated, 

or polyunsaturated. The essential linoleic and linolenic acids must be acquired from the diet 

since mammalian cells lack the desaturase enzymes necessary to produce these FA from 

their 18-carbon precursors [22]. The degree of lipid saturation impacts properties such as 

interaction with other organic molecules [23]. The LIPID MAPS consortium devised a lipid 

nomenclature system for researchers to effectively describe the position and degree of lipid 

saturation [24].

The main lipid species in cell membranes are phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), 

phosphatidylglycerol (PG), phosphatidic acid (PA) and cardiolipin (CL). Phospholipids 

are amphipathic in nature by containing a polar phosphate and glycerol head group and 

non-polar fatty acyl chains. The extracellular plasma membrane is a lipid bilayer mainly 

containing structural phospholipid species: PC, PE, PI, PS, and the phospholipid-precursor, 

phosphatidic acid. PC is the most abundant phospholipid in eukaryotic cell membranes and 

accounts for about 50% of total cellular phospholipid mass [25]. PC head groups have a 

cylindrical geometry which provides a planar shape to lipid bilayers. PE is another abundant 

membrane phospholipid and contributes to membrane curvature with a smaller conical 

headgroup geometry. The ratio of PC and PE species within the membrane can impose 

curvature stress onto the membrane, which is used for budding, fission and fusion [26]. PS is 

almost exclusively found in the inner cytoplasmic leaflet of the plasma membrane and, when 

flipped to the outer leaflet, is a signal for apoptosis and platelet activation [27, 28].

Sphingomyelin (SM) and sterols also comprise a large component of the membrane. 

SM belong to the class of sphingolipids and differ from phospholipids by a long-chain 

nitrogenous base backbone, termed sphingosine. The saturated (or trans-unsaturated) SM 

tails allow these species to form longer and narrower cylinders than PC of the same 

chain length. Consequently, SM can assemble tightly together, a phenomenon sometimes 

referred to as "lipid-packing", resulting in a more rigid membrane state. Neutral sterols 

such as cholesterol balance SM structural rigidity and maintain membrane fluidity [29]. 

Sphingolipids, cholesterol, and the degree of phospholipid hydrocarbon saturation affect 

overall membrane fluidity [23]. It is hypothesized that lipid bilayers do not exist as a 

Ward et al. Page 3

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2022 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homogenous lipid composition, but rather clusters of dense and fluid areas [30]. Denser 

areas, referred as lipid rafts, are comprised of packable lipids and clusters of membrane-

bound proteins [31]. More fluid membrane areas contain unsaturated phospholipids as their 

non-linear acyl tails prevent tight "lipid-packing" interactions [32]. The plasma membrane 

also contains structures involved in endocytosis such as caveolae, which studies have found 

are rich in SM [33]. Most intracellular organelles also contain lipid bilayers, including 

the endoplasmic reticulum, golgi, nucleus, mitochondria, and lysosomes. Their membranes 

consist of PC, PE, PI, and some cholesterol which result in a dynamic flexible interface. The 

endoplasmic reticulum is the primary location of phospholipid, glycerolipid, and cholesterol 

synthesis. The golgi membrane closely resembles the endoplasmic reticulum membrane 

and contains similar lipid species with increased SM and PS content [34]. In mammalian 

cells, the golgi is the main producer of complex sphingolipids like SM, glucosylceramide 

(GlcCer), and lactosylceramide (LacCer), although, Cer from the endoplasmic reticulum is 

required for golgi-mediated sphingolipid metabolism [35, 36]. Nuclear membranes are also 

enriched in PC, PE, PI and cholesterol which contribute to flexible membrane dynamics. 

While there are fewer studies on eukaryotic nuclear and nucleolar membrane compositions, 

they are thought to be similar to the endoplasmic reticulum [37]. The mitochondria are 

unique in having two membranes separating spaces with different pH. Unlike the plasma 

membrane, mitochondrial membranes are composed of about 15% CL and low levels of 

sphingolipids and cholesterol [38]. CL plays an essential role in regulating mitochondrial 

transporter function and mitochondria-organelle interactions [39, 40]. Lysosomal lipid 

membranes are low in cholesterol and high in sphingolipid content [41]. Lysosomes are also 

involved in lipid trafficking, specifically cholesterol and exogenous triacylglycerol (TG), 

sterols, and phospholipids from endosomes [42].

The two other essential lipid functions are providing metabolic fuel and acting as signaling 

molecules. Lipids are stored in droplets in the cytosol, composed mainly of neutral lipid 

species: TG, diacylglycerol (DG), and cholesterol species. Lipid droplets are formed off 

the endoplasmic reticulum where newly synthesized TGs can be readily packaged by the 

perilipin (PLIN) family of 5 proteins [43]. This process is particularly important for alveolar 

cells in the lactating mammary gland where lipids obtained via de novo synthesis and diet 

feed into TG synthesis for milk-fat globule production [44]. In times of nutrient deprivation, 

cells can initiate hydrolysis of TG and DG from lipid droplets, releasing FAs from 

glycerol for degradation by fatty acid oxidation (FAO). Not all lipid droplet components 

are broken down for energy. DG serves as a lipid messenger activating protein kinase C 

(PKC) and intracellular Ca2+ release [45]. DGs also trigger the translocation of protein 

kinase D which catalyzes the formation of secretory vesicles [46, 47]. Phosphorylation of 

DG or hydrolysis of phospholipids results in phosphatidic acid, another multifunctional 

lipid second messenger. Phosphatidic acid has been shown to attenuate hippo pathway 

signaling through lipid-protein interference [48]. Although PI is a membrane component, 

its phosphorylation plays a role in PI3K signaling and AKT activation, the most frequently 

mutated pathway in HR+ breast cancer [49]. Additionally, Cer synthesized at high levels 

triggers a cellular apoptotic program through JNK and p38 signaling [50]. Prostaglandins 

and other eicosanoids are involved in immune cell signaling and inflammation through a 
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variety G-protein coupled receptors. The functions described here give a brief overview of 

the fundamental role lipids play in most cellular processes.

3. Current analytical methods for lipidomics

The collective lipid content in a cell is termed the lipidome. Lipidomics is the study of the 

lipidome through identification and quantification of lipid analytes within a given sample. 

The term "lipidomics" emerged in the early 2000s when mass spectrometry (MS)-based 

methods were optimized for lipid identification studies. In the past decade, lipidomics have 

been conducted for the study of human diseases such as cancer. Technological advancements 

in MS now allow different analytic coverage (global/untargeted or targeted lipidomics) and 

has broadened the scope of lipid research. There are several detailed technical reviews on 

lipidomics [51-53]; here we give a brief overview of current analytical methods and their 

application towards breast cancer research.

