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ABSTRACT

Long-read sequencing of transcripts with Pacific Biosciences (PacBio) Iso-Seq and Oxford
Nanopore Technologies has proven to be central to the study of complex isoform landscapes
in many organisms. However, current de novo transcript reconstruction algorithms from
long-read data are limited, leaving the potential of these technologies unfulfilled. A common
bottleneck is the dearth of scalable and accurate algorithms for clustering long reads ac-
cording to their gene family of origin. To address this challenge, we develop isONclust, a
clustering algorithm that is greedy (to scale) and makes use of quality values (to handle
variable error rates). We test isONclust on three simulated and five biological data sets,
across a breadth of organisms, technologies, and read depths. Our results demonstrate that
isONclust is a substantial improvement over previous approaches, both in terms of overall
accuracy and/or scalability to large data sets.

Keywords: algorithms, clustering, long-read sequencing, sequencing data analysis, third-generation

sequencing, transcriptomics.

1. INTRODUCTION

Long-read sequencing of transcripts with Pacific Biosciences (PacBio) Iso-Seq and Oxford Nanopore

Technologies (ONT) has proven to be central to the study of complex isoform landscapes in, for example,

humans (Byrne et al., 2017; Tseng et al., 2017; Nattestad et al., 2018; Sahlin et al., 2018), animals (Kuo et al.,

2017), plants (Hoang et al., 2017), fungi (Gordon et al., 2015), and viruses (Tombácz et al., 2017). Long reads

can reconstruct more complex regions than can short RNA-seq reads because the often complex assembly step

is not required. However, they suffer from higher error rates, which present different challenges. Using a

reference genome can help alleviate these challenges, but, for nonmodel organisms or for complex gene

families, de novo transcript reconstruction methods are required (Sahlin et al., 2018; Marchet et al., 2019).

For nontargeted Iso-Seq data, the commonly used tool for de novo transcript reconstruction is the ToFU

pipeline from PacBio (Gordon et al., 2015). However, ToFU generates a large number of redundant

transcripts (Gordon et al., 2015; Li et al., 2017; Workman et al., 2018), and most studies have had to resort
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to additional short-read sequencing (Li et al., 2017; Liu et al., 2017) or relying on a draft reference (Kuo

et al., 2017). For ONT data, there are, to the best of our knowledge, no methods yet for de novo transcript

reconstruction. Therefore, we believe that the full potential of long-read technologies for de novo transcript

reconstruction from nontargeted data is yet to be fully realized.

Algorithms for this problem are roughly composed of two steps (Gordon et al., 2015; Sahlin et al., 2018).

Since most transcripts are captured in their entirety by some reads, there is no need to detect dovetail

overlaps between reads (i.e., a suffix of one read matching the prefix of another) and to perform subsequent

graph construction and traversal (as in RNA-seq assembly). Instead, the first step is to group reads together

into clusters according to their origin, and the second is to error-correct the reads using the information

within each cluster. This is the approach taken by ToFU, but it clusters reads according to their isoform

(rather than gene) of origin. This separates reads that share exons into different clusters—reducing the

effective coverage for downstream error correction. For genes with multiple isoforms, this significantly

fragments the clustering and, we suspect, causes many of the redundant transcripts that have been reported.

For ONT data, there exists a tool to cluster reads into their gene family of origin (carnac-lr) (Marchet

et al., 2019), but it performed suboptimally in our experiments and scales poorly for larger data sets. Thus,

better clustering methods are needed to realize the full potential of long reads in this setting.

There exists a plethora of algorithms for de novo clustering of generic nucleotide (Li and Godzik, 2006;

Edgar, 2010; Ghodsi et al., 2011; James et al., 2018), and protein sequences (Li and Godzik, 2006;

Paccanaro et al., 2006; Steinegger and Söding, 2017, 2018). Several algorithms have also been proposed for

clustering of specific nucleotide data such as barcode sequences (Zorita et al., 2015), EST sequences

(Christoffels et al., 2001; Dost et al., 2011; Bevilacqua et al., 2014), full-length cDNA (Burke et al., 1999),

RAD-seq (Chong et al., 2012), genomic or metagenomic short reads (Shimizu and Tsuda, 2010; Bao et al.,

2011; Fu et al., 2012; Solovyov and Lipkin, 2013; Comin et al., 2015; Alanko et al., 2017), UMI-tagged

reads (Orabi et al., 2019), full genomes and metagenomes (Ondov et al., 2016), and contigs from RNA-seq

assemblies (Davidson and Oshlack, 2014; Malik et al., 2018).

