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Abstract

We present 3D virtual pancreatography (VP), a novel visualization procedure and application 

for non-invasive diagnosis and classification of pancreatic lesions, the precursors of pancreatic 

cancer. Currently, non-invasive screening of patients is performed through visual inspection 

of 2D axis-aligned CT images, though the relevant features are often not clearly visible nor 

automatically detected. VP is an end-to-end visual diagnosis system that includes: a machine 

learning based automatic segmentation of the pancreatic gland and the lesions, a semi-automatic 

approach to extract the primary pancreatic duct, a machine learning based automatic classification 

of lesions into four prominent types, and specialized 3D and 2D exploratory visualizations of the 

pancreas, lesions and surrounding anatomy. We combine volume rendering with pancreas- and 

lesion-centric visualizations and measurements for effective diagnosis. We designed VP through 

close collaboration and feedback from expert radiologists, and evaluated it on multiple real-world 

CT datasets with various pancreatic lesions and case studies examined by the expert radiologists.
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1 Introduction

Pancreatic cancer (PC) is among the most aggressive cancers with less than 10% survival 

rate over a 5-year period [1]. Such low rate is partially attributed to the asymptomatic 

nature of the disease, leading to most cases remaining undetected until late stage. Early 

detection and characterization of distinctive precursor lesions can significantly improve 

the prognosis of PC. However, accurate characterization of lesions on CT scans is 

challenging since the relevant morphological and shape features are not clearly visible in 

conventional 2D views. These features also overlap between lesion types making a manual 

assessment subject to human errors and variability in diagnosis: the diagnostic accuracy of 

experienced radiologists is within 67–70% range [2]. A designated system with tools and 

3D visualizations developed specifically for the detection, segmentation and analysis of the 

pancreas and lesions, which are inherently 3D, could provide additional diagnostic insights, 

such as the relationship between the lesions and pancreatic ducts which often is difficult to 

establish on traditional 2D views (Fig. 1). To the best of our knowledge, there are currently 

no such visualization systems.

Pancreatography is an invasive endoscopic procedure to diagnose the pancreas. We have 

developed instead a non-invasive computer-assisted procedure using a CT scan, hence the 

term virtual pancreatography (VP). It employs a comprehensive visualization system that 

automatically segments the pancreas and pancreatic lesions, and automatically classifies 

the segmented lesions being one of four prominent types. It incorporates tools for user-

assisted extraction of the primary duct, and provides effective exploratory visualizations 

of the pancreas, lesions, and related features. VP combines 3D volume rendering and 

2D visualizations constructed through multi-planar reformation (MPR) and curved planar 

reformation (CPR) to provide better mappings between 3D visualization and raw CT 

intensities. Such mappings allow radiologists to effortlessly inspect and verify 3D regions of 

interest using familiar 2D CT reconstructions. VP was designed through close collaboration 

and feedback from collaborating radiologists, which we discuss throughout the paper. Our 

contributions include:

• To the best of our knowledge, VP is the first end-to-end visualization system for 

diagnosis of pancreatic lesions, including: automatically segmenting pancreatic 

structures, automatically classifying lesions, exploratory 3D/2D visualizations, 

and automatic/manual measurements.

• Novel and efficient model for the automatic segmentation of diseased pancreas 

and pancreatic lesions and a universal training procedure, which speeds up the 

convergence, including for small targets, such as lesions.

• Semi-automatic approach for extraction of the pancreatic duct; and novel 

approach to modeling the pancreas centerline by weighting both the duct and 

pancreas geometry.

• Enhancement and visualization of internal lesion features (e.g., cystic and solid 

sacs, septation, calcification).
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• 3D and 2D curved planar reformation (CPR) views for the visualization of 

duct-lesion relationship.

• Evaluation through case studies of real-world diseased pancreas datasets and 

expert radiologists’ feedback.

2 Related Work

Visual Diagnosis Systems.

Technological progress in image acquisition, processing, and visualization has enabled 

fundamentally new medical virtual diagnosis and virtual endoscopy [3]. For instance, virtual 

colonoscopy (VC) [4–6] is a well-established technique for evaluation of colorectal cancer 

that are highly effective using advanced visualization methods, such as electronic biopsy 

[7], colon flattening [8, 9], and synchronized display of two (e.g., prone, supine) scans [10]. 

Similarly, virtual endoscopy has been applied to bronchoscopy [11, 12], angioscopy [13, 

14], and sinus cavity [15, 16]. Prostate cancer visualization [17, 18] and mammography 

screening are examples where rendering [19, 20] and machine learning techniques [21] 

assist clinicians in decision-making. Specialized visualizations have also been used in 

surgical [22] and therapy planning [23]. 3D visualization was utilized in contrast enhanced 

rat pancreas [24], and MR microscopy for micro scale features in mouse pancreas [25]. 

However, to our knowledge, there are currently no comprehensive visual diagnosis systems 

for non-invasive screening and analysis of pancreatic lesions in humans. VP is an end-to-end 

visualization system that is designed for ease of use and effective diagnosis of PC.

Visual Reformation and Illustrations.

Visual reformations such as volumetric re-sectioning, CPR [26–28], and volumetric 

reformations [29–32] introduce deliberate simplifications to spatial data that reduce visual 

complexity, overcome occlusion, and minimize required interactions. Centerlines are well 

suited to describe tube-like anatomical structures such as ducts, vessels, nerves, the colon, 

and elongated muscles [33], and can be leveraged to deform 3D structures into planar views 

[10, 26, 34]. The encoded local volumetric information can help in detecting abnormalities 

in vascular structures, such as stenosis [35] and aneurysms [36]. VP introduces pancreas-

specific novel visualizations (e.g., duct-centric CPR and re-sectioning views), built upon 

principles of such reformation and exploratory techniques.

