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Predicting and Manipulating Cone Responses to Naturalistic
Inputs
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Primates explore their visual environment by making frequent saccades, discrete and ballistic eye movements that direct the
fovea to specific regions of interest. Saccades produce large and rapid changes in input. The magnitude of these changes and
the limited signaling range of visual neurons mean that effective encoding requires rapid adaptation. Here, we explore how
macaque cone photoreceptors maintain sensitivity under these conditions. Adaptation makes cone responses to naturalistic
stimuli highly nonlinear and dependent on stimulus history. Such responses cannot be explained by linear or linear-nonlinear
models but are well explained by a biophysical model of phototransduction based on well-established biochemical interac-
tions. The resulting model can predict cone responses to a broad range of stimuli and enables the design of stimuli that elicit
specific (e.g., linear) cone photocurrents. These advances will provide a foundation for investigating the contributions of cone

phototransduction and post-transduction processing to visual function.
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We know a great deal about adaptational mechanisms that adjust sensitivity to slow changes in visual inputs such as the rising
or setting sun. We know much less about the rapid adaptational mechanisms that are essential for maintaining sensitivity as
gaze shifts around a single visual scene. We characterize how phototransduction in cone photoreceptors adapts to rapid
changes in input similar to those encountered during natural vision. We incorporate these measurements into a quantitative
model that can predict cone responses across a broad range of stimuli. This model not only shows how cone phototransduc-
tion aids the encoding of natural inputs but also provides a tool to identify the role of the cone responses in shaping those of
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Introduction

Everyday visual activities, like reading or identifying familiar
faces in a crowd, rely on signaling in the fovea, a small and speci-
alized region of the retina where cone photoreceptor density and
perceptual spatial acuity are highest (Rodieck, 1973). Most visual
information is encoded during fixations, periods of time hun-
dreds of milliseconds in duration during which gaze is relatively
stationary on the visual scene. Visual cues detected in the
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periphery, where spatial acuity and cone density are lower, cause
rapid ballistic eye movements, or saccades, that direct the fovea
to the region of interest. Humans typically make multiple sac-
cades every second, and each saccade can span several degrees of
visual angle (Harris et al., 1988). On the spatial scale of saccades,
natural scenes can exhibit large differences in local intensity and
local spatial contrast, that is, the variations in intensity about the
mean in small image patches (Frazor and Geisler, 2006).

Several issues make reliably encoding the visual inputs
encountered during eye movements challenging. First, given
that the dynamic range of neural signals is small compared
with the range of inputs encountered during different fixa-
tions, the visual system must adaptively adjust sensitivity to
match the prevailing inputs. Such adaptation must occur
locally in the retina, given the large differences in inputs in
different regions of a scene. Second, given that fixations only
last 200-600 ms, adaptational mechanisms must operate
quickly to match neural sensitivity to the inputs encountered
within a fixation rather than those encountered over previ-
ous fixations.
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The need to adapt to an ever changing environment is ubiqui-
tous across sensory systems. For example, adaptation allows bac-
teria to follow molecular gradients across a >10,000-fold range
of concentrations (Bialek and Setayeshgar, 2005; Neumann et al.,
2014), and the kinetics of adaptation govern the ability to follow
these gradients (Block et al., 1983). Similar challenges arise in
the tracking of odor plumes in insects, where turbulent flow
creates enormous variations in odorant concentrations (Cardé
and Willis, 2008) and in the auditory system, where behavior-
ally relevant sounds span intensities that can differ by at least
nine orders of magnitude (Viemeister and Bacon, 1988). In
olfaction and audition, adaptation in the primary receptors
(odorant receptor neurons and hair cells) is essential to main-
tain sensitivity (Fettiplace and Ricci, 2003; Kelliher et al.,
2003; Gorur-Shandilya et al., 2017).

The primary visual receptors—rod and cone photoreceptors—
also adapt strongly (Burns and Baylor, 2001; Fain, 2001).
Adaptation in photoreceptors affects both the gain and kinetics
with which light inputs are converted to electrical signals. For typi-
cal daytime light levels, adaptation in the retinal output to changes
in mean intensity is dominated by adaptation in the cones them-
selves (Dunn et al.,, 2007). We have a good understanding of how
photoreceptor adaptation contributes to maintaining visual sensi-
tivity to slowly changing inputs, for example, the rising or setting
sun, and of the mechanistic basis of photoreceptor adaptation,
particularly in rods (Burns and Baylor, 2001; Fain, 2001). We
know much less about how photoreceptor adaptation contributes
to reliable encoding of the large and rapid changes encountered as
gaze shifts within a visual scene. Our focus here is on understand-
ing the encoding of such naturalistic inputs by peripheral primate
cones and using this understanding to identify models that allow
the prediction and manipulation of cone responses to a wide range
of inputs. The ability to manipulate cone responses provides a
needed tool to probe the causal role of cone signaling properties in
shaping responses of subsequent visual neurons and behavior.

Materials and Methods

Experimental design and statistical analysis. We made electrophysio-
logical recordings from primate retinas (Macaca fascicularis, nemestrina,
and mulatta of either sex, ages 3-19 years) in accordance with the
Institutional Animal Care and Use Committee at the University of
Washington. We obtained retina through the Tissue Distribution
Program of the Regional Primate Research Center. Most enucleations
were performed under pentobarbital anesthesia; a few were performed
with halothane anesthesia. After enucleation, we rapidly (<3 min) sepa-
rated the retinal pigment epithelium/sclera complex from the anterior
segment, removed the vitreous humor, and dark adapted the retina for
1 h in warm (32°C) Ames medium bubbled with a mixture of 95% CO,
and 5% O,. In some young animals, we removed the vitreous after incu-
bation in plasmin (~50 ug/ml in ~10 ml of solution for ~20min at
room temperature). We performed all subsequent procedures under
infrared illumination (>900 nm).

For recording, we separated a small piece of retina (~4 mm?) from
the pigment epithelium and mounted it, photoreceptor side up, on a
poly-lysine-coated coverslip (BD Biosciences) that formed the floor of a
recording chamber. We continually superfused the recording chamber
with warm (~31-33°C) oxygenated Ames medium. Treatment with
DNase I (30 units in ~250 ul of Ames for 4 min; Sigma-Aldrich) facili-
tated access to the photoreceptor inner segments. For horizontal cell
recordings, we obtained thin vibratome slices (~200 um) using chilled
Ames medium. Subsequently, individual slices were transferred to warm
bicarbonate-buffered Ames medium for storage until recording. All the
recordings presented here were made in peripheral retina (>20° eccen-
tricity). We retained data only from cones with responses to bright
flashes that exceeded 100 pA.
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Cone responses did not show a clear dependence on the age or sex of
the animal, and results across animals have been pooled. We chose sample
sizes to provide tight confidence intervals on key parameters and analyzed
data following each experiment to determine when we had collected suffi-
cient data. The p values (see Figs. 3, 6) were based on paired ¢ tests.

Recordings, light stimulation, and analysis. For whole-cell voltage-
clamp recordings from cones, we used an internal solution containing
the following (in mm): 133 potassium aspartate, 10 KCl, 10 HEPES, 1
MgCl,, 4 Mg-ATP, 0.5 Tris-GTP; pH was adjusted to 7.2 with NMG-
OH, and osmolarity was 280 * 2 mOsm. The internal solution did not
contain any calcium buffer (or calcium) as even low concentrations of
calcium buffer caused the cone light response to become increasingly
biphasic during the course of a recording. Access resistance in whole-cell
recordings from cones was 15-20 M{) and was not compensated. We
used a junction-corrected holding potential of 70 mV. Although this is
more hyperpolarized than the cone resting potential, our recordings
were more stable at this voltage (likely because of a suppression of activ-
ity of inner segment conductances). As a control that this choice did not
affect the kinetics of the cone responses, we measured responses to the
same Gaussian noise light stimulus for holding potentials of -70 and
-50mV. Responses at these two holding potentials were highly corre-
lated (correlation coefficient of 0.96 + 0.01, n = 8).

For perforated-patch current-clamp recordings (all without current
injection), we used an internal solution containing the following (in
mM): 125 potassium aspartate, 10 KCl, 10 HEPES, 5 EGTA, 1 MgCl,, 0.5
CaCl,, 4Mg-ATP, 0.5 Tris-GTP, and 30pg/ml gramicidin; pH was
adjusted to 7.2 with NMG-OH, and osmolarity was 280 £ 2 mOSM. We
included EGTA in the internal solution so that inadvertent whole-cell
access caused responses to rapidly become biphasic; any such recordings
were terminated. For whole-cell recordings from horizontal cells we
used the same internal solution used for the perforated-patch recordings
but omitted gramicidin. Access resistance was ~10-14 M{) and was
compensated 50% in horizontal-cell recordings (prediction and compen-
sation settings on a MultiClamp 700B amplifier).

Light stimuli from blue, green, and red LEDs (peak wavelengths
405, 510, and 640 nm) permitted quick identification of cone types.
Stimuli illuminated an ~150 um diameter area centered and focused
on the recorded cone through the condenser of an upright microscope.
We converted photon densities (photons/um?) to R*/photoreceptor
using a collecting area of 0.6 ,u,m2 (Schneeweis and Schnapf, 1999), pre-
viously measured cone spectral sensitivities (Baylor et al., 1984), and
measured LED spectral output. For each recorded cone, we first com-
pared responses to brief flashes from each LED dentify its type by its
peak wavelength sensitivity as S (short), M (mid) and L (long), then
used a single LED (640 nm for L cones, 510 nm for M cones) and modi-
fied its intensity to create the desired R*/cone based on precalibrated
values. For horizontal-cell recordings, stimuli from an LED with a peak
output at 470 nm illuminated an ~500 um diameter area, and we assumed
a collecting area of 0.37 wm? (Schnapf et al., 1990) as illumination was
incident directly on the outer segments instead of funneled through the
inner segments. Quoted photon absorption rates for the horizontal-cell
recordings are calculated for M-cones. The M-cone:L-cone:S-cone:rod
sensitivity ratio for the blue LED used during the horizontal-cell
recordings is 1:0.48:1.37:3.25. Horizontal cells were adapted for at least
2min to a background of 350 R*/M-cone/s before data collection
(equivalent to ~1100 R*/rod/s or ~175 R*/L-cone/s). Rod signals are
saturated at this background (Grimes et al., 2018).