The general workflow of lipidomic experiments typically involves sample preparation, MS 

acquisition, and data processing (Fig. 2). Liquid chromatography (LC)-MS is the most 

common technique which utilizes columns for analyte separation before MS detection and 

can be used for targeted or untargeted approaches. Direct-infusion techniques such as shot-

gun lipidomics take advantage of the chemical properties of lipids for lipid identification 

and allow for direct use of samples with minimal preparation. Most lipidomic techniques 

utilize extracts prepared from biological samples (i.e. cell lines, tissues); however, MS 

imaging can analyze whole tissue slices (e.g. MALDI MS-imaging). Sample extraction 

isolates the lipid fraction of a biological sample for MS analysis. A few common extraction 

methods include the Modified Bligh and Dyer, Modified Folch, Methyl tertiary-butyl ether 

(MTBE), and butanol-methanol (BUME) methods, each varying in solvent and solvent 

ratios. Unfortunately, there is not a single extraction method that captures all lipid species 

with high recovery percentage, yet each of the following liquid-liquid extraction methods 

have their advantages and disadvantages. Modified Bligh and Dyer method uses chloroform/

methanol/H2O (1:1:0.9, v/v/v) for extraction of small biological samples (<50mg of tissue) 

and traps lipids in the chloroform phase [54]. The Modified Folch method is similar to 

Bligh and Dyer and uses chloroform/methanol (2:1, v/v) for biological tissue extraction 

(~100mg), then water or 0.9% NaCl (0.2 volume) is added to wash extracts [55]. This 

method was designed to improve capture from lipid-rich samples which may otherwise 

be excluded using the Bligh and Dyer method. The MTBE method uses MTBE/methanol/

water (5:1.5:1.45, v/v/v), trapping total lipids in the top MTBE fraction [56]. The benefit 

of this method is that uses fewer toxic solvents and is more feasible for high throughput 

or automated set ups. The BUME method uses a volume of butanol/methanol (3:1, v/v) 

and a small aqueous phase volume. An equal volume of heptane/ethyl acetate (3:1, v/v) is 

then added followed by an equal volume 1% acetic acid [57]. This method is proposed to 

reduce water-soluble contaminants that may be found in the previously described methods. 

The methods described each use organic systems for "wide net" lipid analyte capture and 

are used for both targeted and untargeted analyses [58]. The choice of extraction method 

for targeted analyses is dependent on the subset of lipids in question. Neutral lipid species 

with higher hydrophobicity are best captured by methods with nonpolar solvents such as 

cyclohexane or toluene. Intermediate polar lipids such as sphingolipids or phospholipids are 
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best extracted with polar solvents like chloroform or MTBE [58]. It is important to note 

that MALDI lipidomics require little to no sample preparation and was recently discussed 

in a detailed technical review [59]. After extraction, additional steps may be necessary 

depending on the type of MS being conducted. For direct-infusion based approaches, it is 

important to simplify sample extracts since no chromatography separation is applied prior 

to MS analysis [52]. This can be achieved through physical (phase separation) or chemical 

approaches (base hydrolysis) to enrich low abundance lipids [60, 61]. Lipid derivation is 

another option that chemically tags specific functional groups on lipids and can aid in 

MS identification [61]. The benefit of these steps is that they increase detection of target 

analytes (i.e. sphingolipids) in low abundance samples without the use of columns for 

analyte separation for direct-infusion approaches such as shot-gun lipidomics.

Ionization is the next step following lipid extract preparation. The type of ionization 

depends on whether direct infusion MS (shotgun lipidomics) or chromatography-based MS 

(LC-based lipidomics) is being performed. It is important to note that MS imaging requires 

ionization as well. The two most popular ionization techniques are ESI and MALDI. ESI 

is a soft ionization technique that uses an electrospray produced from a strong electric 

field applied to a liquid passing through a capillary. This results in a fine aerosol from 

which ions are formed by desolvation [16]. MALDI is also a soft ionization technique 

but allows analysis of larger and labile molecules like peptides, proteins, and lipids. This 

technique is useful for MS imaging of tissue and establishes a matrix for analytes that 

absorbs energy at the wavelength of the laser. As the pulsed laser hits analytes, this triggers 

ablation and desorption from the matrix which facilitates analyte ionization [17]. Other 

popular ionization techniques include Atmospheric Pressure Chemical Ionization (APCI), 

Atmospheric Pressure Polarization (APPI), Secondary Ion Mass Spectrometry (SIMS), and 

Desorption ESI (DESI) which have been reviewed in detail [62]. Ion mobility is an optional 

step that furthers ion separation according to their charge shape and size [63]. Following 

ionization and ion mobility, full MS or tandem mass spectrometry (MS/MS) is performed 

depending on whether global or targeted analysis is desired. After MS analysis, the data is 

represented as MS spectra, MS/MS spectra, ion chromatogram, or images (MS-imaging).

Following data acquisition, spectral MS data undergoes deisotoping to remove spectral 

complications from the presence of isotopic clusters. This allows for easier mass 

identification and analyte annotation by lipidomics software. Lipidomic software match 

molecular masses to lipid identifiers specific to comprehensive databases such as LIPID 

MAPS, SWISS LIPIDS, Chemical Entities of Biological Interest (ChEBI), KEGG 

compound database, or human metabolome database (HMBD) [24, 64, 65]. Once qualitative 

and quantitative data are acquired, the results are further processed for bioinformatic 

analysis. There are many free online analysis tools available to apply statistical calculations 

and most accept raw spectra (mzML, mzXML or mzData) or MS peak intensities (e.g. 

Metaboanalyst) [66]. A key aspect to consider in data analysis is method of normalization. 

Currently, there lacks a "gold standard" method for lipidomic data normalization; 

however, there are several accepted methods in the literature (discussed in [19]). Data 

normalization can include both sample-based (e.g. sample protein,) and data-based (e.g. 

Log transformation) methods. Both are easily applicable to spectral data on the mentioned 

online analysis platforms; however, it is important to clearly document which methods 
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are applied and make raw data publicly available at publication. Down-stream analysis of 

lipidomics data include pathway or enrichment analyses. These analyses are currently better 

suited for genetic data; however, new online tools tailored to lipids, such as Lipid Ontology 

Enrichment Analysis (LION) or Lipid Pathway Enrichment Analysis (LIPEA), have been 

recently developed [67, 68]. With the lipidomic analysis tools available today, we can 

conduct statistical comparisons between samples of normal and diseased states, calculate 

disease specific pathway enrichment, and assess global impacts of lipid metabolic networks 

as a consequence of disease. There is a growing application of lipidomics to biological 

research.

4. Breast cancer lipid signatures in cell lines and tumors

Advances in lipidomics technologies has led to an increase in the number of lipid studies 

focusing on breast cancer within the past 5 years. In 2020, a PubMed search query for 

“lipidomics” returned 1,560 articles, and adding “breast cancer” reduced the list to 28 

publications. Here we will highlight several recent research studies utilizing breast cancer 

research lipidomics (2012-2021) that we found insightful to the scope of this review. These 

fall into two general categories: studies conducted in breast cancer cell lines versus those 

conducted in clinical breast tumor specimens. A summary of results from the studies 

discussed in this section can be found in Table 1.