However, our clustering problem has unique distinguishing characteristics: transcripts from the same

gene have large indels due to alternative splicing, and the error rate and profile differ both between (Sahlin

et al., 2018) and within (Krishnakumar et al., 2018) reads. Furthermore, the large number of reads limits the

scalability of algorithms that require an all-to-all similarity computation. De novo clustering of long-read

transcript sequences has to our knowledge only been studied in Gordon et al. (2015), Sahlin et al. (2018),

and Tseng (2018) for Iso-Seq data and in Marchet et al. (2019) for ONT data. However, neither IsoCon

(Sahlin et al., 2018) nor Cogent (Tseng, 2018) scale to large data sets, and the limitations of ToFu (Gordon

et al., 2015) and carnac-lr (Marchet et al., 2019) have already been described above. In Comin et al.

(2015), the authors demonstrated that using quality values (QVs) can significantly improve clustering

accuracy, especially for higher error rates, but their method was not designed for long reads.

Motivated by the shortcomings of the existing tools, we develop isONclust, an algorithm for clustering

long reads according to their gene family of origin. isONclust is available at https://github.com/ksahlin/

isONclust isONclust is greedy (to scale) and makes use of QVs (to handle variable error rates). We test

isONclust on three simulated and five biological data sets, across a breadth of organisms, technologies,

and read depths. Our results demonstrate that isONclust is a substantial improvement over previous

approaches, both in terms of overall accuracy and/or scalability to large data sets. isONclust opens the

door to the development of more scalable and more accurate methods for de novo transcript reconstruction

from long-read data sets.

2. METHODS

2.1. Definitions

Let r be a string of nucleotides that we refer to as a read. Let q(ri) be the probability of base call error at

position 1 £ i £ jrj. This value can be derived from the Phred QV Q at position i as q(ri) = 10 - (Q=10). Let er

be the average base error rate, �r =
Pjrj

i = 1 q(ri)=jrj. Given two integers w and k such that 1 £ k £ w £ jrj, the

minimizer at position i is the lexicographically smallest substring of r of length k that starts at a position in

the interval of [i, i + w) (Roberts et al., 2004). Let M(r) be the set of ordered pairs containing all the

minimizers of r and their start positions on the read. For example, for r = ACGCCGATC, k = 2, w = 4, we

have M(r) = {(AC, 0), (CC, 3), (AT, 6)}. All the strings of M(r) are referred to as the minimizers of r.
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2.2. isONclust overview

IsONclust is a greedy clustering algorithm. Initially, we sort the reads so that sequences that are longer

and have higher quality scores appear earlier (details in Section 2.3). We then process the reads one by one,

in this sorted order. At any point, we maintain a clustering of the reads processed so far, and, for each

cluster, we maintain one of the reads as the representative of the cluster. We also maintain a hash-table H

such that for any k-mer x, H(x), returns all representatives that have x as a minimizer.

At each point that a new read is processed, isONclust consists of three steps. In the first step, we find the

number of minimizers shared with each of the current representatives, by querying H for each minimizer in

the read and maintaining an array of representative counts. We refer to any representative that shares at

least one minimizer with the read as a candidate. In the second step, we use a minimizer-based method to

try to assign a read to one of the candidate representative’s cluster. To do this, we process the candidate

representatives in the order of most shared minimizers to the least. For each representative, we estimate the

fraction of the read’s sequence that is shared with it (details in Section 2.3). If the fraction is above 0.7, then

we assign the read to that representative’s cluster; if not, we proceed to the next candidate. However, if the

number of shared minimizers with the current representative drops below 70% of the top-sharing repre-

sentative, or below an absolute value of 5, we terminate the search and proceed to the third step.

In the third step, we fall back on a slower but exact Smith–Waterman alignment algorithm. If two

transcripts have highly variable exon structure or contain many mutations (e.g., multicopy genes or highly

mutated allele), then it could create long regions of no shared minimizers and prevent the minimizer

matching approach from detecting the similarity. An alignment approach is more sensitive and can detect

that they should be clustered together. To control the runtime, we align the read only to the representative

with the most shared minimizers (several in the case of a tie). Similar to the second step, we estimate the

fraction of the read’s sequence that is shared with the representative (details in Section 2.3), and if the

quality is above a threshold (details in Section 2.3), the read is assigned to that representative’s cluster.

Otherwise, the read is assigned to a new cluster and made its representative.

2.3. isONclust in-depth

2.3.1. Homopolymer compression. An important aspect of isONclust is that reads are homopol-

ymer compressed, that is, all consecutive appearances of a base are replaced by a single occurrence. For

example, the sequence GCCTGGG is replaced by GCTG. When a homopolymer is compressed, the base

quality assigned to the compressed base is taken as the highest quality of the bases in the original

homopolymer region. The reason for using the highest QV is that it is a lower bound on the presence of at

least one nucleotide in that run. The homopolymer compression removes a large amount of homopolymer

indel errors during minimizer matching or alignment and at the same time removes repetitive minimizers

(from, e.g., poly-A tails). We borrowed this idea from Au et al. (2012) and Li (2018), where it was used to

improve the sensitivity of PacBio read alignment.