We acquired data using MultiClamp 700B amplifiers. We low-pass
filtered recorded currents at 3kHz and digitized the data at 20 kHz.
After analysis, we digitally low-pass filtered the raw traces at 200 Hz for
ease of viewing. We analyzed recorded data through custom routines in
MATLAB (MathWorks). We excluded data from short-lived recordings,
from cells that showed unusually rapid run down of light responses,
and from cells that showed low sensitivity. All cone data presented here
are from either L or M cones.

Model of fixation duration and saccades. The model to generate nat-
uralistic stimuli was based on a statistical approximation from measurements
of eye movements made in humans (Harris et al., 1988). Fixation times in this
model follow an exponential distribution with a refractory period:



1256 - J. Neurosci., February 16, 2022 - 42(7):1254-1274

—(t—a)

1
—Xe ift > a (1)
3 >

0 if t<a

with a, the refractory period, of 100 ms (Harris et al,, 1988); a value of 3,
the time constant of the exponential distribution, of 200 ms was selected to
generate on average three fixations every second (range of two to five fixa-
tions per second). This model did not include any fixational eye movements
(light intensities were held constant during each fixation). The intensity dur-
ing each fixation was drawn from the distribution of pixel intensities taken
from an individual natural image from the van Hateren database (van
Hateren and Snippe, 2007). The images are monochromatic, and the
sampled stimulus trajectory was scaled to set the mean isomerization rate
given the recorded cone type (L or M). This process was repeated for several
natural images to generate several naturalistic trajectories.

Saccades were inserted between fixations. Saccades had a duration
(Ds) that depended on a randomly generated amplitude (Ag; Rucci et al.,
2000) as follows:

Asias

Vs

D, = +d,, (2)

where the velocity, vs, was drawn from a uniform distribution between
0.4 and 0.6°/ms. The parameters a, = 10° and d; = 40 ms cause the dura-
tion of small saccades to exceed that expected from a purely linearly rela-
tion between saccade duration and amplitude. This procedure generated
saccades that lasted on average 65ms (range, 15-130 ms). Transitions
between the intensities at the start and the end of a saccade were linear.
The resulting stimuli consisted of fixation periods of constant intensity,
with large variations from one period to the next, with brief intensity
ramps (saccades) in between.

Linear and linear-nonlinear model. Linear filters corresponded to
estimates of the single-photon response, obtained by recording cone
responses to dim flashes in darkness and dividing them by the strength of
the flash. For dim flashes in darkness, we chose flash intensities between
100 and 200 R*/flash. The single-photon responses were then fitted with
the equation (Baylor et al., 1987; Angueyra and Rieke, 2013) as follows:

G )..Go)
Trise h 2t
— | xe Tdecay ) cos< +a)>. (3)
t TDSC
1+( )
Trise

The parameters for the example cell (see Fig. 2C) were: a = 631 pA/
RY/S, Trise = 28.1 M8, Tyeeqy = 24.3m8, Tope = 2 X 10° 5, and w = 89.97°.
This cell did not show a significant oscillation in its response, and hence
the time constant of the cosine term is long; other cells did show small
undershoots that were better fit when the time constant of cosine term
was near 0.1 s (Angueyra and Rieke, 2013). For consistency, the cosine
term was retained in all fits, even if it contributed minimally.

The linear filter was convolved directly with the light stimulus to obtain
a linear estimate of the responses. Given that the linear filter was obtained
in darkness, where gain is maximal, we allowed rescaling of the linear model
by a single factor. This factor provides a single gain adjustment, applied to
the entire model output, to account for cone adaptation. The rescaling fac-
tor was chosen so that the output of the linear model matched the current
at the end of the fixation corresponding to the highest light intensity and
had a value of 0.01 for the example cone (see Fig. 2).

For the linear-nonlinear (LN) model, the relationship between the
real and linear model currents (mean current during the final 50 ms of
each fixation) was fitted with the following function:

idsa = AC[b(ijin.moaer) ] Te, (4)

where i moder (in pA) is the result of the convolution of the stimulus
with the linear filter f(t), C[ ] is the cumulative density of a normal func-
tion with a mean of zero and SD of one (Chichilnisky, 2001) and (4, b, d, e)
are parameters that shift and scale this cumulative normal distribution to fit
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the data. The parameters for the fit (see Fig. 2D) were a = 305.4pA, b =
0.039pA~", d = 1.00, and e = —262.9 pA. This smooth function then pro-
vided a static or time-independent nonlinear relationship between the out-
put of the linear filter and the linear-nonlinear model predicted current.

Biophysical model of cone phototransduction. The biophysical
model of the phototransduction cascade used here (see Fig. 8) is a
modification of a model of phototransduction for toad rods (Rieke
and Baylor, 1996, 1998). The original rod model is largely equivalent
to other biophysical models successfully used in the past in rods and
cones from other species (Pugh and Lamb, 1993; Nikonov et al.,
1998; Endeman and Kamermans, 2010) and as the first component
of a primate horizontal-cell model (van Hateren, 2005). In these
models, adaptation emerges through activity-dependent changes in
the cGMP turnover, produced by a light-induced increase in PDE activity
and the calcium dependence of the rate of cGMP synthesis (see below); the
time scale of adaptation depends largely on the kinetics of this process. The
modified cone model below adds a second feedback mechanism (and there-
fore a second time scale for adaptation), implemented as a calcium-depend-
ent feedback to the cGMP-gated channels. The second feedback had little
impact on predicted responses to many stimuli, but did modestly improve
fits to long light steps.

In the first step of the model, the stimulus (Stim) activates opsin mol-
ecules (denoted as R for Receptor, R* when active), which decay with a
rate constant o as follows:

AR (t
dt

=

= I'Stim(t) — oR*(t). (5)

Here, I is a scaling factor (or opsin gain factor) that controls the
overall sensitivity of the model to light inputs.

Active opsin molecules then activate phosphodiesterase (PDE) mole-
cules through transducin (a delay that we assume is negligible; Pugh and
Lamb, 1993), so that the activity of PDE (P) is as follows:

P _ R )~ gp(0 . ©

where ¢ is the decay rate constant of PDE, and 7/¢ is the PDE activity in
darkness.

The concentration of cGMP in the outer segment (G) depends on
the PDE-mediated hydrolysis and the rate of synthesis (S) by the guanyl-
ate cyclase (GC) as follows:

dG(t)
= S0 = P()G(1). @)

The outer segment current carried by the cGMP-gated channels
depends on G and has been approximated as follows:

I(t) = ke, G()". ®)

This approximation is valid when a small fraction of the cGMP chan-
nels is open, which is the case under physiological conditions (Rieke and
Baylor, 1996). In this equation & denotes the effective cooperativity, and
kc, depends on the maximal current and the affinity of the channel for
c¢GMP. We have made k¢, calcium dependent (see below) as a means to
introduce feedback to the cGMP-gated channels (Korenbrot, 2012).

A fraction (q) of the outer segment current (I) is carried by calcium,
so on exposure to light the calcium concentration (Ca) decreases.
Calcium extrusion in the outer segment is mediated by the Na*/K",
Ca”" exchanger. We simplify this process in the model as a single expo-
nential process with rate constant B as follows:

dCaf(t)
dt

= ql(t) — BCa(t). ©)

The calcium concentration regulates S (the rate of cGMP synthesis)
following a Hill curve, as follows:
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Table 1. Parameters and best fit values for cone phototransduction biophysical model

Fit values
Parameter Symbol  Units Type Recommended values Figure 88-C, G—-H Fig 8D,F  Figure 68  Figures 6D, 12 Figures 6f, 13
Opsin gain r unitless  Free 10.0 79 3.0 13 15.0
Opsin decay rate constant o 5! Locked 22 22 22 22 22
PDE decay rate constant ¢ 5! Constrained (¢p = o) 22 22 22 22 22
PDE dark activation rate n 5! Locked 2000 2000 2000 2000 2000
(GMP-to-current constant k pAZuM™  Fixed 0.02 0.02 0.02 0.02 0.02
¢GMP channel cooperativity h unitless  Fixed 3 3 3 3 3
(a®* extrusion rate constant B 5! Locked 9 9 9 9 9
Fraction of current carried by calcium q unitless  Derived 0.1125 0.031 0.012 0.0833 0.078
Maximal cGMP synthesis rate by GC Sz 5! Derived 30909 36890 30909 34161 34884
(a** GC affinity Kec uM Locked 0.5 0.5 0.5 0.5 0.5
(a®" GC cooperativity m unitless  Fixed 4 4 4 4 4
Channel feedback decay rate constant 3o 5! Locked 0.4 2 2 2 2
(a®" concentration in darkness Cagark uM Fixed 1 1 1 1 1
¢GMP concentration in darkness CGMPgzx UM Derived 20 30.73 20 2.1 22.57
Dark current ldark pA Measured —80 —136 —290 —108 —115
Table 2. Parameters and best fit values for cone phototransduction biophysical model with fast adaptation only
Fit values
Parameter Symbol Units Type Fig. 9 Figure 9D-F Figure 96-H Figure 12 Figure 13
Opsin gain r unitless Free 3.0 8.92 10.0 14 18.0
Opsin decay rate constant (o 5! Locked 23.5 235 235 235 235
PDE decay rate constant [ 5! Constrained (¢p = o) 235 235 23.5 23.5 235
PDE dark activation rate n g Locked 2395 2395 2395 2395 2395
¢GMP-to-current constant k pAZ UM Fixed 0.02 0.02 0.02 0.02 0.02
¢GMP channel cooperativity h unitless Fixed 3 3 3 3 3
Ca*" extrusion rate constant B 5! Locked 9 9 9 9 9
Fraction of current carried by calcium q unitless Derived 0.0662 0.031 0.1125 0.0556 0.078
Maximal cGMP synthesis rate by GC Smax 5! Derived 27153 34950 22752 28784 25677
(a*" GC affinity Kec M Locked 0.5 0.5 0.5 0.5 0.5
(a®* GC cooperativity m unitless Fixed 4 4 4 4 4
(a®* concentration in darkness (gark M Fixed 1 1 1 1 1
(GMP concentration in darkness CGMPgarc M Derived 18.95 2439 15.87 20.08 17.92
Dark current ldark pA Measured —136 —290 —80 —108 —115
S(t) = Sinax (10) 1996; Robson and Frishman, 1996). Changes in these parameters either
Ca(t)\™’ had little effect on model output or could be compensated by
1+ <TGC) changes in other parameters; fixing these thus improved fitting as

where S,,,,, is the maximum synthesis rate, and Kgc and m are the affin-
ity and cooperativity constants.