Established cell lines models provide the most feasible models for querying lipid profiles 

under baseline and manipulated states. Three studies compared lipid profiles of breast cancer 

subtypes. Eiriksson et al. was the first study to conduct untargeted LC-MS lipidomics on 

a panel of seven widely used cell lines: non-tumorigenic MCF10A cells, and ER+ (MCF7, 

T47D, CAMA-1), TNBC (MDA-MB-231, MDA-MB-436), and HER2+ (SK-BR-3) breast 

cancer cells [69]. Based on their analysis, they concluded that breast cancer cells (with 

one exception) have lipid profiles distinct from MCF10A cells, and that each breast cancer 

subtype had a distinct lipidome. SK-BR-3 cells displayed the most distinct lipid profile 

with a relative abundance of TGs (less than C46) versus MCF10A and the other breast 

cancer cell lines. This could potentially be due to the high rate of de novo FA synthesis 

reported in HER2+ breast cancers [70]. ER+ MCF7 and T47D cells contained similar 

lipid signatures with a notable increase of PE(32:2) and PE(36:5) compared to MCF10A 

cells while CAMA-1 cells showed minimal difference. MDA-MB-231 and MDA-MB-436 

TNBC cell lines exhibited an abundance of medium chain PC species (C<40) and saturated 

DG(32:0) and DG(34:0) species versus MCF10A cells. Therefore, TG and PC abundance 

may serve as a key lipid profile indicator of breast cancer subtype based on elevated de 
novo FA and PC synthesis observed in HER2+ and TNBC, respectively. It is important to 

note these studies were conducted in the absence of steroid hormone treatments in ER+ 

breast cancer cell lines. Future studies in the presence of hormones (i.e. estrogen and 

progesterone), and endocrine therapies (i.e. tamoxifen) will be important for deciphering the 

lipidome in ER+ breast cancer cells.

The process of epithelial-mesenchymal transition (EMT) is associated with metabolic 

changes yet studies on lipid metabolism in EMT are lacking. To investigate this, Giudetti 

et al. measured proteomic profiles via LC-MS and lipid profiles using GC/MS and 
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NMR in MCF7 and MDA-MB-231 breast cancer cells as models of epithelial-like and 

mesenchymal-like cells, respectively [71]. By proteomic analysis, MDA-MD-231 cells had 

reduced expression of lipogenic enzymes compared to MFC7 cells (i.e. FASN, ACC, 

ACLY). Lipidomic analysis found that MDA-MB-231 cells exhibited increased levels of 

PUFAs, most notably PI(38:4), and cholesterol compared to MCF7 cells. Conversely, MCF7 

cells displayed a higher percentage of monounsaturated fatty acids (MUFAs) which the 

authors suggested could be due to their observation that stearoyl-CoA desaturase (SCD) 

is overexpressed in MCF7 versus MDA-MB-231 cells. SCD has also been found to be 

elevated in ER+ versus TNBC clinical samples [72]. While this study identified potentially 

interesting changes in lipid use during EMT, a limitation is the inclusion of a single cell 

line of each type. These observations merit extension to additional breast cancer cell lines 

of various subtypes, as well as cells that have been induced to undergo EMT which would 

identify EMT-induced changes in the same genetic background.

One study investigated lipid changes associated with metastatic potential. Nishida-Aoki et 
al. compared lipidomic profiles between parental MDA-MB-231 cells and two syngeneic 

sublines selected for high (D3H2LN) vs low (D3H1) lymph node-metastatic potential 

[73]. Lipidomics were conducted on the three cell lines in addition to their secreted 

extracellular vesicles. D3H2LN vs parental and D3H1 cells had increased abundance of 

LPE, SM, PA, and hexosylceramide (HexCer) in their lipidome, and it was hypothesized 

the relative percent changes in these lipid species may be associated with metastatic 

potential. Both D3H2LN cells and EVs had significantly increased saturated DG(14:0/22:0) 

vs parental and D3H1 derived EVs, which could potentially activate PKD/PKC signaling 

in surrounding endothelial cells to promote angiogenesis. However the authors found no 

significant difference in the ability of EVs from either subline to activate PKC and thus the 

implication of saturated DG(14:0/22:0) is still undetermined [74].

The extracellular microenvironment plays a significant role in influencing tumor cell 

metabolism. Several studies measured the impact of specific environmental stressors on 

the cellular lipid landscape. Enhanced glycolysis is a common feature of cancer cells and 

results in an acidic tumor microenvironment from the production of lactate [75]. Urbanelli 

et al. determined the effect of microenvironment acidification (pH 6.5) on the lipid profiles 

of several cancer cell lines including MCF7 [76]. Under acidic vs baseline pH conditions, 

MCF7 cells decreased PC chain saturation and increased elongase and desaturase enzyme 

expression. These data insinuate a protective effect of longer, unsaturated phospholipid 

remodeling against acid pH that requires further study. Nutrient deprivation can also occur 

in specific tumor microenvironments. For example, methionine (Met) is an essential amino 

acid required for cancer cells to grow under in vitro conditions and is also important in lipid 

biosynthesis due to the requirement for S-adenyl-methionine [77]. Borrego et al. assessed 

the impact of Met stress (deprivation) on the cellular lipid composition of TNBC MDA-

MB-468 cells and a Met stress insensitive derivative, MDA-MB-468res-R8, under control 

and Met-stress conditions [78]. There was a rapid and extensive decrease in lipid abundance, 

except for unsaturated TGs, in Met-dependent MDA-MB-468 cells that was not observed in 

Met-res cells, and there was an associated increase in cytoplasmic lipid droplets reflecting 

an overall increase in neutral storage lipids. Replacement of Met with its metabolic 

precursor, homocysteine, in cell culture media decreased total lipids and increased TGs in 
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MDA-MB-468 sensitive compared to Met-stress resistant cells. The authors attributed these 

changes to stress-induced lipid oxidation and the unfolded protein response. Changes in 

gene expression were also observed, although they were delayed relative to the changed lipid 

profile and were better correlated with the unfolded protein response. Additional studies will 

need to determine the mechanisms by which cancer cells overcome Met dependence and 

its role in lipid metabolism. Numerous other microenvironmental stressors likely impact the 

breast cancer cell lipidome including both glucose and L-glutamine which serve as critical 

carbon sources in many tumor cells. The stress impacted lipidome could be a potential tumor 

cell vulnerability.

It is well-established that cell culture dimensionality affects cell phenotype [79, 80]. To 

address this issue, Vidavsky et al. compared the lipid profiles of 2D versus 3D spheroid 

cultures of a series of MCF10A cells. These included parental MCF10A to mimic 

“nonmalignant” cells, MCF10DCIS.com to mimic “pre-malignant” cells and MCF10CA1 

(HRAS transformed, invasive in vivo) to mimic malignant or “invasive” cells [81]. 

Storage of lipids upon both conditions was examined using Oil Red O staining. In 2D 

culture, parental MCF10A cells were void of lipid droplets while MCF10DCIS.com and 

MCF10CA1 had abundant lipid storage. In 3D culture, parental MCF10A cells showed 

occasional lipid droplets. Interestingly, the 3D pre-malignant and invasive spheroids 

exhibited larger lipid droplets (vs 2D) that were concentrated near the spheroid center. 

To assess global lipid profiles, LC-MS was run on each of the three cell lines in 2D 

vs 3D cultures. Total phospholipid content differed between 2D vs 3D cells, where 2D 

cells displayed a higher percentage of PC and PE lipid species. Invasive 3D spheroids 

also showed increased SM, DG, and acylglycerols compared to pre-cancerous spheroids. 

Notably, the lysophosphatidylcholines (LPC) pool in MCF10CA1a (invasive cancer) 

spheroids had shorter chain lengths compared to MCF10DCIS (pre-cancerous) spheroids. 

These data suggest that growth in 3D profoundly affects lipid production and distribution. 