2.3.2. Sorting order. Before greedily traversing the reads, we sort them in decreasing order of their

score. We define the score s(r) of a read r as the expected number of error-free k-mers in r. Let Xi be a

binary indicator variable modeling the event that the k-mer starting at position i of r has no sequencing error

(Xi = 1). Then, we have

s(r) = E
Xjrj- k + 1

i = 1

Xi

" #
=
Xjrj - k + 1

i = 1

E[Xi] =
Xjrj - k + 1

i = 1

Yk - 1

j = 0

(1 - q(ri + j))

The score of a read can be quickly computed in a linear scan by maintaining a running product over a

sliding window of k quality scores.

The ordering produced by this score function is crucial for the accuracy of our greedy approach. Observe

that our algorithm never recomputes which read in a cluster is the representative, and all future reads are

compared only with a cluster’s representative and not to other reads in the cluster. This is done for the sake

of efficiency, but, as a downside, once a read initiates a new cluster, it becomes its representative forever.

However, our score function guarantees that it will have the largest expected number of error-free k-mers of

any future read in the cluster. In the case of alternatively spliced genes, this means that the representative

likely contains the most complete exon repertoire of the gene. This allows us to make the assumption that
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all exon differences during minimizer matching or alignment are encountered as deletions with respect to

the representative. In both the matching and alignment parts, we will therefore not penalize for long

deletions in the read. We do penalize for insertions in reads with respect to representatives because we

assume that they cannot be due to exon differences. We note that in the cases that our assumption does not

hold (e.g., when several exons are not present in the longest isoform), we may miss some matches and/or

alignments. However, we do tolerate some fraction of unmatched sequence in later steps.

2.3.3. Estimating fraction of shared sequence, based on a minimizer match. Consider a read r, a

representative c, the set M(r), and the minimizers of r that are shared with c. We would like to quickly

estimate the fraction f of rs sequence that would align to c, if an alignment were to have been performed.

When two consecutive minimizers in M(r) match c, we simply count the sequence spanned between their

positions toward f. For the harder case, consider a sequence of i consecutive unmatched minimizers in r that

are flanked on both sides by either a matched minimizer or the end of the read. We must decide if this is due

to the region being unalignable or due to true sequencing errors. Let p(er, ec) be the probability that a

minimizer in a read is not matched to another read, given that they are both generated from the same

transcript with respective error rates er and ec. Then, the probability that i consecutive minimizers of r are

unmatched as a result of sequencing error can be estimated as p(�r‚ �c)i. If this probability is above 0.1, we

count the whole region toward f, otherwise we do not.

2.3.4. Estimating minimizer mismatch rate. Deriving an analytical formula for p(er, ec) is a

challenge, as the probability of observing a spurious minimizer in a window is a complex function

depending on, for example, the sequence of the true minimizer in the window, the sequence in the window,

the error profile, and the properties of homopolymer compression. Instead, we use simulations to create a

lookup table for p. We randomly generate a transcript of length 1 kbp and, from that transcript, two reads

r and c with error rates er and ec, respectively. The errors are equally distributed between insertion and

deletion errors since Iso-Seq and ONT errors are dominated by indels. Further customization of the error

profile to more accurately reflect the technology is possible, but we found that it had little effect. We then

homopolymer compress the reads and count the fraction of rs minimizers that do not match c. We repeat

the process 1000 times, each time starting with a new transcript. The average fraction of nonmatching

minimizers is used as the estimate for p(er, ec). We precomputed the lookup table for a range of er and ec

values that we observe in practice, but it can also be computed on the fly for data sets outside of these

ranges.

2.3.5. Estimating fraction of shared sequence, based on the alignment. When the minimizer

matching approach fails to find a match, isONclust aligns the read r to the most promising representative

c using the parasail (Daily, 2016) semiglobal implementation of Smith–Waterman (start or end insertions in

either sequence are not penalized). Let e = er + ec be the combined error rate of r and c. The parameters to

Smith–Waterman are described in the experimental appendix (Sahlin and Medvedev, 2019) and are a

function of e. Based on this alignment, we would like to estimate the fraction of r whose alignment to

c is consistent with having the same underlying sequence but allowing sequencing errors (i.e., the same

goal as we had during minimizer matching). We aim to tolerate a mismatch rate of e. Consider the

pairwise alignment A, represented as a matrix where the two rows correspond to r and c, and each cell

contains a symbol indicating a match, mismatch, or a gap. Consider a window of k columns in A starting

at position i of r. Let Wi = 1 if the number of columns in the window that are not matched is � Ø�kø;

otherwise, let Wi = 0. We let the shared fraction f =
Pjrj - k + 1

i = 1 Wi

� �
=jr - k + 1j and add r to the cluster of c

if f is above 0.4.