We also modeled the second feedback as a single-exponential process
that is calcium dependent and has a smaller decay rate constant (8 g,y,)
as follows:

dCag,, (t)

it (11)

= leow(cuslow(t) - Ctl(t))

This process determines the value of kg, (Korenbrot, 2012) as
follows:

1
Caslow
Cadurk

kea = k % (12)

The van Hateren (2005) model also took into account the calcium
dependence of the relationship between current and ¢cGMP; in this
model, however, this feedback was not dynamic but instead was incorpo-
rated into the value for 4 in Equation 8.

For model fitting, we fixed the values of the following four parame-
ters: k = 0.02 pA um >, h =3, m =4, and Cygpy = 1 um (Rieke and Baylor,

it removed degenerate solutions. Steady-state conditions further
reduced the number of free variables: (1) from Equation 9, q =
Bliari/Caark> and (2) from Equations 7 and 10, S,0x = PaarkGaark
[1+(Cyari/Kie)™]. We then calculated the concentration of cGMP
in darkness (G 4,,4) using the measured holding current in darkness
(I4ark) and Equation 8. We further simplified our model by making
o and ¢ have equal value as preliminary fitting showed little
advantage to allowing them to differ. We then manually adjusted
the remaining six model parameters (o, 1, Kge, B> Bslow> and I)
to find an approximate fit to the response to naturalistic stimuli
(see Fig. 2B) and the single-photon response (see Fig. 2C). Starting
from that initial condition, we used the MATLAB fminsearch rou-
tine to optimize the fit parameters by minimizing the mean
squared error between measured and predicted responses. Table 1
shows a summary of model parameters across cones and stimuli.
We evaluated the quality of model fits using the fraction of variance
explained, that is, the sum of squared difference between the model and the
data divided by the variance of the data. For the naturalistic stimuli, fit qual-
ity was evaluated on the same data used to fit the model; for all other stimuli
fitting and model performance were based on independent data. Model fits
were relatively insensitive to 10-20% changes in initial conditions for the
parameter search and similarly to modest (~5%) changes in final parame-
ters. Varying final individual parameters by 5% changed the error in the
prediction by <<10%, with the largest changes associated with manipulations

of ¢ or 7.



1258 - J. Neurosci., February 16, 2022 - 42(7):1254-1274

Angueyra et al.  Cone Responses to Naturalistic Inputs

Table 3. Parameters and best fit values for empirical model with a single linear filter

Fit values
Parameter Symbol Units Type Figure 108-C, G-H Figure 100-F Figure 12 Figure 13
Input gain r unitless Free 3.0 8.92 1.4 18.0
Alpha 1o unitless Fixed 19.4 19.4 19.4 19.4
Beta B unitless Fixed 0.36 0.36 0.36 0.36
L% L% unitless Fixed 0.448 0.448 0.448 0.448
K, filter time constant Ty ms Fixed 448 4.48 4.48 4.48
K, filter rise constant 7y unitless Fixed 433 433 433 433
K, filter time constant T, ms Fixed 166 166 166 166
K, filter rise constant 7, unitless Fixed 1.0 1.0 1.0 1.0
Response time constant T ms Fixed 478 478 478 478
Output scaling ldark unitless Derived 1.0 290/136 108/136 115/136
Table 4. Parameters and best fit values for empirical model with a double linear filter

Fit values
Parameter Symbol Units Type Figure 108-C, G-H Figure 100-F Figure 12 Figure 13
Input gain r unitless Free 9.8 25.8 17.7 44.1
Alpha a unitless Fixed 20.5 20.5 20.5 20.5
Beta B unitless Fixed 0312 0312 0.312 0.312
y y unitless Fixed 0.50 0.50 0.50 0.50
K, filter time constant Ty ms Fixed 448 4.48 4.48 448
K, filter rise constant 7y unitless Fixed 433 433 433 433
K, filter time constant T, ms Fixed 35 35 35 35
K, filter rise constant ), unitless Fixed 2.84 2.84 2.84 284
Ky, filter time constant T, ms Fixed 184.0 184.0 184.0 184.0
K,, filter rise constant n, unitless Fixed 232 2.32 2.32 1.0
Response time constant T ms Fixed 4.78 478 478 478
Output scaling dark unitless Derived 1.0 290/136 108/136 115/136

stimulus

linear
cone
model

difference
between models

transfori'natlon adjust to minimize

full
cone
model

.
.
;
:

0.2s

Figure 1.

Example of cone light-adaptation dlamp procedure. Top, The approach. The stimulus to the linear cone phototransduction model is held fixed, whereas the stimulus to the full

cone phototransduction model is adjusted until the two models produce similar outputs. Bottom, This process for a step-and-flashes stimulus is shown. Initially, the two stimuli are identical
(far left), and the two models produce very different outputs because of adaptation in the full model. Right, Steps in the transformation process are shown, with the final result on the far

right.

To assess the ability of the model to generalize across cones and
stimuli, we set Ggux to match I, of each cell and allowed I' to
vary to account for differences in absolute sensitivity between recorded
cones while holding all other parameters fixed. Simultaneously fitting
responses to a variety of stimuli (naturalistic stimuli; see Fig. 2B), the sin-
gle photon response (see Fig. 2C), steps and flashes (see Fig. 3B), binary
noise and sinusoids (see Fig. 6C,E), or subsets of these stimuli produced
model parameters that differed by <5% from those fit to the naturalistic

stimuli and the single-photon response. Including the naturalistic stimuli
in the fitting procedure was particularly effective in producing models
that generalized to other stimuli. The fraction of variance explained for
these different fitting approaches varied minimally (<5%).

Alternative models of cone phototransduction. As a first alternative
to our phototransduction model, we fitted the same dataset to a model
that did not include the slower calcium feedback to the cGMP-gated
channel. This model follows the phototransduction model from



Angueyra et al.  Cone Responses to Naturalistic Inputs

J. Neurosci., February 16,2022 - 42(7):1254-1274 - 1259

As a second alternative to our model, we explored an
empirical model that is able to capture the responses of
turtle cones to a variety of stimuli (Clark et al., 2013). In
this model, the light stimulus provides the input to two
separate pathways. In the first pathway, the stimulus is
directly convolved with a linear filter (K,) before passing
through a dynamic low-pass filter that dictates the
response of the model. In the second pathway, the stim-
ulus is directly convolved with a slower and delayed lin-

B 100 Naturalistic stimulus ear filter (K,). The output of this delayed filter
o 80 modulates the amplitude and time constant of the low-
& 60 pass filter, providing a way to directly alter the output of
‘3';-‘ 40 the model (see Fig. 10A). This feedforward implementa-
29 tion of adaptation imparts the model with a mechanism
0 . S .
that controls both gain and kinetics in a history-depend-
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Figure 2. Responses of primate cones to naturalistic stimuli are not well captured by linear or LN —o0
models. A, Schematic of eye movements (blue lines) and fixations (blue circles) during free viewing of
a natural scene. B, Top, Stimulus emulating the large and frequent changes in mean light intensity t
experienced by a single cone during free viewing. Bottom, Cone responses to this stimulus are highly y(1) :/ dr'K,(t —t")s(t'). (17)

nonlinear. For example, the difference between the responses marked by the black arrows is similar to
the difference in responses marked by the white arrows (bottom right), although the corresponding
stimulus intensities differ 10-fold. C, History dependence exemplified by two responses to the same
light intensity but proceeded by different light intensities (asterisks in B). D, Linear model (green
trace) scaled to match the final current at the highest light intensity. The model fails to accurately pre-
dict responses to most intensities and does not capture the response dynamics following a change in
light intensity. E, Estimated single-photon response for the cone in B. The fit to the response (see
above, Materials and Methods) was used as a filter to construct a linear estimate of the response in D.
F, An LN model (magenta trace) captures the currents at the end of fixations but still fails to capture
the dynamics of the response. G, The LN model was built using a nonadaptive nonlinearity constructed
by fitting the relation between the measured currents (after baseline subtraction) at the end of fixa-

tions (y-axis) and the linear model (x-axis).

Equations 5-10 and removes the parameter 3, This model is effec-
tively the same as the phototransduction part of the model introduced by
van Hateren (2005). We followed the same fitting strategy as for the full
model. In general, this model behaved well, with similar adaptation values
and kinetics but fits to the naturalistic stimuli or to bright steps suffered
slightly because of mismatches in the final currents at the end of fixations
(see Fig. 9). We focus on the biophysical model with two feedback proc-
esses for generality, but our main conclusions hold equally for the single-
feedback model.