We speculate the reduction in total lipid content in 3D spheroids could be indicative of 

reduced lipid synthesis in a 3D state. Furthermore, the distribution of lipid droplets near the 

spheroid center could reflect an adaption to meet the energy demands of the surrounding 

cells through lipid transfer. Tumor centers are typically hypoxic and necrotic. Lipid droplets 

may serve as a central energy storage since access to nutrients is not evenly distributed in 

3D as it is in 2D cell culture. Increased SM levels in invasive 3D spheroids could result 

from upregulated de novo sphingolipid synthesis. While this has been reported in multiple 

cancers, it remains unclear whether upregulated sphingolipid biosynthesis is connected to 

invasiveness or cell survival pathways and requires more study [82]. This study clearly 

indicates the importance of including 3D culture conditions in the experimental design for 

future lipid studies in breast cancer. It would also be interesting to determine the effect on 

including adipocytes in 3D cultures to determine whether the observed changes are intrinsic 

to the tumor cells, or reflect their growth in 3D in the absence of adipocytes that could serve 

as a source of lipids for tumor cells.

Breast cancer cell line models that allow for comparison of factors in tightly controlled 

systems have given a solid indication of how important lipid metabolism is to the disease. 

However, they must be ultimately confirmed in patient samples. To conduct lipidomics 

on human tissues, samples are typically flash-frozen at time of tumor-resection or biopsy 
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before sample preparation. Two studies focused specifically on TNBC tumors. Purwaha et 
al. conducted LC-MS on 70 TNBC tumors looking to identify biomarkers associated with 

clinical outcome and identify potential therapeutic targets [83]. They found elevated SM and 

sphingoid bases were correlated with better patient disease-free survival. This is in contrast 

to the studies in TNBC and MCF10A cells that associated elevated SM with more invasive 

and metastatic properties and highlights the need for additional in vivo and patient studies 

to resolve the different observations. above. Notably, Cer levels had no correlation with 

disease free survival in this study. Hosokawa et al. investigated TNBC patient tumors to 

define lipid markers correlated with tumor recurrence [84]. Using MALDI-MS on a small 

set of recurrent (n=3) and non-recurrent (n=6) TNBC tumors, PC(32:1) and PC(30:0) were 

identified as significantly increased in the recurrent tumors. PC(30:0) was identified by two 

additional studies as associated with TNBC or Grade 3/ER− tumors [85, 86]. Thus, there is 

some potential for specific lipid species to serve as predictive markers.

Lipid signatures of clinical breast cancer specimens has also established potential subtype 

differences. Hilvo et al. conducted lipidomics on 267 patient tumors, the largest study 

of this kind thus far [86]. They found PC(14:0/16:0) and PE (18:0/18:1) lipid species 

were correlated with ER− tumors and PC(16:0/16:0) was associated with decreased patient 

survival in confirmation of the observations from Hosowaka et al. [84]. A smaller study 

of 34 tumors reported PC(32:1) and PC(30:0) were increased in TNBC tumors compared 

to normal adjacent tissue [85]. PC(18:1/16:0) was also consistently present in all breast 

tumors compared to normal adjacent tissue suggesting PC(34:1) may serve as a general 

breast cancer biomarker [85]. Notably, HER2+ tumors exhibited elevated levels of short 

chain PC(16:1) lipids. Collectively, lipidomic analysis on breast cancer cell lines and 

patient tumors has identified a subset of potential prognostic or predictive lipid markers 

(Table 1). However, the biological significance of these lipid species and their validation as 

reliable prognostic markers will require extensive additional study. Additionally, the lipid 

contribution of stromal or adipose cells were not discussed in many of these publications. 

This warrants discussion as these cells could play potential roles in lipid trafficking or 

signaling crosstalk with tumor cells.

5. Major players of lipid metabolism and their regulation in breast cancer

Deregulated energy metabolism is a hallmark of cancer and is often associated with 

aberrant glucose metabolism, or the Warburg effect, and glutamine metabolism [13, 87]. 

An emerging hallmark of cancer metabolism as described by Pavlova et al. is “the 

use of glycolysis and tricarboxylic acid (TCA) cycle intermediates for biosynthesis”, a 

major component of which is lipid metabolism [87]. FAs are critical components of cell 

membranes, energy homeostasis, and signaling. The regulation of these processes is only 

partially understood in breast cancer. Normal breast tissue undergoes extensive metabolic 

rewiring, largely resulting from transcriptional changes, to prepare for milk production 

during lactation [reviewed in [44, 88]]. Therefore, breast cancers originate from cells that 

have the machinery to undergo dynamic lipid remodeling. Whether these processes are 

retained during tumorigenesis is unclear. However, breast cancer cells show an exceptional 

ability to utilize anabolic and catabolic lipid metabolism to fulfill survival and proliferative 
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needs. Here we discuss current knowledge on how lipid metabolism is regulated in breast 

cancer.

Breast cancer cells can obtain lipids through uptake from their microenvironment or through 

de novo synthesis, therefore the expression of genes involved in lipid transport or fatty acid 

biosynthesis repress two extreme phenotypes for tumor cells that require lipids, and the 

ability to toggle between these two states may be critical for metabolic flexibility and tumor 

survival. Exogenous FA uptake is mediated through specialized transporters that facilitate 

FA movement across the plasma membrane. FA translocase (FAT/CD36) and six FA 

transport proteins (FATP1-6/SLC271-6) are the best characterized molecules that mediate 

uptake and are over expressed in many cancers [89]. High CD36 expression is associated 

with poor prognosis in breast cancer and reported to enhance therapy resistance in each of 

the three main breast cancer subtypes [90-92]. Additionally, breast cancer cells can uptake 

FAs through secondary mechanisms such as endocytosis [93]. Cancer associated fibroblasts 

are the most abundant cell type in the tumor stroma and have been shown to transfer FAs 

to breast cancer cells through the extracellular matrix, lipid droplets, and microvessicles [94, 

95]. Adipocytes, especially abundant in the breast stroma, can also supply FAs to breast 

cancer cells [96].

FA de novo synthesis is the anabolic process of building intracellular FAs. Most metabolic 

processes depend on central pools of acetyl-CoA, a fundamental metabolite building block 

(Fig. 3). Acetyl-CoA is derived from citrate or acetate – which are either imported or broken 

down from larger carbohydrates. Acetyl-CoA and malonyl-CoA are the necessary substrates 

for de novo FA synthesis. Acetyl-CoA is converted to Malonyl-CoA by acetyl-CoA 

carboxylase (ACC), a rate limiting enzyme in de novo FA synthesis. FA synthase (FASN) 

is the master enzyme that assembles acetyl-CoA and malonyl-CoA into palmitate (C16), 

or other FAs. FASN is overexpressed in breast cancer compared to normal, nonlactating 

tissue, with the highest expression in HER2+ followed by HR+ and TNBC [97]. Increased 

FASN activity has been linked with increased Pentose Phosphate Pathway (PPP) activity 

in non-Hodgkin lymphoma [98]. The PPP generates NADPH and 5-carbon sugars needed 

for nucleotide synthesis. FASN consumption of NADPH relieves feedback inhibition of 

Phosphogluconate Dehydrogenase (PGDH) and resupplies NADP+ for PDGH to synthesis 

ribulose-5-phosphate. These two interdependent biosynthetic pathways are likely essential 

for lipogenic breast cancer growth and their cooperation warrants further research. In 

addition, upregulated de novo synthesis may be a metabolic adaptation to breast cancer 

tumor microenvironment or specific metastatic sites. Ferraro et al. recently showed that 

FASN activity was required for growth of tumor cells in the brain but not in the mammary 

gland using their HER2-enriched breast cancer models [99]. This represents the first 

example of a tissue-specific requirement for FASN and fatty acid biosynthesis and suggests 

this metabolic change could be required for brain metastasis in this model.

