Skip to main content
. 2022 Feb 28;34(7):5349–5365. doi: 10.1007/s00521-022-07052-4

Table 10.

Performance comparison of the COVID-19/normal classification in this study according to the literature

Class Subjects Method Prec
(%)
Sens. (%)
or recall
f1-
score
Acc
(%)
Ref

COVID-

19/normal

Dataset 2 DenseNet-201 96.29 96.29 96.29 96.25 Jaiswal et al. [12]

COVID-

19/normal

Dataset 2 VGG19 94.86 94.04 –- 95.0 Panwar et al. [24]

COVID-

19/normal

Dataset 1 CNN 93.0 95.0 –- 78.5 Wu et al. [26]

COVID-

19/normal

Dataset 1 DenseNet-169 –- –- 0.85 0.86 He et al. [25]

COVID-

19/normal

Dataset1:698

349 COVID,349 Non-COVID

Dataset2:2260

1230 COVID,1230 Non-COVID

MobileNetv2, ResNet50 and Deep Features 98.18 98.09 98.12 98.12

Proposed Approach

(MobilNetv2 + SVM)

95.83 95.75 95.77 95.79

Proposed Approach

(MobilNetv2 + kNN)

99.05 99.06 99.06 99.06

Proposed Approach

(ResNet-50 + SVM)

99.38 99.36 99.37 99.37

Proposed Approach

(ResNet-50 + kNN)