To find fits for this model, we first found a fit to
the estimated single-photon response while eliminat-
ing adaptation (forcing 8 = 0), allowing us to find
values for 7,, 1,, and 7, that matched the kinetics of
dim-flash responses. After fixing these three values,
we fit the response to the naturalistic stimulus to
determine values for the other five parameters,
namely, 7,, 1,, ¥, a, and 8. Empirical models con-
structed this way were able to fit responses to a wide
range of stimuli, but the model parameters changed
substantially (often more than fivefold). Hence, to
test for generalization with fixed-model parameters
we followed a similar strategy to the one used for the
biophysical models; we fixed the model parameters
from fits to the naturalistic stimulus, scaled the response of each cell
so it matched the dark current for the naturalistic stimulus, and
scaled the stimulus by a single free factor (I', akin to the opsin gain)
to account for changes in sensitivity between recorded cones.
Empirical model fits (see Figs. 10-13) follow this procedure.

We additionally explored a modification of the empirical model, in
which we added a second adaptation mechanism with a longer time scale
(see Fig. 11A) so that Equation 14 is replaced by the following:
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Figure 3.  Gain changes during light adaptation are fast and well tuned to the duration of fixations. A, Stimulus used to probe the kinetics of gain changes during light adaptation. Five
flashes (black trace) were superimposed on an adapting step (gray trace); the first, third, and fifth flashes were fixed in time (black), and the second and fourth were delivered with variable
delays (At) from step onset and offset. Flashes during the step were twofold brighter to partially counteract light adaptation. For this example trace, At = 40 ms. B, Average responses to the
adapting step alone (gray trace) or in combination with the five flashes (black trace) for At = 40 ms. C, Flash responses isolated by subtracting the response to the step alone. The first and
fifth flash produced unadapted responses, whereas the smaller and faster response to the third flash (near the end of the step) reflected adaptation. The flashes following step onset and offset
elicited responses in transition between the two states. D, Gain changes rapidly at step onset. Gain measurements obtained by dividing the response by the flash strength and normalizing to
the gain in darkness; black traces correspond to gain in darkness (far left trace) and to steady-state adapted gain (far right trace). Colored traces correspond to flashes with a variable delay
(At) from the step onset. The speed of the gain changes was tracked by identifying the peaks and approximating their time course with an exponential function. The time constant of the best
fit exponential was 7o, = 14 ms (black smooth line). E, Gain changes more slowly at step offset. Black traces correspond to steady-state adapted gain (far left trace) and gain in darkness (far
right trace). Colored traces correspond to flashes with a variable delay from the step offset (same delays as in D). The time constant of the best fit exponential was 7o = 86 ms (black smooth
line). For D and E, the response to the step without flashes has been displaced and rescaled to compare kinetics (gray traces). F, Collected time constants for gain changes at step onset and off-
set. Black circle indicates mean, and error bars indicate SEM. Individual cells are shown as gray open circles (n = 15), and the example cell in A-D is shown as the black open circle. All cells lie
above the unity line (black dashed line). The time constants for the biophysical model (Fig. 8) are shown by the red triangle (F).

- way necessary to achieve this desired response.
We identified the appropriate stimulus transformation using a
>nzz numerical approach. We discretized the stimulus into time bins
(’[/Tzz))
e ?

z

£\ "= that lacks adaptation), and the stimulus is manipulated in whatever
K(t)=|yxK@) |+ (1—v—1v,)x ( ) =7

(18)  and then sought a weighting of the stimulus value in each time bin
that minimized the mean-squared difference between the outputs
of the linear and full models. We used the MATLAB fminsearch
algorithm to identify the optimal weights. In effect, this algorithm
perturbs the stimulus in each discrete time bin and retains pertur-
bations that decrease the mean-squared difference between the
responses of the two models (Fig. 1). To increase the efficiency of
this process, we started by optimizing with coarse time bins (typi-
cally ~50ms). We then decreased the size of the time bins and
reoptimized, using the results from the previous optimization at
coarser time bins as an initial condition. We iterated this optimiza-
tion and rebinning process until achieving a stable minimum of
the mean-square difference.

t
+('yz X <_
Tz
adding three new parameters (7., 7., and 7.,). We followed the same
fitting strategy as for the previous empirical model.

Light-adaptation clamp. The biophysical cone phototransduction
model (see Fig. 15) was used to design stimuli that minimize nonli-
nearities in the cone responses. We used two models of the cone
responses to identify these stimuli, (1) the full biophysical model and
(2) a linear model. The impulse response of the linear model was
determined from the response of the full model to a brief, low con-
trast flash (i.e., a flash within the linear range of the full model behav-
ior). The linear model output to an arbitrary stimulus was then
obtained by convolving this impulse response with the stimulus. The
stimulus for the full model was a transformed version of the original
stimulus, whereas the original stimulus (untransformed) provided  Results
input to the linear model (Fig. 1). We then sought a stimulus transfor-

mation that minimized the difference between the outputs of the two tation stronely shaves the responses of peripheral primate cones to
models. For sinusoidal stimuli (see Fig. 15A), this is particularly sim- & shap P perp P

ple. The response of the linear model to these stimuli is also sinusoi- stimuli wth large and rapid changes in intensity hke' those encout-
dal, and hence our procedure identifies a stimulus input to the full tered during eye movements. Second, we characterize the kinetics

model that creates a sinusoidal output. We refer to this as a “light-ad- of adaptation for a diverse set of stimuli. Third, we incorporate these
aptation clamp” because the procedure aims to clamp cone photo- ~ Mmeasurements into a biophysical model able to account for cone
transduction currents to track a desired response (in this case one  phototransduction responses across these stimuli. Fourth, we show

The results are divided into four sections. First, we show that adap-
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Figure 4.  Kinetics of onset of Weber adaptation. 4, Changes in cone voltage elicited by steps from a common low light intensity to two different high intensities. Superimposed sinusoids

probed gain over time following the step in mean intensity. B, Voltage responses to the light step alone (top) and to the sinusoidal stimulus, with step response subtracted (bottom). C,
Difference in step (top) and sine (bottom) responses at the two light intensities. D, Mean (== SEM) differences for four cones. E~H, As in A-D, but for a light step from two different starting

intensities to a common final intensity.

two examples of how the model can be used to explore the role of
cone phototransduction in coding by downstream neurons.

Primate cone responses to naturalistic stimuli are highly
nonlinear

We start by describing responses to stimuli that approximate the
intensity changes encountered by single cones during natural
vision (Fig. 2A). We ignored fixational eye movements (ie.,
microsaccades, tremor, and drift) and focused on saccades and
fixations. We modeled the duration of fixations as a modified ex-
ponential (Eq. 1; Harris et al., 1988), with a minimum duration
and a time constant that produced 2-5 saccades every second.
The light intensity during each simulated fixation was deter-
mined by randomly sampling from an intensity distribution
taken from natural images (see above, Materials and Methods;
van Hateren and Snippe, 2007). To emulate saccades, the inten-
sity changed linearly from the value at one fixation to that at the
next fixation with a duration that depended on the simulated
amplitude (Eq. 2; see above, Materials and Methods). The result-
ing stimuli capture the large and rapid changes in light intensity

characteristic of the inputs that cones encounter during natural
vision (Fig. 2B, top). We focused on changes in intensity because
those are most relevant for a mechanism like cone phototrans-
duction that samples a single point in space.

We delivered these naturalistic stimuli while recording cur-
rent responses of voltage-clamped cones (Fig. 2B, bottom).
These currents are dominated by phototransduction in the
outer segment of the recorded cone and contain negligible
contributions from inner segment conductances from electri-
cally coupled cones or from horizontal cell feedback (Dunn et
al., 2007; Angueyra and Rieke, 2013). Several aspects of the
measured responses suggested a substantial contribution of
nonlinearities in cone phototransduction, including a com-
pression of responses to bright stimuli (Fig. 2B, arrows) and
history dependence (Fig. 2C).

To test the contributions of adaptive (time dependent) non-
linearities in more detail, we compared the measured responses
to predictions from a linear model based on the measured flash
response (Fig. 2D,E) and to a model that incorporates a nona-
daptive (i.e., static/time independent) nonlinearity (Fig. 2F,G;
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Figure 5.  Kinetics of offset of Weber adaptation. A, Changes in cone voltage elicited by steps from a common high light intensity to two different low intensities. Superimposed sinusoids

probed gain over time following the step in mean intensity. B, Voltage responses to the light step alone (top) and to the sinusoidal stimulus, with step response subtracted (bottom). C,
Difference in step (top) and sine (bottom) responses at the two light intensities. D, Mean (== SEM) differences for four cones. E~H, As in A-D, but for a light step from two different starting

intensities to a common final intensity.

see above, Materials and Methods). Predictions of the linear
model (Fig. 2D) did not accurately capture the relative ampli-
tude of responses to small and large intensity changes. More
specifically, a model that captured responses to small intensity
changes substantially overestimated responses to large intensity
changes, and one that captured responses to large intensity
changes underestimated responses to small changes. This is
consistent with compressive adaptation, which reduces cone
gain as intensity increases. These shortcomings of the linear
model could be partially fixed by incorporating a time-inde-
pendent nonlinearity (Fig. 2F,G). This model, by design, cap-
tures the steady responses at each intensity. But the linear-
nonlinear model fails to capture the transient component of
the responses to increases and decreases in intensity. Although
modifications of the filter could cause the linear-nonlinear
model predictions to more closely capture the transient
responses, this forced the filter to differ from the measured
flash response; we did not explore such models further because
we viewed capturing the flash response accurately as a key as-
pect of a successful model.

Models for ganglion-cell responses often implicitly
assume that early retinal processing, including the cone
responses, is near linear and that the dominant nonlinear-
ities in the ganglion cell responses originate in post-cone
retinal circuits (this includes linear-nonlinear, stacked lin-
ear-nonlinear, and generalized-linear models; Chichilnisky,
2001; Pillow et al., 2008; Schroder et al., 2020). Such models
may benefit from incorporating time-dependent nonlinear-
ities in the cones, given the impact of these nonlinearities
on responses to the large and rapid changes encountered
under natural conditions. The experiments described below
probe the impact of time-dependent nonlinearities on cone
responses more directly using artificial stimuli, with a goal
of developing models that can be used to account for
responses under naturalistic conditions.