Upstream regulation of de novo synthesis occurs largely through sterol regulatory element-

binding proteins (SREBPs). There are two SREBP genes in mammals that encode three 

isoforms (SREBP1a, SREBP1c, and SREBP2) [100]. SREBPs reside in the endoplasmic 

reticulum or golgi depending on high or low cholesterol levels, respectively [101, 102], 

and must be cleaved in order to translocate the nucleus where they activate transcription 
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of lipogenic genes including FASN, ACC, and ATP citrate lyase (ACLY) [103, 104]. 

PPARγ, NR1H2/3, and CEBPs are additional transcription factors that regulate lipid enzyme 

transcription. SREBP regulation of lipid biosynthetic pathways was largely defined in the 

lactating mammary gland where SREBP1c plays a critical role in initiating milk-globule 

production [105]. HER2 is also reported to induce FASN expression, however it is unclear 

if this is in an SREBP-dependent manner [70]. In HR+ breast cancers, both estrogen and 

progesterone are reported to increase lipogenic gene expression [106]. Thus, HR+ and 

HER2+ breast cancers have highly activated lipid biosynthetic pathways, and we speculate 

that this may be retained from cells that originally required these processes for lactation, that 

will require further study.

Palmitate, the most abundant and fundamental saturated FA, can be further processed 

into glycerolipids by enzymes in the golgi (GPAT, LPAT, PAP) and shuttled into lipid 

storage, membrane synthesis, or signaling lipids. Palmitate itself serves as important protein 

lipid modification in cancer cells. The Wnt signaling pathway is an important driver of 

several cancers and is frequently activated in breast cancer cells. Wnt ligands undergo 

palmitoylation and depalmitoylation for trafficking between the plasma membrane and 

cytosol. Palmitoylation occurs when a protein forms an enzyme-mediated thioester bond 

with a palmitoyl group and this process is responsible for tethering a number of proteins to 

the plasma membrane such as Ras, and CD36. Palmitoylation and myristoylation are just a 

few of the key protein lipid modifications prevalent in cancer which are being explored as 

therapeutic targets [107]. Glycerolipids destined for storage are processed into MG, DG, and 

TGs. The PLIN family of proteins package these species into lipid droplets with cholesterol. 

Lipid droplets visible by microscope are associated with a lipogenic cellular phenotype and 

commonly reported in HR+ and HER2+ breast cancer [108]. Lipid droplets mainly serve 

as energy storage but may have other consequential effects. For example, lipid droplets 

in breast cancer cells have been shown to provide cytotoxic protection by sequestering 

chemotherapeutic agents [109]. Under times of nutrient deficiency, lipases associated with 

lipid droplets (ATGL, HSL, MGL) can release FAs from their glycerol backbone through 

hydrolysis reactions. Intracellular FAs can recycle to other anabolic synthetic pathways or be 

shuttled for oxidation.

FAO is a catabolic process that breaks down FAs into acetyl-CoA. This process begins 

in the mitochondria with transport proteins bound to the mitochondrial membrane that 

participate in the carnitine shuttle. Mitochondria consist of two membranes, the inner 

and outer membranes. Carnitine palmitoyltransferase I (CPT1) is incorporated in the outer 

mitochondrial membrane and facilitates transfer of FAs across this membrane, while CPT2 

coordinates FA transport across the inner membrane. Through a series of reactions, FAs 

are broken down to yield acetyl-CoA, NADH, and FADH2. This mechanism serves as 

an alternative to drive TCA cycle movement during insufficient glucose or glutamine 

availability. Breakdown of branched and very long chain FAs require α- and β-oxidation by 

peroxisomes [110]. Once these FAs are converted to shorter chain FAs, they can be imported 

into the mitochondria via the CPT-mediated carnitine shuttle to complete further oxidation 

steps. FAO is emerging as an important metabolic process that contributes to deregulated 

breast cancer metabolism, especially in TNBC [111]. The MYC oncogene is frequently 

amplified in TNBC and has been shown to drive FAO in addition to glycolysis [112, 113]. 
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TNBCs with MYC overexpression have been shown to upregulate PGC1α, CPT1B, and 

CDCP1 while downregulating FASN and ACC [113]. In addition, FAO gene signatures have 

been associated with poor clinical outcome in MYC-expressing TNBCs, suggesting that this 

process is a contributing factor to TNBC pathogenesis [113].

Oncogenes play a critical role in regulating lipid metabolism. PIK3CA is one of the most 

commonly mutated genes in carcinomas with up to 40% of breast cancers exhibiting 

gain-of-function mutations [114, 115]. The protein generated by PIK3CA, phosphoinositide 

3-kinase (PI3K), participates in the PI3K/AKT/mTOR signaling axis which regulates cell 

growth and proliferation as well as sensing availability of nutrients, hormones, and growth 

factor stimulation [116]. Loss of the tumor suppressor PTEN also occurs frequently in 

breast cancer; PTEN acts as a lipid phosphatase, converting phosphatidylinositol (3,4,5)-

trisphosphate (PIP3), to phosphatidylinositol (4,5)-bisphosphate (PIP2), thereby depressing 

PI3K and AKT activation. 80% of HER2+ breast cancer tumors display increased 

phosphorylation AKT, an indicator of active PI3K signaling [117]. The connection between 

active PI3K signaling and a lipogenic phenotype in HER2+ breast cancer is not fully 

understood but is suggested to be a consequence of AKT downstream targets [118, 119]. 

As discussed, MYC is associated with activating glycolysis and lipogenesis/FAO in TNBC 

[113, 120]. MYC is also frequently mutated or amplified in breast cancer and likely 

contributes to breast cancer aggressiveness through its regulation of multiple branches of 

metabolism [115]. Thus, the various genetic changes present in the different breast cancer 

subtypes can drive changes in lipid metabolism. There are two excellent recent revies on 

breast cancer oncogenes and metabolism [121, 122].

6. Serum lipidomics: clinical diagnostic potential?

Preclinical and clinical studies to date support that lipid metabolism is aberrantly altered 

in breast cancer compared to benign breast tissue. A key question is whether breast 

tumor lipid metabolites in patient serum have diagnostic potential. Mammograms and 

magnetic resonance imaging (MRI) are the current standard for breast cancer screening, 

yet mammograms alone display a rate of over-diagnosis between 0-30% [123]. Follow up 

MRIs and tissue sampling can be costly and inconclusive. In addition, some subtypes such 

as TNBC can be difficult to detect by mammogram until tumors are of a size that negatively 

impacts treatment and outcome [124]. Thus, there remains a need for cost-effective breast 

cancer screening alternatives. Serum tumor markers provide an alternative, noninvasive 

and less costly methods for breast cancer diagnostic screening. For example, advances 

in capturing circulating tumor cells and circulating tumor DNA provides prognostic and 

disease-state information [125]. Current advancements in mass spectrometry detection of 

lipids may offer an additional serum screening option.