2.3.6. Time complexity. Our tool is a greedy heuristic, and hence, it is challenging to derive a worst-

case runtime that is informative. We attempt to do so by parametrizing our analysis and fixing the number of

representatives identified as candidates for a read as d. The initial sorting step takes O(n log n) time. Then for

each read, the identification of minimizers takes O(‘) time, where ‘ is the read length. Here, we treat w and k

as constants. There are at most ‘ minimizers, and each one hits at-most d representatives; hence, identifying

candidate representatives takesO(‘d) time. Ranking the candidate representatives can be done using counting

sort in O(d) time. For minimizer matching, each of the at-most d candidates can be processed using a linear
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scan through the read, leading to a total ofO(‘d) time. The alignment step is done only once and is dominated

by the O(‘2) Smith–Waterman time. Hence, the total runtime is O(n log n + n‘d + n‘2). In the worst case, d

can be O(n), but it is much less in practice.

2.3.7. Parameters and thresholds. The only parameters to isONclust are the window size w and

the k-mer size k. We found through trial-and-error that k = 15 and w = 50 work well for Iso-Seq data, and

k = 13 and w = 20 work well for ONT data. Note that these lengths are applied for homopolymer compressed

reads, and thus, a 13-mer is likely to be much longer in the original read. There are also several other hard

thresholds used by isONclust, as described above. We set these through a mix of intuition and testing on

simulated data; nevertheless, we found that isONclust is robust to these thresholds. In particular, we did

not vary them for any of our experiments, which included a diverse collection of real data sets. We

therefore do not recommend users to change these thresholds.

3. RESULTS

3.1. Experimental setup

3.1.1. Data sets. We used eight data sets, to test the robustness of isONclust with respect to different

technologies, organisms, and read depths (Table 1). We first simulated 3 Iso-Seq read data sets from 107,844

unique cDNA sequences from ENSEMBL using SiMLOrD (Stöcker et al., 2016). The data sets contained

100,000, 500,000, and 1,000,000 reads that were simulated with uniform distribution over the cDNA frag-

ments. Next, we included a semibiological Iso-Seq data set (denoted RC0) where the transcripts are syn-

thetically produced, but then sequenced with Iso-Seq using the PacBio Sequel system. Then, we added three

fully biological Iso-Seq data sets: PacBio Sequel data sets from a zebra finch and a hummingbird, and a

PacBio RSII system data set from human brain tissue from an Alzheimer patient (denoted ALZ). Finally, we

included an ONT data set of human cDNA sequenced with a MinION, which exhibits a different error profile

and higher error rates than Iso-Seq. The nonsimulated Iso-Seq and ONT data sets are publically available at

Tseng and Loman et al., respectively.

3.1.2. Tools. The authors of carnac-lr (Marchet et al., 2019) observed the inability of most clus-

tering tools designed for other purposes (Li and Godzik, 2006; Bao et al., 2011; Chong et al., 2012; Zorita

et al., 2015) to run on long-read transcriptomic data. However, we did consider four additional such tools:

qCluster (Comin et al., 2015), linclust (Steinegger and Söding, 2018), DNACLUST (Ghodsi et al., 2011),

and MeShClust ( James et al., 2018). We also considered four tools specifically designed for long-read

transcriptome data (carnac-lr, IsoCon, isoseq3-cluster, and Cogent). Isoseq3-cluster (which we will refer

Table 1. Data Sets Used for Evaluation

Data set

Avg error

rate (%)

No. of classes No. of reads
% reads

in NS classesNS S Total Unaligned

ALZ 1.7 13,350 10,187 814,667 98 98.7

RC0 1.2 11,052 9119 185,790 11,423a 88.9

HUM 1.8 13,683 4450 288,699 3882 97.1

ZEB 1.9 12,891 4936 309,749 129 98.4

SIM-100k 1.9 9106 3351 100,000 4 96.6

SIM-500k 1.9 14,792 2152 500,000 4 99.6

SIM-1000k 1.9 16,510 1594 1,000,000 4 99.8

ONT 12.9 14,863 13,665 890,503 38,061 94.2

The error rate of a read is estimated by summing the probability of a base call error (obtained from

the QV) over all bases in a read, divided by the read length. The error rate is estimated on original

reads (without homopolymer compression). The average error rate per data set is computed by

averaging the estimated error rate over all reads in the data set. A singleton class (S) refers to a class

that contains only one read, and a nonsingleton class (NS) refers to a class with more than one read.
aMany of these originated from the synthetic spike-in nonhuman transcripts.

ALZ, Alzheimer; HUM, hummingbird; ONT, Oxford Nanopore Technologies; QV, quality

value; ZEB, zebra finch.
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to simply as isoseq3) is the clustering tool used in the most recent version of PacBio’s de novo transcript

reconstruction pipeline. Out of these eight tools, we found that only three (carnac-lr, isoseq3, and

linclust) could process our two smallest data sets (SIM-100k and RC0). We therefore only include these

tools in our final evaluations. Command lines and parameter settings for the tools we ran are described in

the experimental appendix (Sahlin and Medvedev, 2019).