Kinetics of adaptation

Time-dependent nonlinearities are pronounced in cones from
many species (Schnapf et al., 1990; Schneeweis and Schnapf,
2000; Soo et al., 2008; Korenbrot, 2012; Angueyra and Rieke,
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Figure 6.  Asymmetric responses to light increments and decrements. A, Average cone photocurrents elicited by light increments
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than symmetric increments for Weber contrasts above 25% (10 traces averaged at each contrast). The asymmetry was larger as back-
ground light intensity increased. B, Ratio of mean negative to mean positive response to 100% contrast steps as a function of mean
light intensity. Red line shows prediction of biophysical cone phototransduction model. €, Photocurrents elicited by a binary noise stim-
ulus (100% contrast) at three mean light intensities. D, Ratio of mean negative to mean positive response to binary noise as a function
of mean light intensity. Red line shows prediction of biophysical cone model. £, Photocurrents elicited by sinusoidal stimuli (temporal
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2013; Cao et al., 2014). Such nonlinearities are likely to be
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adaptation using several stimuli. These
results constrain models of the cone
response.

Dynamics of light adaptation in primate
cones

To determine the time course of adapta-
tion, we probed how gain changes as a
function of time following an abrupt
increase or decrease in mean light level.
We delivered brief flashes with variable
delays relative to the onset and offset of a
light step and isolated the flash responses
by subtracting the response to the step
alone (Fig. 3A-C). Flashes delivered before
step onset or well after step offset elicited
unadapted flash responses. A flash deliv-
ered near the end of the step elicited a
completely light-adapted response. Flashes
delivered at times near step onset or offset
probed the transition between unadapted
and adapted responses (Fig. 3C).

The response gain was estimated by
dividing the isolated flash responses by the
flash strength. Changes in gain following
both step onset and offset were largely
complete within 200 ms, that is, within the
duration of a typical fixation between sac-
cades; however, gain changes following
step onset were faster than those following
step offset (Fig. 3D,E). Approximate time
constants were extracted by fitting the gain
changes with single exponential functions
(Fig. 3D,E, black lines). Across recorded
cells (n = 15) and step intensities (1500-
100000 R*/s), the extracted time constants
of the gain changes were three to four
times faster at step onset than at step offset
(Fig. 3F; mean * SEM, Topser = 23 * 2ms;
Tofiset = 94 = 5ms; p < 107 for Toger >
Tonset)- Adaptation following step onset
sped with increasing light level, whereas
that following step offset did not change
significantly (Fig. 3G).

The response to the step itself took
~40 ms to reach peak and then decayed
slowly to a maintained level (Fig. 3B,
gray trace). Most of the changes in
flash-response gain occurred during
the rising phase of the step response
(Fig. 3D, gray trace). A small increase
in gain during the slow decay in the
step response likely originated from the
slow increase in circulating current
(Compare the amplitudes of the blue
and purple flash responses to the
response to the step itself in gray in Fig.
3D.). The current response to step off-
set exhibited two phases, an initial
rapid recovery that overshot the base-

strongly engaged by naturalistic inputs, but their kinetics have  line current, followed by a gradual return to baseline. Changes
not been well characterized for primate cones. The experiments  in gain persisted well beyond the rapid recovery phase and
described below characterize the time course of cone light  more closely followed the slow return to baseline (Fig. 3B,E).
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Kinetics of onset and offset of Weber adaptation
Adaptation in cones closely follows Weber’s law,

A Cone voltage
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that is, across a broad range of light levels, gain is
inversely related to mean light level (Burkhardt,
1994; Schneeweis and Schnapf, 2000; Dunn et
al., 2007; Angueyra and Rieke, 2013). Weber’s
law predicts that responses to stimuli with fixed
contrast will be independent of mean light level.
The experiments in Figure 3 suggest that adapta-
tion occurs rapidly following a change in mean

Ig=50,000 R*/s

Ig=20,000 R*/s

—_— 12%
— 25%
— 50%

light level and hence that Weber’s law should
hold shortly after a change in light level. To test
this prediction directly, we replaced the light
flashes in Figure 3 with sinusoids of fixed con-
trast and explored steps from or to a common
mean light level. These experiments required
long-lasting and stable recordings; hence, we
used perforated-patch recordings to avoid the
washout of internal components that occurs during tight-seal
whole-cell recordings. To avoid voltage-clamp errors associated
with the higher access resistance in perforated-patch recordings,
we measured photovoltages rather than photocurrents.

The onset of Weber adaptation was probed by recording
responses to steps from low to high mean light levels with sinu-
soidal stimuli superimposed. Figure 4A shows an experiment in
which we stepped from a single low light level to two different
high light levels. We isolated responses to the sinusoidal stimuli
by subtracting responses to the steps delivered alone (Fig. 4B). If
the cone response followed the stimulus veridically, responses to
the sinusoidal stimuli should differ almost twofold at the two
mean light levels, whereas contrast invariance predicts that the
responses should be identical. Indeed, sinusoidal responses at the
two different light levels were similar even shortly after the light
step, indicating that contrast invariance was achieved quickly
(Fig. 4C,D). Responses exhibited contrast invariance by the time
at which the response to the light step reached its peak and well
before the voltage sagged to reach its final steady-steady level
(Fig. 4C).

Figure 4E-H shows a complementary experiment in which
steps were made from two low light levels to a single common
high light level. Low light levels were chosen to be below the
range where Weber adaptation operates (Angueyra and Rieke,
2013), so that sinusoidal responses at the low light levels would
differ more than twofold (Fig. 5A,B). The response to the light
step depended on the initial light level, but the sinusoidal
response at the high light level did not. Responses that obey
Weber’s law were achieved quickly (<60 ms), well before the
response to the step itself had stopped changing and lost its his-
tory dependence (~250ms). Thus, the onset of Weber adapta-
tion is rapid compared with the step response and the typical
duration of a fixation between saccades; this is consistent with
the rapid adaptation observed in Figure 3 for steps and flashes.

We used a similar approach to probe the kinetics of the offset
of Weber adaptation, now measuring responses to steps to differ-
ent low light levels from a common high light level (Fig. 5A) or
to a common low light level from different high light levels (Fig.
5E). As above, low light levels were chosen to be below the range
in which Weber adaptation generates contrast invariance so that
the offset of adaptation caused responses to equal contrast to
depend on the mean light level (Angueyra and Rieke, 2013).
Isolated responses to the sinusoidal stimuli differed almost im-
mediately following a decrease in mean light level (Fig. 5C,D),
indicating rapid adaptation to the new mean light level.

Figure 7.

Time (s) Time (s)

Cone voltages and synaptic output exhibit asymmetric responses to light increments and decrements.
A, Cone voltage responses (current-clamp recording) elicited by a family of light increments and decrements. B,
Horizontal voltage responses elicited by increments and decrements.

Similarly, sinusoidal responses measured at a common low
light level rapidly lost any dependence on the initial high light
level (Fig. 5G,H).

The sinusoidal responses grew in amplitude for 100-200 ms
following the decrease in mean light level, consistent with the
kinetics of the recovery of gain for the steps and flashes protocol
(Fig. 5B,F; compare with Fig. 3E,F). The history dependence of
the step responses similarly persisted for 100-200 ms.

Figures 3-5 show that the onset of adaptation in responses to
both flashes and sinusoidal stimuli is more rapid than the offset
and that both are completed within the ~300-500 ms duration
of a single fixation. Further, the time course of the gain changes
can be more rapid than that of the response to the change in
mean light level, particularly following increases in light
intensity.

Responses to light increments and decrements are asymmetric
The asymmetry in the kinetics of adaptation following increases
and decreases in mean light level suggested that responses to
light increments and decrements might also be asymmetric, as
observed in amphibian and fish cones (Baylor and Hodgkin,
1974; Endeman and Kamermans, 2010; Yedutenko et al., 2021).
This is an important issue because increment/decrement asym-
metries observed in downstream cells are often attributed to dif-
ferential processing in ON and OFF circuits rather than
asymmetric cone signals (see below, Discussion; Yedutenko et
al,, 2021).

To test for increment/decrement asymmetries in primate
cones, we delivered positive and negative steps of equal contrast
relative to the background intensity while recording cone photo-
current or photovoltage (Fig. 6A,B). Responses to steps with a
contrast <25% were near symmetric, but responses to higher
contrast decrements exceeded responses to increments. This in-
crement/decrement asymmetry was also apparent in the cone
voltage responses and the cone synaptic output as measured in
recordings from horizontal cells (Fig. 7). We quantified the in-
crement/decrement asymmetry from the ratio of the mean cur-
rents at the end of the 100% contrast steps. The ratio of
decrement to increment responses exceeded one across all light
levels probed (Fig. 6B). The asymmetry was stronger with
increasing background intensity (compare Fig. 64, top and bot-
tom; p << 0.001 for ratio of asymmetries for step responses from
intensities <6000 R*/s and >6000 R*/s).