Several recent studies conducted lipidomic analysis of serum from breast cancer patients 

and non-cancer controls to determine if tumor-associated lipids could be detected. Three 

independent studies identified increased levels of PC(32:1) in serum from women with 

breast cancer compared to non-affected women [126-128]. PC(32:1) was also an increased 

lipid analyte detected in studies of TNBC tumors described previously [84, 85]. In addition, 

total TGs were increased in breast cancer patient serum compared to control [129]. Total 
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serum TGs also distinguished menopausal and HR status in breast cancer patients as well as 

pathological complete response rate to neoadjuvant chemotherapy [126, 127]. Notably, TGs 

containing mainly oleic acid (C18:1) were associated with decreased disease-free survival in 

breast cancer patients [129]. Additionally, serum LPC and cholesterol esters were elevated in 

breast cancer patients compared to healthy control [129].

One study investigated specific lipid signatures as a diagnostic test. Using 166 plasma 

samples, Eghlimi et al. established a 19-lipid biomarker panel capable of distinguishing 

early stage TNBC from controls (AUROC=0.93, sensitivity = 0.89, specificity = 0.76), 

as well as a 5-lipid biomarker panel differentiating ES-TNBC from non-ES-TNBC serum 

samples (AUROC=0.95, sensitivity = 0.95, specificity = 0.87) [128]. Of the 19-lipid panel, 

stearic acid and Cer(43:1) are elevated (fold change (FC) >1.3) in TNBC while DGs and 

LPCs were generally decreased compared to serum from non-affected women (FC<0.7). The 

smaller 5-lipid panel was sufficient to detect DG(34:2) as significantly decreased (FC>0.2) 

in TNBC. In this study, a statically tested lipid biomarker panel was established, however, 

clinical use of this panel still requires further validation with larger patient serum cohorts. 

Despite these challenges there is sufficient promise in the utility of serum-based biomarkers 

for breast cancer detection that merit further study.

7. Therapeutic targets in tumor lipid biology and metabolism

As discussed in this review, potential lipid metabolism targets have been identified in 

each breast cancer subtype. Cancer metabolism therapies have largely been unsuccessful 

in clinical trials, with the exception of isocitrate dehydrogenase 1 inhibitors. However, our 

understanding of cancer metabolism continues to improve. Here, we give a brief overview of 

several lipid metabolic and transport inhibitors at preclinical or clinical trial stages for breast 

cancer.

FASN is perhaps the most widely targeted lipogenic enzyme in breast cancer due to its 

consistent overexpression. Genetic or pharmacological inhibition of FASN in preclinical 

studies has shown efficacy in decreasing cell proliferation in vitro and tumor growth in 
vivo in all subtypes of breast cancer, and there are excellent reviews on the topic [130]. 

Unfortunately, clinical translation has not been successful. Existing selective inhibitors of 

FASN have limited solubility and adverse side effects that have prohibited their clinical 

use. Cerulenin, C75, and C93 are inhibitors that target the β-ketoacyl synthase domain of 

FASN induce anorexia and weight loss in murine models [131, 132]. EGCG, G28UCM, 

GSK2194069, and GSK837149A also target the β-ketoacyl synthase domain but are 

ineffective in vivo due to low solubility [133-135]. To date, TVB-2640 is the only FASN 

inhibitor that is has reached a phase II clinical trial for breast cancer. Trial NCT03179904 is 

testing the efficacy of TVB-2640 in combination with paclitaxel and Trastuzumab in breast 

cancer patients with metastatic HER2+ disease. While the trial is still ongoing, additional 

inhibitors, such as Fasnall, that block FASN co-factor binding, are under preclinical study 

[136]. Furthermore, FASN inhibitors have shown promise against some forms of endocrine 

resistant HR+ breast cancers in vivo [137]. Some preclinical studies have also tested 

inhibiting alternative de novo synthesis targets such as ACC [138].
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Elevated cholesterol has long been associated with increased risk of breast cancer 

and specific metabolites, such as 27-hydroxychoelesterol, have been shown to facilitate 

metastasis and evasion of immune cells in breast cancer [139]. Farnesyltransferase or HMG-

CoA reductase inhibitors (statins) that target the mevalonate pathway and are commonly 

used to treat hypercholesterolemia and meta-analyses have shown statin users have reduced 

in breast cancer specific mortality [140]. Statin drugs are an appealing therapeutic target 

especially in advanced HER2+ and TNBC that exhibit enhanced cholesterol dependency. 

Preclinical studies have shown efficacy of statins in therapy-resistant HER2+ breast 

cancer models [141]. Simvastatin has reached phase II clinical trial (NCT03324425) 

in combination with targeted HER2 therapies for advanced HER2+ breast cancer. For 

TNBC, Atorvastatin is being evaluated in conjunction with the bisphosphonate zoledronate 

and adjuvant chemotherapy in phase II clinical trial NCT03358017. Some studies show 

adverse effects of statins such as increased expression of cholesterol synthesis enzymes 

through heightened feedback regulation from SREBP2 [142]. To circumvent this resistance 

mechanism, alternative targets of cholesterol synthesis are being investigated. For example, 

RORγ was recently identified as new upstream target for mevalonate pathway inhibition in 

TNBC [143, 144].

There is also interest in targeting lipid transporters, which has mostly centered on the 

best described FA transporters CD36 and FATP. However, there are likely many other 

promiscuous FA transporters of the SLC family. In low nutrient conditions, breast cancer 

cells can bypass dependency on de novo synthesis by increasing FA uptake. For example, 

studies show that drug resistant HER2+ breast cancer cells compensate for FASN inhibition 

by increasing extracellular FA uptake [91, 145]. Feng et al. showed that lapatinib-resistant 

breast cancer cells upregulate CD36 and regain drug sensitivity under CD36 inhibition [91]. 

Unfortunately, there are few available CD36 inhibitors, likely due in part to incomplete 

understanding of CD36 mechanisms and functions. Sulfo-N-succinimidyl esters of long-

chain FAs, such as Sulfosuccinimidyl Oleate (SSO), efficiently inhibit CD36 and have been 

used in multiple in vitro studies. Large chemical screens have identified additional potential 

inhibitors; however, further development is needed for these compounds to advance into 

preclinical studies [146]. It may be important to use lipid transport inhibitors in conjunction 

with inhibitors of fatty acid synthesis to prevent resistance to the latter by increased lipid 

transport.

FAO or beta-oxidation is the mitochondrial break down of FAs to provide metabolic fuel. 

FAO has emerged as an attractive target in breast cancer. TNBC cells in particular have 

been reported to utilize FAO [92]. Since FAO occurs within the mitochondria, the primary 

target for this pathway is the outer mitochondrial membrane transporter and rate-limiting 

enzyme CPT1. The best known CPT1 inhibitor is Etomoxir which continues to be widely 

used in preclinical studies. Etomoxir failed in clinical trials due to cardiotoxicity. There is 

a continued effort to develop tolerable anti-CPT1 analogs to target FAO-dependent breast 

cancers.

Diabetic drugs may have efficacy in breast cancer treatment. Metformin, the most common 

drug taken for diabetes, mediates hepatic glucose production and insulin sensitivity through 

inhibition of mitochondrial complex 1 and AMPK pathway activation [147]. Women with 

Ward et al. Page 15

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2022 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03324425
https://clinicaltrials.gov/ct2/show/NCT03358017


Type 2 diabetes taking Metformin have decreased risk of post-menopausal breast cancer 

[148]. Metformin is currently involved in 18 clinical trials for breast cancer, several of which 

are investigating its efficacy as a neoadjuvant treatment (NCT04387630, NCT04170465, 

NCT03238495). While the effects of Metformin on breast cancer lipid metabolism remain 

unclear, current studies suggest Metformin may be a promising therapeutic for FAO-

dependent breast cancers [149].