3.1.3. Ground truth. Since the true clustering is not known, we use a clustering based on align-

ments to the reference genome as a proxy. We first align the reads with minimap2 (Li, 2018) to the

reference genome [hg38 for human, Tgut_diploid_1.0 for zebra finch (Korlach et al., 2017), and Can-

na_diploid_1.0 for hummingbird (Korlach et al., 2017)], with different parameters for Iso-Seq and ONT

data [for details, see Sahlin and Medvedev (2019)]. The aligned reads are then clustered greedily by

merging the clusters of any two reads whose alignments overlap. We refer to the cluster of a read

obtained via this alignment to the reference as the class of the read. Reads that could not be aligned and

hence could not be assigned to a class were excluded from all downstream accuracy evaluations. Some

class metrics for the data sets are shown in Table 1.

Using alignments to the reference to define classes is an imperfect proxy of the true clustering. There are

likely systemic misalignments due to gene sequence content, artifacts of the aligner, or chimeric reads due

to, for example, reverse transcription errors. Thus, our approach does not yield a reliable estimate for the

absolute performance of a tool, but we believe it is a reasonable proxy to access the relative performance

between different tools.

3.1.4. Evaluation metrics. There exists several metrics to measure quality of clustering. We mainly

use the V-measure and its two components completeness and homogeneity (Rosenberg and Hirschberg,

2007). Let X be an array of n integers, where n is the number of reads and the ith value is the cluster id given

by a clustering algorithm. Similarly, let Y be an array with the assigned ground truth class ids of the reads,

ordered as in X. Homogeneity is defined as h = 1 - H(Y jX)/H(Y) and completeness as c = 1 - H(XjY)/H(X).

Here, H(*) and H(*j*) refer to the entropy and conditional entropy functions, respectively (Rosenberg and

Hirschberg, 2007). Intuitively, homogeneity penalizes overclustering, that is, wrongly clustering together

reads, while completeness penalizes underclustering, that is, mistakenly keeping reads in different clusters.

The V-measure is then defined as the harmonic mean of homogeneity and completeness. These are analogous

to precision, recall, and F-score measures for binary classification problems. We chose the V-measure metric

as it is independent of the number of classes, the number of clusters, and the size of the data set—and can

therefore be compared across different tools (Rosenberg and Hirschberg, 2007). Moreover, it can be de-

composed in terms of homogeneity and completeness for a better understanding of the algorithm behavior.

To avoid bias with respect to a single accuracy measure, we also included the commonly used adjusted

Rand index (ARI) (Hubert and Arabie, 1985). Intuitively, ARI measures the percentage of read pairs

correctly clustered, normalized so that a perfect clustering achieves an ARI of 1 and a random cluster

assignment achieves an ARI of 0. The formal definition is more involved (Hubert and Arabie, 1985) and,

since it is standard, we omit it here for brevity.

In addition, we measure the percent of reads that are in nonsingleton clusters. Since the coverage per

gene is sufficiently high in all our data sets, the percentage of reads that are in nonsingleton classes is high

(89%–100%, Table 1). Thus, any reads in singleton clusters in excess of this amount are indicative of reads

that likely could have been clustered by the algorithm, but did not. Finally, we measure the runtime

(Table 2) and memory usage (Table 3) of all the experiments.

3.2. Comparison against other tools

The most direct comparison of our tool is to carnac-lr, which solves the same problem we do. One of its stated

limitations is a worst-case cubic runtime (Marchet et al., 2019), and we indeed observe that it does not scale well

with growing sizes of our data sets (Table 2). For the largest Iso-Seq data set (ALZ, 814k reads), carnac-lr did not

complete within 10 days. For the other two large data sets (SIM-1000k and ONT), carnac-lr was >6 · and

>3 · slower than isONclust, respectively. In terms of accuracy, carnac-lr performed reasonably well but always

had a lower V-measure and ARI than isONclust. carnac-lr also placed less reads in nonsingleton clusters than

isONclust. For the ONT data, in particular, it was only able to place 54% of the reads into nonsingleton clusters

(compared with 94.5% for isONclust), even though 94.2% of the reads were in nonsingleton classes (Table 1).
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isoseq3 solves a slightly different problem than isONclust: its objective is to cluster reads together from the

same isoform of a gene, rather than from the same gene family (i.e., in the case of alternative splicing, it will have

separate clusters for each isoform). Thus, completeness, V-measure, and ARI with respect to our ground truth

are not fair metrics by which to evaluate isoseq3. Nevertheless, isoseq3 leaves many reads unclustered: 26%–

36% of the reads from the real data sets and 53%–89% of the reads from the simulated data sets (Table 4). In

some cases, this could be caused by low coverage per isoform; however, SIM-1000k contains on average nine

reads per isoform, which should enable an algorithm to cluster substantially more than 53% of the reads. In terms

of homogeneity, isoseq3 slightly outperforms isONclust, indicating that isoseq3 is the right tool if the goal is a

conservative clustering. isoseq3 is designed for only Iso-Seq data and is thus not run on the ONT data set.