As an additional test of increment/decrement asymmetries,
we stimulated cones with high-contrast binary noise while re-
cording photocurrents. As expected, these stimuli also elicited
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Figure 8. A biophysical model of phototransduction captures a wide range of cone responses. A, Schematic of phototransduction cascade and corresponding components of the biophysical

model; cGMP is constantly synthesized by GC, opening cGMP-gated channels in the membrane. Light-activated opsin (Opsin*) leads to channel closure by activating the G-protein transducin
(Gt*) which activates PDE* and decreases the cGMP concentration. Calcium ions (Ca®™) flow into the cone outer segment through the cGMP-gated channels and are extruded through Na™*/
K*/Ca®* exchangers in the membrane. Two distinct feedback mechanisms were implemented as calcium-dependent processes that affect the rate of cGMP synthesis (blue line) and the activity
of the cGMP-gated channels (red line). B, Fit to the measured cone response to the naturalistic stimulus shown in Figure 2. The model is able to capture both the currents at the end of fixa-
tions and the response transients following rapid changes in the stimulus (Table 1). ¢, The model accurately predicts the amplitude and kinetics of the single-photon response. D—F, Model fit
to step and flashes responses from Figure 3. The model exhibits fast changes in gain at step onset (7o, moger = 13.6 ms) and a slower recovery of gain at step offset (7ofr.umoger = 180 MS).
These time constants are compared with experimental data in Figure 3F. G, Model responses to steps of increasing intensity. H, Dependence of the steady-state current of the model on back-
ground light intensity (colored dots). This relation was fit with a Hill equation (Dunn et al., 2007) with a half-maximal background, I, = 43 500 R*/s, and a Hill exponent, n = 0.77. The fit
obtained by Dunn et al. (2007; ,, = 45000 R*/s and n = 0.7) has been replicated for comparison (gray line). /, Estimated single-photon responses of the model, normalized by the response in
darkness, at increasing background light intensities. J, Relation of the peak sensitivity of the model, normalized to the peak sensitivity in darkness, across background light intensity (colored
dots). The half-desensitizing background (ly) for the model is 3297 R*/s. The fits obtained in Angueyra and Rieke (2013; I, = 2250 R*/s, after correcting a calibration error in the original article)
and in Cao et al. (2014; ly = 3330 R*/s, assuming a collecting area of 0.37 /.LmZ for transversally illuminated cones) have been replicated for comparison (gray lines).

asymmetric responses, with larger current changes on decreases
in light (Fig. 6C). We again quantified the asymmetry as the ratio
of mean currents elicited by decrement to increment stimulation;
this analysis further confirmed that the asymmetry is stronger as
background intensity increases (Fig. 6D). Finally, the asymmetry
between increment and decrement responses shaped responses
to high-contrast sinusoidal stimuli (Fig. 6E); as for steps, the
asymmetry in responses to sinusoidal stimuli increased system-
atically with increasing mean light level (Fig. 6F; p < le-4 for si-
nusoidal stimuli for intensities <6000 R*/s and >6000 R*/s).

A biophysical model of cone responses

The results described above show that primate cones, not unlike
cones from other species, have complex responses that cannot be
predicted easily from linear or linear-nonlinear models. The
complexity of these responses originates at least in part from
adaptational mechanisms that quickly and strongly adjust cone
responses to the prevailing inputs. Below, we test the ability of a
biophysical model of cone phototransduction to account for the
cone responses illustrated in Figures 2-7. In addition to testing

the completeness of the current understanding of cone photo-
transduction, our goal was to identify a model that permitted
prediction and manipulation of cone responses to a wide range
of stimuli. Hence, a key test of any model was its ability, with
fixed parameters, to generalize across stimuli.

Two types of models have been used to capture photoreceptor
responses. Empirical models aim to succinctly capture the dy-
namics of phototransduction without a tight correspondence
with the underlying mechanisms (Clark et al., 2013; De Palo et
al.,, 2013). Rapid adaptation emerges in these models from feed-
back or feedforward mechanisms. Biophysical models are based
directly on the biochemical reactions that constitute the photo-
transduction process (Younger et al, 1996; Rieke and Baylor,
1998; Nikonov et al., 2000; van Hateren, 2005; Endeman and
Kamermans, 2010; Korenbrot, 2012). Rapid adaptation in these
models emerges from changes in the rate of cGMP turnover pro-
duced by light-dependent changes in phosphodiesterase activity
and by calcium feedback to the rate of cGMP production
(Nikonov et al., 2000; van Hateren, 2005). We focus here on bio-
physical models as they captured cone responses at least as well
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Figure 9. A biophysical model of phototransduction with a single adaptation mechanism performs well but does not capture responses to long steps. A, Schematic of phototransduction cas-

cade and corresponding components of the biophysical model; cGMP is constantly synthesized by guanylate cyclase (GC), opening cGMP-gated channels in the membrane. Light-activated opsin
(Opsin®) leads to channel closure by activating the G-protein transducin (Gt*), which activates PDE* and decreases the cGMP concentration. Calcium ions (Ca>*) flow into the cone outer seg-
ment through the cGMP-gated channels and are extruded through Na™ /K" /Ca®* exchangers in the membrane. Only one feedback mechanism was implemented as a calcium-dependent pro-
cess that affects the rate of cGMP synthesis. B, Fit to cone response to the naturalistic stimulus shown in Figure 2. The model is able to capture the response transients following rapid changes
in the stimulus but slightly misses the currents at the end of fixations (Table 2). C, This model also accurately predicts the amplitude and kinetics of the single-photon response. D-F, Model fit
to step and flashes responses from Figure 3. The model exhibits fast changes in gain at step onset (7¢p-model = 22.3 ms) and a slower recovery of gain at step offset (Tofmoqel = 122.1ms). G,
Model responses to steps of increasing light intensity. H, Dependence of the steady-state current of the model on background light intensity (colored dots). This relation was fit with a Hill
equation with a half-maximal background, I, = 38785 R¥/s, and a Hill exponent, n = 1.07. I, Estimated single-photon responses of the model, normalized by the response in darkness, at
increasing background light intensities. J, Relation of the peak sensitivity of the model, normalized to the peak sensitivity in darkness, across background light intensity (colored dots). The half-

desensitizing background (l) for the model is 4198 R*/s.

as empirical models and have a clearer mechanistic
interpretation.

We represent the enzymatic reactions of the phototransduction
cascade as a set of six differential equations (see above, Materials
and Methods). This model closely follows biochemical work on
the underlying reactions (Arshavsky et al., 2002)) and previous
models based on those reactions (Pugh and Lamb, 1993; Nikonov
et al., 1998; van Hateren, 2005; Endeman and Kamermans, 2010).
In addition, we added a slow calcium-dependent feedback that
regulates the activity of cGMP channels and provides a slow com-
ponent of adaptation (Fig. 84; see below, Discussion); this mecha-
nistic instantiation is not unique but is consistent with
experimental work (Korenbrot, 2012; Rebrik et al, 2012;
Korenbrot et al., 2013). This model has a total of 15 parameters
corresponding to rate constants, affinities, cooperativities, and
concentrations of the different components of the phototransduc-
tion cascade (see above, Materials and Methods; Rieke and Baylor,
1998). Three of these parameters could be expressed in terms of
others using steady-state conditions. Six other parameters were
measured directly or fixed based on published values, leaving a
model with six free parameters that we fit numerically to meas-

ured responses to a variety of stimuli (Table 1).

Because of the limited duration of our recordings, we could
not measure all the responses used in fitting from the same cone.
Using responses from several cones simultaneously in model fit-
ting required accounting for differences in sensitivity and dark
current between cones. Dark current and sensitivity are set by
the dark ¢cGMP concentration and the gain of photopigment
activation (the opsin gain). Hence, we tested the ability of the
model to generalize across cones and stimuli by using the meas-
ured dark current from each recorded cone and allowing a single
sensitivity parameter to vary while keeping the remaining pa-
rameters fixed. This procedure ensures that the parameters
determining the kinetics of the model responses are consistent
across all fitted cones. Several approaches to fitting model pa-
rameters provided similar results (see above, Materials and
Methods).

Figure 8B compares measured and model responses to the
naturalistic stimulus from Figure 2. The model successfully cap-
tures the dynamic changes in current and the final current at the
end of each fixation (Fig. 8B). Slow adaptation made a minor
contribution to the predicted response (compare Figs. 8B,
9B), but we include it for completeness. The biophysical
model was also able to fit responses to other stimuli after
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adjustments to the dark current and sensitivity to account
for differences between cones. First, the model correctly pre-
dicted the amplitude and kinetics of the single-photon
response (Fig. 8C). Second, the model captured both the slow
dynamics of responses to light steps and the fast changes in
the amplitude and kinetics of flash responses superimposed
on these steps (Fig. 8D). As for real cones, the offset of adap-
tation in the model was slower than the onset (Fig. 8E; Fig.
3F, red triangle). Third, the model captured changes in cone
steady-state current and sensitivity across a wide range of
light levels, with model responses showing Weber adaptation
close to that measured (Fig. 8G-H; Dunn et al., 2007;
Angueyra and Rieke, 2013; Cao et al., 2014). Fourth, the
model exhibited asymmetric responses to light increments
and decrements that fall within the range of the data (Fig. 6B,
D,F, red lines). The biophysical model without the slow ad-
aptation step similarly generalized well across the full range
of stimuli probed (Fig. 9). The key point is that both biophys-
ical models captured responses to a broad range of stimuli
with minimal change in model parameters.

Empirical models with a comparable number of free parame-
ters could also capture responses of individual cones to naturalis-
tic stimuli (Figs. 10, 11). However, the strength of adaptation
required to fit the response to the naturalistic stimulus changes
the overall gain of the model so that the single-photon response

of the model is ~10-fold smaller than measured (Fig. 10C). To
test generalization to other stimuli, we scaled the measured
responses by their dark current and varied a single sensitivity pa-
rameter (identical to the opsin gain parameter in the bio-
physical model) to account for differences between measured
cones. This procedure produced poorer fits to the flash
responses in the step-plus-flash protocol used to measure the
kinetics of adaptation. The discrepancies between model and
experiment differed for the single- and double-feedback em-
pirical models. Good fits could be obtained when additional
model parameters were allowed to vary, but this required
>10-fold changes in parameters.