In addition to enzymes and transporters, lipids themselves are believed to hold therapeutic 

potential. Omega3 or PUFA supplementation is currently under investigation for use in 

neoadjuvant breast cancer therapy (NCT02831582). Joint pain or discomfort is a common 

side effect of endocrine therapies and PUFAs have been shown to reduce joint inflammation 

by competing with pro-inflammatory prostaglandin signals [150]. Three clinical trials 

are investigating the benefits of PUFA supplementation with standard endocrine and 

chemotherapies. PUFAs could potentially be advantageous for breast cancers exhibiting 

enhanced lipid uptake and warrants further study.

Another novel therapeutic approach is to target tumor cell lipidomes. There is increased 

interest in lipidome-based therapies as we learn more about tumor specific lipid 

dependencies [reviewed in [151]]. For example, Toric et al. successfully screened a library 

of layer-by-layer nanoparticles to determine the surface layer that best interacts with STAT3 

expressing TNBC cell membranes [152]. The NP coating identified from the screen allowed 

selective cisplatin NP delivery to STAT3-active TNBC cells, avoiding non-STAT3 activated 

cells. This study demonstrates the potential of exploiting distinct lipidomes for targeted drug 

delivery. Other novel methods of lipidome targeting are certain to emerge.

8. Summary and future perspectives

Advancements in mass spectrometry-based lipidomics have increased our understanding of 

breast cancer lipidomes, yet there remain several obstacles to accelerating the field. The 

first obstacle resides within the technique itself (see Fig. 2). Numerous forms of mass 

spectrometry have been utilized (i.e., shotgun MS, LC-MS, LC-MS/MS, GC-MS), each 

using various methods of sample separation, detection, and identification, which is also 

dependent on whether the desired approach is global or targeted. The lack of a technical 

"gold standard" makes data sharing and comparison difficult. However, the two main 

data repositories, Metabolomics Workbench (https://www.metabolomicsworkbench.org/) 

and Metabolites (https://www.ebi.ac.uk/metabolights/), accept lipidomics data in different 

formats but require thorough methodological detail to aid in interpretation of shared 

data. In addition to methodological discrepancies, global lipidomics conducted on any 

biological sample can detect over 1800 validated lipid species which adds to the difficulty of 

connecting lipidome alterations to biological consequence or changes in cellular phenotype 

[153, 154]. Despite these attempts to achieve methodological transparency, it remains 

difficult to compare different datasets unless similar MS methods and data handling were 

used.

The second obstacle is the types of breast cancer models used in previous published work. 

The majority of lipidomic studies discussed in this review used either breast cancer cell 
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lines [69, 71, 73, 76, 78, 81] or primary tumor samples [83-86]. As highlighted in Table 1, 

there is a clear disparity between lipid analytes detected in 2D cell line monoculture versus 

patient tumor samples, with only several key overlapping lipid species. While primary tumor 

samples may be the most directly relevant, they have several variables that can complicate 

interpretations including tumor heterogeneity and inclusion of multiple cell types in the 

microenvironment. In addition, factors such as diet, body mass index, and tumor stage/

burden may impact results. While breast cancer cell lines eliminate many of these variables, 

whether they reflect the more complex in vivo situation is uncertain. As discovered by 

Vidavsky et al. in comparing lipidomics in MCF10A 2D monoculture vs 3D spheroids, 

spatial orientation within a 3D cell structure significantly impacts lipid content [81]. In 

addition, the lipid content of cell culture medium directly impacts cellular morphology and 

behavior [155]. The FA content of fetal bovine serum can vary between commercial source 

and lot number. Many companies do not provide detailed FA information since it is difficult 

to measure and not a concern for all consumers. Charcoal stripped serum is frequently used 

to remove hormones, particularly estrogens, and likely also removes a subset of lipids. To 

our knowledge, additional lipidome studies on breast cancer 3D cultures, tumor xenografts, 

or syngeneic mammary tumor models have not been reported. There is therefore a need 

for future pre-clinical lipidomic studies to utilize 3D cultures, organoids or cell line or 

patient-derived xenograft models to better incorporate spatial influences.

A third variable lies in technological limitations in studying specific lipid analytes. Unlike 

genetic or pharmacological manipulation of an individual gene product, lipid metabolites 

are not as easily modified. Studying the relevance of individual lipid species or classes 

requires an understanding of the proteins that regulate their synthesis, uptake, degradation, 

an intracellular location. However, there are tools that are routinely used. These include 

fluorescent tagged lipid species (i.e. BODIPY) for tracking cell uptake and location and the 

long standing method of stable isotope tracing which allows us to depict FA usage in cells 

over time [156]. Stable isotope lipids containing C14 within its structure are routinely used 

in lipidomics and aid in absolute quantification of analytes in interest [157].

Analyzing lipids in patient serum samples has diagnostic potential. The studies discussed 

herein defined preliminary panels of tumor-associated lipids in patient serum that could 

aid in breast cancer diagnoses [126-129]. This method could be particularly useful for 

early detection of breast cancer subtypes that are difficult to detect in mammograms 

[158]. Patient-specific factors such a dietary lipids, lifestyle, and menopausal status may 

complicate the efficacy of these panels. For example, overweight or individuals with 

obesity have increased levels of total serum lipids and lipoproteins compared to normal 

individuals [159]. Diets high in palmitic acid (palmitate) have also been shown to increase 

an individual’s serum cholesterols levels [160]. Once protocols are established to account for 

these factors, serum lipid panels may serve as an alternative or complementary diagnostic 

test to the mammogram. Serum lipidomics could also be used to predict patient response 

to specific therapies. For example, Hilvo et al. identified lipid analytes associated with 

positive response to chemotherapy [129]. A lipid panel could prospectively be developed 

for endocrine therapies. In time, we predict serum lipidomics will indicate useful clinical 

information such as tumor burden, therapeutic response, and development of metastases.
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In summary, the breast is a dynamic organ which responds to hormonal and environmental 

cues to undergo drastic remodeling and lipid production. Breast cancer has well documented 

reliance on lipid metabolism – however a link between processes in normal and malignant 

breast tissues has been difficult to define – as have consistent targetable lipid dependencies. 

This is underscored by a general paucity of understanding of the lipidome in breast cancer 

cells and the complication of different breast cancer subtypes and significant intra- and 

inter- tumoral heterogeneity. The studies highlighted have made significant progress in 

understanding the global lipidome and its impact on breast cancer cell phenotype. However, 

there remain multiple gaps in our knowledge, including how lipids are impacted by spatial 

location of the cell withing the tumor, tumor microenvironment, metastasis, and resistance 

to drug treatment etc. With emerging models such as tumor-derived organoids and patient-

derived xenografts, coupled with continuous improvements to lipidomics and analysis tools, 

these gaps will be hopefully become filled and lipids a regular measurement of breast cancer 

cell state and therapeutic vulnerability.
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Abbreviations

ACC Acetyl-CoA carboxylase

APCI Atmospheric pressure chemical ionization

APPI Atmospheric pressure polarization ionization

BmP Bis(monoacylglycero)phosphate

BUME Butanol/methanol

Cer Ceramide

ChEBI Chemical entities of biological interest

CL Cardiolipin

CPT1 Carnitine palmitoyltransferase I

DESI Desorption electrospray ionization

DG Diacylglycerol

ER Estrogen receptor

ESI Electron spray ionization

FA Fatty acid

FAO Fatty acid oxidation
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FASN Fatty acid synthase