Finally, we compare against linclust, which has a generic objective to cluster any sequences above a

given sequence similarity and coverage. We explored several combinations of parameters to achieve the

best results [more details in Sahlin and Medvedev (2019)]. While linclust was the fastest tool, it has

substantially worse accuracy on Iso-Seq data than other tools and was able to cluster only 0.1% of the ONT

reads. This is not surprising, given that it was not designed for transcriptome data.

3.3. Performance observations

3.3.1. Scalability. For Iso-Seq, we can use the simulated data, which only varies in read depth, to

conclude that isONclust has linear scaling with respect to the number of reads (Table 2). The absolute

runtime is 3.1 hours for the largest Iso-Seq data set, which is acceptable but could be further improved

through parallelization or code optimization. For ONT data, the dearth of mature transcriptomic read

Table 3. Peak Memory Usage

for the Clustering Algorithms

Data set

Memory (Gb)

isONclust isoseq3 carnac-lr linclust

ALZ 1.9 5.3 N/A 9.8

RC0 0.4 1 0.9 1.6

HUM 0.8 2.8 6.2 4.6

ZEB 0.9 3 3.4 5

SIM-100k 0.3 0.6 0.5 0.9

SIM-500k 0.8 2.7 2.3 4.4

SIM-1000k 1.8 5.1 5.9 8.9

ONT 1.6 N/A 3.9 2.9

isONclust was run on one core. The other tools were run with eight

cores specified.

Table 2. Runtime for the Clustering Algorithms

Data set

Runtime (minutes)

isONclust isoseq3 carnac-lr linclust

ALZ 173 194 >14,400a 132

RC0 40 11 7 8

HUM 105 53 105 33

ZEB 130 58 689 35

SIM-100k 26 5 4 4

SIM-500k 111 58 187 28

SIM-1000k 185 223 1271 67

ONT 1,630 N/A 5053 39

isONclust was run on one core. The other tools were run with

eight cores specified. Runtime for carnac-lr includes mapping

time with minimap.
aThe run was terminated after 10 days. At that state, minimap

had already completed but carnac-lr was still running.

Bold values indicate lowest memory consumption and running

time for each dataset.

478 SAHLIN AND MEDVEDEV



simulators makes a controlled evaluation of scalability challenging. Although we are 3 · faster than

carnac-lr on our data set, the absolute runtime is still fairly high (27.2 hours) and improving it is an

immediate future goal. We expect that parallelization will yield significant speedups, keeping in mind that

other tools were run on eight cores compared with only one core for isONclust (Table 2). Memory

consumption was relatively low for all tools, with isONclust consuming the least memory (Table 3).

Table 4. Performance and Accuracy of the Tools on Our Data Sets

Data set Tool

Accuracy
%NS

No. of clusters

V c h ARI Reads NS S

ALZ isONclust 0.944 0.899 0.993 0.630 96.1 23,265 32,169

isoseq3 0.813 0.686 0.998 0.423 73.9 63,512 212,246

linclust 0.839 0.725 0.996 0.518 80.8 57,942 156,476

RC0 isONclust 0.977 0.961 0.994 0.804 90.1 12,513 18,459

isoseq3 0.923 0.859 0.997 0.640 66.6 14,025 62,085

carnac-lr 0.94 0.904 0.98 0.346 82.4 11,002 32,778

linclust 0.933 0.877 0.996 0.566 77.7 18,116 41,363

HUM isONclust 0.958 0.971 0.947 0.716 97.3 12,140 7773

isoseq3 0.88 0.805 0.97 0.486 67.2 24,171 94,558

carnac-lr 0.934 0.944 0.924 0.489 93.3 9565 19,323

linclust 0.888 0.825 0.962 0.462 78.9 28,066 61,046

ZEB isONclust 0.965 0.965 0.965 0.809 97.1 12,767 8949

isoseq3 0.878 0.79 0.986 0.476 64.5 24,097 110,028

carnac-lr 0.93 0.94 0.92 0.401 93.4 9315 20,555

linclust 0.881 0.801 0.979 0.455 76.1 31,119 74,119

SIM-100k isONclust 0.984 0.987 0.981 0.829 96.7 8931 3346

isoseq3 0.863 0.76 0.998 0.007 10.9 5013 89,114

carnac-lr 0.979 0.99 0.969 0.734 96.1 8165 3945

linclust 0.911 0.845 0.988 0.258 76.5 17,856 23,478

SIM-500k isONclust 0.984 0.988 0.98 0.831 99.5 13,996 2274

isoseq3 0.809 0.681 0.995 0.006 33.1 68,704 334,547

carnac-lr 0.971 0.974 0.967 0.695 97.1 12,761 14,527

linclust 0.895 0.82 0.985 0.263 89.8 48,608 51,026

SIM-1000k isONclust 0.984 0.988 0.98 0.832 99.8 15,590 1945

isoseq3 0.788 0.654 0.993 0.006 46.8 180,629 532,410

carnac-lr 0.958 0.949 0.967 0.674 94.3 14,423 56,502

linclust 0.89 0.813 0.984 0.264 91.8 68,752 81,641

ONT isONclust 0.886 0.825 0.957 0.353 94.5 39,464 48,935

carnac-lr 0.797 0.669 0.984 0.095 54.2 27,483 408,270

linclust 0.72 0.563 1 <0.001 0.1 516 889,346

%NS is the percentage of reads in nonsingleton clusters. The number of clusters is split between

NS (nonsingleton clusters) and S (singleton clusters).