More importantly, empirical models systematically failed to
predict the background dependence of the steady-state current
and gain, requiring ~300-fold higher light levels for half-adapta-
tion than real cones (Fig. 10G-]). These model shortcomings
remained in empirical models that included two feedback terms
(Fig. 11G-]). Model parameters that bridged this discrepancy
greatly distorted fits to the other datasets and were not pursued
further. These empirical models lack an intrinsic baseline or dark
activity that controls the onset of adaptation. Hence, adaptation
operates at all light levels, and this causes a failure to generalize
to responses to stimuli for which adaptation contributes little,
such as flashes delivered in darkness. Preliminary attempts to fix
these issues by adding some intrinsic activity to the model (akin
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with a linear filter (Ky) and a dynamic low-pass filter. The time course and amplitude of the low-pass filter are determined by the successive convolution of the stimulus with two linear filters
(Kz and Kzyy,,), providing a feedforward mechanism that dynamically modulates the response of the model with two different time scales. B, Fit to cone response (after baseline subtraction)
to the naturalistic stimulus shown in Figure 2. The model is able to capture the response transients following rapid changes in the stimulus but is still unable to capture current undershoot in
light to dark transitions (Table 4). C, This model also underestimates the amplitude of the single-photon response by ~10-fold. D—F, Model fit to step and flashes responses from Figure 3.
The model exhibits fast changes in gain both at step onset (7gnpogel = 13.38ms) and at step offset (7ofrmoger = 34.75 Ms). G, Model responses to steps of increasing light intensity. H,
Dependence of the steady-state current of the model on background light intensity (colored dots). This relation was fit with a Hill equation with a half-maximal background, I, = 1428 240
R¥/s, and a Hill exponent, n = 1. I, Estimated single-photon responses of the model, normalized by the response in darkness, at increasing background light intensities. J, Relation of the peak
sensitivity of the model, normalized to the peak sensitivity in darkness, across background light intensity (colored dots). The half-desensitizing background (lp) for the model is 1,052,580 R*/s.

to a the dark PDE activity) seemed promising but required add-
ing more parameters to the existing 11, approaching the number
of free parameters of our biophysical model. Hence, we did not
consider these modifications further.

As an additional test of the ability of models to generalize, we
fit responses to the high-contrast binary noise and sinusoidal
stimuli presented in Figure 6. We again allowed only the sensitiv-
ity factor to vary and fixed the other parameters from the fits to
the naturalistic stimulus. Figures 12 and 13 show the results.
Biophysical models with parameters fixed generalized better
than empirical models both in individual example cells and
across the population (The ratio of the residual errors in the fits
for the two-feedback empirical models compared with the bio-
physical models was 8 = 3 for binary noise and 4 * 1 for sinu-
soids, mean * SEM.). The empirical models struggled in
particular to capture the changes in baseline current with
changes in light level (Fig. 13). As above, it was possible to find
good fits of empirical models to these additional stimuli if we
allowed large (fivefold or more) changes in multiple model pa-
rameters. The phototransduction models failed to capture
responses to these stimuli at the highest light levels (near and
above 100,000 R*/s), emphasizing that other adaptation mecha-
nisms not included in our model most likely shape responses at
high light levels.

The biophysical models illustrated in Figures 8 and 9,
although not perfect, capture cone responses to a broad range of

stimuli with a fixed set of parameters. The success of these mod-
els indicates that the known operation of cone phototransduc-
tion can explain cone responses to the highly dynamic inputs
encountered during natural vision. The models allow us to (1)
predict how signals in the cone array encode a variety of inputs
and (2) manipulate cone responses, for example, to remove the
effects of adaptation. Below we provide examples of each of these
applications.

Applications of biophysical model to neural coding

Local versus global adaptation

Most existing models for ganglion cell responses share a com-
mon architecture in which retinal inputs are first processed line-
arly over space and time, followed by a nonlinear processing step
associated with bipolar synapses or spike generation in ganglion
cells (Pillow et al., 2008; Ozuysal and Baccus, 2012; Cui et al,,
2016). For these models to be effective, they must either be re-
stricted to stimuli for which the cones do not adapt, or adapta-
tion in the cones must be accounted for by the late nonlinear
steps in the model. But adaptation operates independently within
each cone and hence is spatially local, unlike post-cone circuit
mechanisms that likely have access only to signals pooled across
multiple cones because of convergence of cone signals in retinal
circuits. The cone phototransduction model described above
provides an opportunity to identify visual inputs for which the
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spatial locality of adaptation may have an important role in shap-
ing retinal signals.

To identify such input stimuli, we compared a model in
which adaptation occurred before pooling of signals across cones
(cone-adaptation model), with a model in which adaptation
operated only on the pooled cone signal (post-cone-adaptation
model; Fig. 14A). We presented each model with flashed patches
of natural images and compared the predicted responses (Fig.
14B). When all the cones encounter similar changes in input
(i.e., spatially homogeneous bright or dark image patches such as
those encountered in a patch of sky or a tree trunk), the location
of adaptation did not matter (Fig. 14B, bottom left and middle).
This is expected intuitively because in these cases integration of
cone signals does not involve averaging heterogeneous responses,
and hence the pooled cone signal is very similar to the signal
present at each cone. In this situation, adaptation is consistent
across cones in the cone-adaptation model, and can be closely repli-
cated by adaptation in the post-cone-adaptation model. Spatially
structured patches (e.g., patches with tree branches or leaves), how-
ever, led to considerable differences in the models with cone and
post-cone adaptation (Fig. 14B, bottom right). These differences
originate because adaptation causes cone responses to equal and op-
posite light increments and decrements to differ both in steady-state
levels and in the kinetics with which they reach those levels. Thus,

when responses of a cone exposed to a light increment and a cone
exposed to an equal and opposite decrement are summed, the
steady-state responses partially cancel, but the time required for
each cone to reach steady-state differs because of the different
kinetics of adaptation. These effects are created by differences in the
inputs to individual cones and hence cannot be captured by adapta-
tion occurring after integration of cone signals.

The analysis illustrated in Figure 14 highlights that local adap-
tation will likely be an important aspect of creating predictive
models for natural inputs. Nonlinearities in cone phototransduc-
tion are one of several key nonlinearities likely to shape ganglion
cell responses, with other notable nonlinear steps occurring at
the bipolar output synapse and ganglion cell spike generation
(see below, Discussion).

Manipulating cone responses

In addition to predicting the contribution of cones to responses
of downstream neurons, the model described in Figure 8 pro-
vides a tool to manipulate specific aspects (e.g., nonlinearities or
kinetics) of the cone responses. This will, for example, provide a
tool to test the impact of local cone adaptation (Fig. 14) and
more generally to isolate the impact of post-cone circuit nonli-
nearities on retinal responses.
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Figure 13.  Model responses to sinusoidal stimuli. A, A 100% contrast sinusoidal stimulus (top) and cone photocurrent response (bottom), as shown in Figure 6, overlaid with direct fits of

each model. B, Ratio of peak negative to peak positive response to the sinusoidal stimulus for each model as a function of mean light intensity, derived from fits to the example cell in 4 (top)
or from fits to naturalistic stimulus, as shown in Figure 2. All models are able to capture the asymmetric responses to this stimulus.

Figure 15 shows how the cone model can be used to manipu-
late light stimuli to compensate for adaptation and create linear
responses, a procedure we refer to as “light-adaptation clamp.”
To accomplish this, we compare the outputs of two cone models,
a linear model with the original stimulus as input and the full
model with a transformed version of the original stimulus as
input (Fig. 15A). The impulse response of the linear cone model
is determined by the response of the full model to a brief low-
contrast flash (i.e., the linear range response of the full model; see
above, Materials and Methods). The output of the linear model,
obtained by convolving this impulse response with the stimulus,
provides the desired response. We then adjust the transforma-
tion of the stimulus to minimize the difference between the two
models, that is, to cause the output of the full model to the trans-
formed stimulus to match the output of the linear model to the
original stimulus. Figure 1 shows an example of several steps in
this adjustment process.

The light-adaptation clamp procedure is particularly simple
for sinusoidal stimuli. Cone responses to high-contrast sinusoids
are far from sinusoidal because of rapid adaptation (Fig. 13). For
sinusoidal stimuli, the output of the linear model is also a sinu-
soid, and hence the light-adaptation clamp procedure identifies a
stimulus that makes the output of the full cone model sinusoidal.
Measured responses to sinusoidal stimuli differ from a sinusoid
in the following ways, which are clear when comparing the meas-
ured response to a sinusoidal fit (Fig. 15A, right, solid and dashed
lines): (1) Responses to decrements are larger than increments

(Fig. 15A, right, black arrow; Figs. 6, 13), and (2) the response to
the dark-to-light transition is more rapid than expected from a
sinusoid (Fig. 15A, right, white arrow). These effects are rela-
tively subtle for the light level used in Figure 15, and testing
whether we can indeed effectively minimize them is a strong test
of the light-adaptation clamp procedure. As expected from the
small deviations of the responses from linearity, the predicted
transformation to produce linear responses is also subtle (Fig.
15A, top right, red and black traces). Nonetheless, measured
cone responses to the transformed stimulus are considerably
closer to a sinusoid then responses of the same cones to the origi-
nal stimulus (Fig. 15A, black traces and fit).