GC-MS Gas chromatography mass spectrometry

GlcCer glucosylceramide

HER2+ Human epidermal growth factor receptor 2-positive

HexCer Hexosylceramide

HMBD Human metabolome data base

HR Hormone receptor

LacCer lactosylceramide

LION Lipid Ontology Enrichment Analysis

LIPEA Lipid Pathway Enrichment Analysis

LPC Lysophosphatidylcholine

MALDI Matrix assisted laser desorption/ionization

Met Methionine

MRI Magnetic resonance imaging

MS Mass spectrometry

MS/MS Tandem mass spectrometry

MTBE Methyl tert-butyl ether

MUFA Monounsaturated fatty acid

NMR Nuclear magnetic resonance

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PI Phosphatidylinositol

PI3K Phosphoinositide 3-kinase

PIP2 Phosphatidylinositol (4,5)-trisphosphate

PIP3 Phosphatidylinositol (3,4,5)-trisphosphate

PKC Protein kinase C

PLIN Perilipin

PR Progesterone receptor

PS Phosphatidylserine
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PUFA Poly unsaturated fatty acid

SCD Stearoyl-CoA desaturase

SIMS Secondary ion mass spectrometry

SM Sphingomyelin

SREBP Sterol regulatory element-binding protein

SSO Sulfosuccinimidyl oleate

TCA Tricarboxylic acid

TG Triacylglycerol

TNBC Triple negative breast cancer
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Fig. 1. 
Lipid Classes. The eight lipid classes: fatty acids, glycerolipids, glycerophospholipids, 

sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides. Fatty acids and 

fatty acyls (activated fatty acids) are the simplest lipid category that serves as building 

blocks for complex lipids; includes eicosanoids, docosanoids, fatty alcohols, fatty aldehydes, 

fatty esters, fatty amides, fatty nitriles, fatty ethers, and hydrocarbons. Glycerolipids 

are neutral lipids containing a glycerol backbone; includes monoacylglycerol (MG), 

diacylglycerol (DG), and triacylglycerol (TG) species. Glycerophospholipids are membrane 

lipids that contain a phosphodiester linked to a hydroxyl group of glycerol and are 

differentiated by the type of moieties (X) esterified to the phosphate. Sphingolipids contain a 

sphingoid base backbone and vary by polar moieties (X) esterified to the backbone. Sterols 

contain a common steroid core of a fused four-ring structure with a hydrocarbon side chain 

and an alcohol group, cholesterol being the most common and functionally important for 

membrane integrity. Prenol lipids consist of one or more 5 carbon prenol derivatives that can 

link in chain or ring-like structures. Saccharolipids generally consist of fatty acids directly 

esterified to a sugar. (R) represents hydrocarbon chain at an arbitrary length. (n) represents 

repeating carbonyl components
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Fig. 2. 
General Workflow of Lipidomics for Breast Cancer Research. Three main steps to lipidomic 

analysis include sample preparation, MS-Detection, and Data Analysis. MTBE = methyl 

tert-butyl ether, BUME = butanol/methanol, ESI = Electrospray ionization, MALDI = 

Matrix assisted laser desorption ionization, SIMS = Secondary ion mass spectrometry, APCI 

= Atmospheric Pressure Chemical Ionization, APPI = atmospheric pressure polarization 

ionization, DESI = Desorption electrospray ionization, MS = Mass spectrometry, ANOVA 

= Analysis of variance, SAM = Significance Analysis of Microarrays, EBAM = Empirical 

Bayes Analysis of Microarrays.
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Fig. 3. 
Overview of Lipid Metabolism. General anabolic and catabolic pathways for intracellular 

fatty acids. Acetyl-CoA carboxylase (ACC), acetyl-CoA synthase (ACS), 1-acyl glycerol-3-

phosphate acyltransferase (AGPAT), adipose triglyceride ligase (ATGL), cluster of 

differentiation 36 (CD36), carnitine palmitoyl transferase 1/2 (CPT1/2), diacylglycerol 

(DA), diacylglycerol acyltransferase (DGAT), fatty acids (FA), fatty acid binding protein 

(FABP), fatty acid oxidation (FAO), fatty acid synthase (FASN), fatty acid transport 

protein (FATP), glycerol-3-phosphate acyltransferase (GPAT), hormone sensitive lipase 

(HSL), lysophosphatidic acid (LPA), monoacylglycerol (MG), monoacylglycerol lipase 

(MGL), phosphatidic acid (PA), phosphatidic acid phosphatase (PAP), perilipin (PLIN), 

triacylglycerol (TG), tricarboxylic acid cycle (TCA)
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Table 1

Significant Identified Lipids in Breast Cancer. Increased and decreased lipid species compared to MCF10A 

cells, normal adjacent tissue, or healthy patient serum for breast cancer cell lines, tumor tissue, breast cancer 

patient serum, respectively. NR = None reported

HR+ Breast Cancer

T47D Cell Line
Up PE(32:2), PE(36:5), PE(38:0), DG(32:0), DG(34:0), LPC(16:0), LPC(18:0)

Down NR

MCF7 Cell Line
Up TG(46:1), TG(46:2), TG(48:2), TG(50:2), TG(50:3), TG(52:2), TG(52.3), TG(54:3), PC(28:0), PC(28:1), 

PC(30:1), PC(40:2),PE(32:2), PE(36:5), SM(44:1), MUFAs

Down NR

CAMA-1 Cell Line
Up PC(28:0), PC(28:1), PC(30:1), PE(P34:1/O-34:2), PE(P34:1/O-34:3), PE(P32:1), PE(36:3), PE(38:0), 

SM(44:1), SM(44:2), DG(32:0), DG(34:0)

Down SM(32:1)

Tumors NR

Serum NR

HER2+ Breast Cancer

SK-BR-3 Cell Line
Up TG(40:0), TG(40:1), TG(42:0), TG(42:1), TG(44:0), TG(46:1), TG(46:2), PC(28:0), PC(28:1), PC(30:1), 

PE(P-32:1), PE(32:2), PE(36:5)

Down PE(P-36:4), PE(O-34:2), PE(P-38:4), PE(O-38:5)

Tumors
Up PC(16:1), PC( 32:2)

Down NR

Serum NR

Triple Negative Breast Cancer

MDA-MB-231 Cell Line
Up PC(34:0), PC(O-34:0), DG(32:0), DG(34:0), LPC(18:0), PUFAs

Down PE(P-34:1/O-34:2), SM(32:1)

MDA-MB-436 Cell Line
Up PC(34:0), PC(O-34:0), SM(34:2), DG(32:0), DG(34:0), LPC(16:0), LPC(18:0)

Down PE(P-34:1/O-34:2)

Tumors
Up PC(32:1), PC(30:0), PC(32:0), PE(36:1)

Down NR

Serum
Up PC(32:1), Cer(43:1), stearic acid

Down NR

General Breast Cancer versus Normal

Tumors
Up PC(34:1), PC(32:0), PC(34:1), SM(d18:1/16:0), PE(P-16:0/22:6), PS(38:3), Free FAs

Down NR

Serum
Up PC(32:1), Total TGs

Down NR

Recurrent versus Non-recurrent Breast Cancer

Tumors
Up PC(32:1), PC(30:0)

Down NR
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