ARI, adjusted Rand index.

Bold values indicate best clustering metric for each dataset.

FIG. 1. Completeness and homogeneity of isONclust across various class sizes.
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3.3.2. Role of class size. We investigated if isONclust’s clustering accuracy is affected by the class

size (i.e., the number of reads present in a class). We binned the reads according to ranges of class size and

computed the completeness and homogeneity with respect to each bin (Fig. 1). The completeness clearly

decreases with increased class size, indicating that isONclust tends to have more fragmented clusters as

the class size increases. Homogeneity has no clear trend for class sizes up to 50, but decreases after that.

3.3.3. Role of read error rates. Base errors pose a challenge to any clustering algorithm, so we

measured how they affected our accuracy. We batch reads with respect to their error rate and measure the

ARI within each batch (Fig. 2, left panel). For Iso-Seq, isONclust has relatively stable ARI across

different error rates (with ALZ being the exception), which we believe is due to our algorithm’s use of QVs.

This is not true for ONT, where error rates of 7%–20% have a detrimental effect on isONclust. Never-

theless, compared with carnac-lr, isONclust has a substantially higher ARI across error rates, data sets,

and technologies (Fig. 2, right panel); for example, for the ONT data set, isONclust does better at 20%

error rate than carnac-lr does at 7%.

3.3.4. Breakdown of algorithm stages. For each read, isONclust either assigns it to a new cluster

or to an existing cluster. If the read goes to an existing cluster, then it is either by minimizer matching or by

alignment. We measure the distribution of reads into these three cases for all our data sets (Fig. 3). For the

nonsimulated Iso-Seq data, alignment was invoked only 6%–10% of the time. However, for the ONT and

simulated Iso-Seq data, alignment was invoked more frequently (22%–34%), indicating room for future

runtime improvement.

3.3.5. Role of QVs for clustering. isONclust uses QVs in the reads to both sort the reads in order

of processing and to dynamically change the thresholds of what is considered shared sequence based on the

error rate of the reads. To study how QVs affect the clustering quality and runtime of isONclust, we used

FIG. 2. Accuracy (measured by the ARI) of isONclust and carnac-lr as a function of error rates. The read error

rate is inferred by isONclust. Reads are binned according to their error rate, rounded to the nearest two decimal points.

Data points for where there are at least 1000 reads are shown. ARI, adjusted Rand index.

FIG. 3. Distribution of the stages of our algorithm. A

read is either minimizer-matcher or aligned to an ex-

isting cluster, or a new cluster is formed.
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the original reads in the ALZ and ONT data sets, but inserted fixed QVs of 7, 10, 20, and 30 corresponding

to average error rates of 0.2, 0.1, 0.01, and 0.001, respectively. Fixed QVs will have two effects on the

clustering: (1) the reads will be sorted (hence processed) in order of length, and (2) the same thresholds for

what is considered ‘‘shared sequence’’ is applied to all reads. The results are shown in Table 5.

For the ALZ data set, we can see that both clustering quality and runtime are highest for the lowest QVs

(even higher than for the real data set, Table 4). This suggests that when the true quality of reads is already

high, it is safe to be lenient with the clustering thresholds. With higher QVs, the accuracy of isONclust

drops. For the highest QV in this simulation (Phred quality score 30), isONclust clusters only 21% of the

reads. Notice that the runtimes for ALZ are significantly higher than for the true QVs, this is a combination

of more calls to the alignment module for failed matches (with higher QVs) and inefficient sorting order

(more comparisons with longer sequences). For the ONT data set that has a relatively high true error rate,

using a fixed QV of 7 negatively affects the V-measure (both completeness and homogeneity) but achieves

higher ARI compared with isONclust’s design of dynamic usage of QVs. For a QV of 10, both the V-

measure and the ARI are lower than the original version of isONclust. For the data sets with QVs of 20

and 30, isONclust rejects most matchings because of the true error levels and each read forms its own

representative. This greatly decreases performance and isONclust is not able to produce results in 7 days.

The poor runtime occurs as isONclust needs to run the costly alignment step for each read, and second, the

minimizer database will be large and generate a large number of possible matches for each read. Using the

original QVs overall provides the best runtime and quality trade-off.