This approach is not limited to subtle manipulations of cone
signals. Figure 15B tests the ability of the light-adaptation clamp
to identify stimuli that minimize adaptation in a steps-and-
flashes protocol similar to the one used in Figure 3 to character-
ize cone adaptation. As in Figure 3, adaptation considerably
reduces the gain of responses to flashes delivered on top of a step
compared with those delivered before the step (~twofold in this
case). The cone model predicts that a sizable transformation of
the original stimulus is needed to minimize this effect of adapta-
tion and obtain the same flash response before and during the
step (Fig. 15B, top left, red and black traces). Measured responses
to the original and transformed stimuli show that adaptation is
indeed largely eliminated by the transformed stimuli, a finding
that holds across cones (Fig. 15B, right). Specifically, the
mean ratio of the amplitude of responses before and during
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Figure 14. Local cone adaptation shapes integrated responses to spatially structured

inputs. A, Top, Examples of predicted responses of two cones to a flashed natural image.
Left, Predicted responses from the biophysical model. Right, Predicted responses for a linear
cone model. Bottom, Sum of the responses across a collection of cones to illustrate the
impact of signal integration, for example, integration within the receptive field of a down-
stream neuron. Cones were weighted with a Gaussian spatial profile resembling the receptive
field of a primate Parasol retinal ganglion cell. The Gaussian SD was 10 cone spacings, mean-
ing that receptive field encompassed several hundred cones. Adaptation in the post-cone-ad-
aptation model operated on the integrated signal, and responses of individual cones
depended linearly on light input. B, Predictions of integrated responses for several image
patches. Top, The locations of the illustrated patches. Bottom, The integrated responses for
adapting (blue) and nonadapting (black) cones.

the light step was 0.52 = 0.06 (mean * SEM, n = 6) for the
original stimuli and 1.15 = 0.1 for the transformed stimuli.
It is important to note that this procedure directly tests the
ability of the model to generalize across stimuli and across cones,
as the stimulus manipulations were predicted from the model
fits shown in Figure 8 and subsequently tested in naive cones. If
the model predictions inaccurately captured responses of the
measured cones, the procedure should fail to identify manipula-
tions that achieve the desired transformation of the cone signals
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(linearization in the examples here). The examples above show
that we can make predictable manipulations of both subtle and
nonsubtle aspects of the cone signals and verify that those
manipulations indeed work as predicted in cones that did not
contribute to the model parameters. These stimulus manipula-
tions provide a tool to manipulate cone signals and establish a
causal relationship between their properties and those of
responses in downstream neurons (see below, Discussion).

Discussion

All sensory systems share a need to adapt to the statistics of the
natural environment. Vision is no exception, as we are able to
see across ambient light levels differing by more than a factor of
one trillion. Visual adaptational mechanisms span a wide range of
temporal and spatial scales. Some mechanisms tune circuits and
control sensitivity over the course of minutes or hours (e.g, circa-
dian regulation of retinal gap junctions; Ribelayga et al., 2008;
Bloomfield and Volgyi, 2009) or of opsin expression (von Schantz
et al,, 1999; Li et al,, 2005). More rapid mechanisms operate in less
than 1 s and permit effective encoding of the large and rapid
changes in input experienced during free viewing of natural scenes.
These mechanisms must balance the need for high sensitivity with
the risk of saturation (Abrams et al., 2007; Wark et al.,, 2009). The
magnitude of this challenge is obvious when trying to take pic-
tures with a digital camera; no single exposure setting can cap-
ture the range of inputs encountered in typical visual scenes.
The visual system deals with a significant fraction of these
challenges upfront, by imposing fast and local adaptation at
every pixel or photoreceptor.

Predictive model for cone signals

Evaluating the contributions of cone phototransduction to visual
function requires developing models that can predict responses
to a wide range of stimuli. Functional models for ganglion cell
responses often use linear or linear-nonlinear models for cones
(Burton, 1973; MacLeod et al., 1992; Pillow et al., 2008; Ozuysal
and Baccus, 2012; Stockman et al., 2014); such models do not
accurately capture cone responses, particularly the dynamics of
responses following large changes in input, such as those occur-
ring following saccades.

Alternatives to linear or linear-nonlinear models include
models that incorporate feedback or parallel feedforward signals
that can capture history-dependent effects such as adaptation.
These models can capture many nonlinearities in cone responses
well (Clark et al., 2013). Another approach is to construct mech-
anistically based models that reflect the underlying biochemistry
of phototransduction. This is the approach we follow here, in
part because such models generalize across stimuli better than
empirical models (Fig. 8), and in part because they permitted a
direct test of how well current understanding of phototransduc-
tion accounts for responses to a wide range of stimuli.

Several limitations of our model are important to emphasize.
First, our model omits several known mechanistic features for
simplicity, notably feedback to the opsin and photopigment
bleaching. These mechanisms are important at higher light levels
and have been included in other biophysical models (Lamb and
Pugh, 2004; van Hateren and Snippe, 2007). Second, we focused
on cone phototransduction and did not attempt to model the
inner segment conductances, gap-junctional coupling between
cones, or interactions with horizontal cells. This choice was
made based on our incomplete understanding of those processes
compared with phototransduction. Many of these mechanisms
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were included by van Hateren (2005). Third, A

we chose a set of model parameters that pro- stimulus adjust to minimize

vided a good fit to our measured responses.
However, some parameters in the model can

Angueyra et al.  Cone Responses to Naturalistic Inputs

difference
between models

trade against each other, meaning that more tunable

than one combination of parameters can pro- transformation

vide a good fit. As a consequence, model pa- ) )

rameters should not be interpreted as unique non-adapting n adapting

estimates of actual biochemical rate constants. GO gl
model model

The biophysical model presented here cap-
tures cone responses to a broad range of stimuli
within the range of mean intensities we tested
(up to ~100,000 R*/s for short periods of time).
This spans the range of light levels explored in

most physiological and psychophysical studies of B

cone vision. As a result, the model can be used to
explore the impact of cone signaling on down- o
stream visual responses, as described below. : -

— transformed

. . — original
Separation of cone and post-cone processing

to visual function

The model we developed provides a needed tool
to evaluate the contributions of the cones and
post-cone processing to shaping of responses in
subsequent visual neurons in the retina or cor-
tex. Asymmetric sensitivities to contrast incre-
ments and decrements provide one example.
These asymmetries are a common feature of
responses of retinal ganglion cells and V1 corti-
cal neurons and of behavior. Such asymmetries

10 pA

0.2s

is tuned until the
Right, Example of
and the modified

Figure 15.  Light-

< E
Q- ." .
o — original
A — transformed
02s '
2.0~
i 4
T 1.5F o
£ y
Z 10 g
el — @) ,
g o @]
S
2051 L’
o
0oL,

L 1 L 1 |
0.0 0.5 1.0 15 2.0

original stim R/Rp

adaptation clamp. A, Left, lllustration of procedure. The stimulus to the full cone model
output of this model matches the target output of a linear (nonadapting) cone model.
application to sinusoidal stimuli. The original stimulus and response are shown in black
stimulus and response in red. Dashed lines show best fit sinusoids. B, Application to a

are often attributed t? the ci.rcuit.s ‘that read f’Ut step-and-flash stimulus. Left, An example cell. Right, Collected data across several cells, plotting the ratio
the cone responses, with the implicit assumption  of the amplitude of the responses to flashes before and on top of the step for transformed stimuli (y-axis)

that the cones provide symmetrical input to ON  and original stimu

li (x-axis). The discrete nature of the stimuli originates because these stimuli were deliv-

and OFF circuits. In some cases this is almost  ered using a computer monitor with a 60 Hz frame rate.

certainly accurate. For example, psychophysical

thresholds for detecting rapid contrast decre-

ments (stimuli designed to isolate the OFF path-

way) are lower than those for detecting rapid contrast increments
(designed to isolate the ON pathway; Bowen et al., 1989). Because
detection of these stimuli requires low contrasts for which cone
responses are near linear, the difference in sensitivity almost cer-
tainly arises in the post-cone circuitry. At higher contrasts,
decrements elicit larger V1 responses than increments in
humans and monkeys (Kremkow et al., 2014), and detection
of 100% contrast decrements embedded in binary noise is more
reliable than detection of 100% contrast increments (Komban et
al., 2014). These high-contrast stimuli will elicit asymmetric
responses in the cones themselves, and cone nonlinearities likely
contribute substantially to downstream signaling. Relatedly,
humans can discriminate visual scenes based on the relative prev-
alence of light and dark patches (Chubb et al., 1994, 2004), and
asymmetries in the cone responses likely contribute to this per-
ceptual phenomenon (Yedutenko et al., 2021).

The cone light-adaptation clamp procedure we introduce here
could help reveal the contribution of the cones to these (and other)
downstream signals. As illustrated in Figure 15, this approach per-
mits identification of stimuli that generate desired cone responses,
for example, symmetrical responses to increments and decrements.
The use of such stimuli while recording responses of downstream
visual neurons or while monitoring perception should help separate
the contributions of cones from those of post-cone circuits. Indeed,
we have used the light-adaptation clamp approach to show an

unexpected role of cone adaptation in how some ganglion cell types
respond to spatial structure in natural inputs (Yu et al., 2021).

Importance of cone adaptation for models of signaling in
retinal ganglion cells

In the past 20years we have seen a dramatic advance in our
understanding of what information retinal ganglion cells provide
to central targets. As a result, ganglion cells serve as a leading
example of how connectivity and signaling mechanisms shape
the outputs of a neural circuit in a behaviorally important man-
ner (Field and Chichilnisky, 2007; Sanes and Masland, 2015).
Nonetheless, current models for feature selectivity by retinal gan-
glion cells generalize poorly to novel stimuli, particularly natural-
istic ones (Heitman et al., 2016; MclIntosh et al., 2016). This
failure to generalize may occur at least in part because current
models lack adaptation in individual cones, instead assuming
that the cones respond linearly across stimuli. Yet, as we show
here, naturalistic stimuli strongly engage adaptation in the cones
(Fig. 2). These considerations suggest that cone adaptation, and
its natural operation on a small spatial scale, will be a key factor
in shaping retinal output signals. For example, our cone model
predicts that patches of natural images with high spatial structure
will produce transient responses when signals from multiple
cones are integrated (Fig. 14). Receptive field subunits created by
nonlinearities at the bipolar output synapse provide another spa-
tially localized mechanism that can shape spatial integration. It
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will be interesting in future work to see how the cone and bipolar
nonlinearities together affect ganglion cell responses.

Better models for ganglion cell function are needed for
improved retinal prosthetics and to determine how key steps in
visual processing are distributed between retinal and cortical
mechanisms. A potential limitation of current models is that
they do not reflect the functional architecture of the underlying
circuits, particularly with respect to the location of key circuit
nonlinearities. Local adaptation is just one example in which get-
ting the order of linear and nonlinear steps correct matters for
predicting output responses. Incorporating the model that we
developed here for nonlinear, adaptive cone signaling into mod-
els for downstream visual neurons could be an important step to-
ward models that generalize across stimuli.
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