4. CONCLUSION

In this article, we presented isONclust, a clustering tool for long-read transcriptome data. The design

choices of our algorithm are mostly driven by scaling and the desire to use QVs. To scale, we made the

algorithm greedy so that it can avoid doing an all-to-all similarity comparison. We avoid the natural but time-

consuming step of recomputing the best representative within a cluster after each update. Our initial sorting

step mitigates the potentially negative effects of this by making sure that the representative is guaranteed to

have the largest expected number of error-free k-mers among all reads in the cluster. Furthermore, we avoid

the expensive alignment step whenever possible by using minimizer matching. In terms of QVs, we use them

throughout the algorithm, including in the initial sorting step, in deciding whether mismatched minimizers are

the result of sequencing error, and in computing pairwise alignment. The use of QVs is critical to the success

of our algorithm and to its ability to handle both PacBio and Nanopore data.

Our results indicate that isONclust is a substantial improvement over existing methods, with higher

accuracy and/or better scaling than other comparable tools. We also demonstrated that isONclust per-

forms well across a breadth of instruments (PacBio’s Sequel, PacBio’s RSII, and Oxford Nanopore),

Table 5. Performance and Accuracy of isONclust

for the ALZ and Oxford Nanopore Technologies Data Sets

Using Reads with Fixed Quality Values

Data set QV

Accuracy
%NS

reads

No. of clusters
Runtime

(minutes)V c h ARI NS S

ALZ 7 0.945 0.910 0.982 0.688 96.9 20,869 25,392 227

ALZ 10 0.942 0.899 0.99 0.676 96.4 23,325 29,316 265

ALZ 20 0.922 0.862 0.992 0.611 95.1 27,968 39,895 556

ALZ 30 0.705 0.544 0.999 0.020 21.1 7867 642,658 283

ONT 7 0.845 0.790 0.909 0.438 95.2 38,510 42,544 1467

ONT 10 0.868 0.790 0.963 0.299 90.7 45,493 82,530 2641

ONT 20 — — — — — — — >10,080

ONT 30 — — — — — — — >10,080

%NS is the percentage of reads in nonsingleton clusters. The number of clusters is split between

NS (nonsingleton clusters) and S (singleton clusters).

ALZ, Alzheimer.
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organisms (human, zebra finch, and hummingbird), with each also having a different quality of reference

for estimating the ground truth, and read depths (from 100k to 1 million reads). In all these scenarios,

isONclust outperforms others on all relevant accuracy metrics, with the exception that isoseq3 produces a

more homogeneous clustering (although at the cost of clustering much fewer reads).

Ultimately, we would like to combine isONclust with a postclustering error-correcting module to

reconstruct transcripts de novo from nontargeted Iso-Seq and ONT data. We have previously taken this

approach in our IsoCon tool (Sahlin et al., 2018) for targeted Iso-Seq data. IsoCon, however, is not able to

scale to the much larger nontargeted data sets and to the higher error rates of ONT. With the development

of isONclust, we are now able to overcome these challenges in the clustering step. Our next step is to

tackle the error correction problem within each cluster. The ultimate goal is to develop a tool for de novo

transcript reconstruction, which will be the first such tool for ONT data and an improvement over other

methods for Iso-Seq data.
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Tombácz, D., Csabai, Z., Sz}ucs, A., et al. 2017. Long-read isoform sequencing reveals a hidden complexity of the

transcriptional landscape of herpes simplex virus type 1. Front. Microbiol. 8, 1079.

Tseng, E. Iso-Seq in house datasets. Available at: https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki/Iso-Seq-

in-house-datasets. Accessed February 12, 2020.

DE NOVO CLUSTERING OF LONG-READ TRANSCRIPTOME DATA 483

https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md
https://github.com/ksahlin/isONclust/wiki/Paper-Appendix
https://github.com/ksahlin/isONclust/wiki/Paper-Appendix
https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki/Iso-Seq-in-house-datasets
https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki/Iso-Seq-in-house-datasets


Tseng, E. 2018. Cogent: Coding genome reconstruction using iso-seq data. Available at: https://github.com/Magdoll/

Cogent. Accessed February 12, 2020.

Tseng, E., Tang, H.-T., AlOlaby, R. R., et al. 2017. Altered expression of the fmr1 splicing variants landscape in

premutation carriers. Biochim. Biophys. Acta 1860, 1117–1126.

Workman, R.E., Myrka, A.M., Wong, G.W., et al. 2018. Single-molecule, full-length transcript sequencing provides

insight into the extreme metabolism of the ruby-throated hummingbird archilochus colubris. Gigascience 7, giy009.

Zorita, E., Cusco, P., and Filion, G.J. 2015. Starcode: Sequence clustering based on all-pairs search. Bioinformatics 31,

1913–1919.

Address correspondence to:

Dr. Kristoffer Sahlin

Department of Mathematics

Science for Life Laboratory

Stockholm University

106 91 Stockholm

Sweden

E-mail: ksahlin@math.su.se

484 SAHLIN AND MEDVEDEV

https://github.com/Magdoll/Cogent
https://github.com/Magdoll/Cogent