Pancreas Segmentation.

Segmentation of the pancreas and its lesions is critical for supporting ready-to-use, clutter-

free 3D visualizations for diagnosis due to its deep-seated position in the abdomen. It also 

supports quantitative assessment such as lesion classification and measurements. Most of 

recent works on automatic pancreas segmentation can be classified into (1) models based 

on probabilistic atlases [37–39] and statistical shape models [40], which heavily rely on the 

computationally expensive and often imperfect volumetric registration step; and (2) machine 

learning-based models utilizing coarse-to-fine segmentation pipelines [41–44] or subsequent 

conditional random field frameworks for output refinement [45]. However, these methods 

were only evaluated on healthy pancreata. Thus, they might be unsuitable for segmenting 
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diseased pancreas and lesions, considering the associated challenges, such as severe intra-

patient variability in appearance, size, and shape. Moreover, the small footprint of pancreatic 

lesions on CT scans complicates the segmentation problem further as traditional techniques 

are sensitive to target size. A few works acknowledges these challenges, proposing intricate 

and highly tailored solutions for lesion segmentation [46].

Unlike previous works, which propose complex, multi-stage, and meticulously tailored 

segmentation solutions, we describe an efficient ConvNet-based segmentation model, a 

neural network with convolutional layers, with an unorthodox training procedure which 

alleviates the detrimental effects of small footprints of target structures.

Lesion Classification.

The use of computer-aided diagnosis (CAD) for lesion classification may not only assist 

radiologists but also reduces the subjectivity of lesion differentiation. Although many 

CAD systems have been proposed for benign and malignant masses in various organs, the 

number of pancreas-specific solutions is limited. Some focus only on classifying pancreatic 

cystic neoplasms, utilizing off-the-shelf ConvNets [47] and support vector machine (SVM) 

classifiers [48], while others use complex ConvNets based on lesion CT appearance [49]. 

Our VP integrates a highly reliable module for classification of the four most common 

pancreatic lesion types [50, 51]. A Bayesian combination of a probabilistic random forest 

and a custom ConvNet leverages the multi-source data, analyzing patients’ demographics 

and the raw CT, to obtain a holistic picture of the case and to make the final diagnosis [50].

3 Application Background

The pancreas is an elongated abdominal organ oriented horizontally towards the abdomen 

upper left side. It is surrounded by the stomach, spleen, liver, and intestine. It secretes 

important digestive juices for food assimilation and produces hormones for regulating 

blood sugar levels. The pancreas is broadly divided into three regions: head, body, and 

tail (Fig. 2a). The primary duct passes approximately along the central axis of the elongated 

organ, and can be visible on a CT scan due to dilation. Pancreatic lesions are frequently 

encountered due to the increased usage of high-quality cross-sectional imaging. While 

weight loss, nausea, jaundice, and abdominal pain are common symptoms, the majority 

of cases are diagnosed incidentally. The most common types of pancreatic lesion are 

intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasm (MCN), serous 

cystadenoma (SCA), and solid-pseudopapillary neoplasm (SPN). These lesions vary in 

degrees of their malignancy and aggressiveness; IPMN and MCN are considered precursors 

to PC and offer the potential for early disease identification, whereas SCA and SPN have 

low malignancy potential [52]. VP is an end-to-end visual diagnostic aid to clinicians in 

making an accurate PC diagnosis.

The initial diagnosis of pancreatic lesions often starts with the age and gender of a patient, 

along with lesion location within the pancreas gland. The diagnosis is reinforced with the 

imaging characteristics identified on CT scans [52, 53]. Visible characteristics of lesions 

on CT images include features such as: (a) calcifications - calcium deposits that appear 

as bright high intensity specks; (b) cystic components - small (microcystic) and large 
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(macrocystic) sacs typically filled with fluids that appear as dark approximately spherical 

regions; (c) septations - relatively brighter wall-like structures usually separating the cystic 

components; (d) solid components - solid light gray regions within the lesions; (e) duct 
dilation and communication - dilation of the primary duct and how it communicates with 

the lesion. The lesion morphological appearance based on these visible features can help 

in characterizing them. However, making a correct diagnosis is challenging since some 

diagnostic features overlap between different lesion types. Examples of the appearance of 

these lesions in CT are depicted in Fig. 2b. The main diagnostic features of these lesions are:

• IPMN is common in both males and females, typically with a mean age of 

69, and can appear anywhere in the pancreas. Radiologically, IPMN has a 

microcystic appearance and always communicates with the pancreatic duct. It 

typically does not have calcification.

• MCN is normally diagnosed in perimenopausal women with a mean age of 50 

and is often located in the body or tail of the pancreas. It typically contains a 

single cystic component (macrocystic) and might have peripheral calcification 

and thick septation.

• SCA is frequent in women with a mean age of 65 and typically arises in the 

pancreatic head. CT appearance is usually a lobulated mass with a honeycomb-

like (micro- or macro-cystic) form, which is often calcified.

• SPN mostly occurs in young women with a mean age of 25. These lesions 

typically appear as cystic components encapsulated by solid mass that may be 

calcified.

4 Design Overview

Conventional Workflow.

Current diagnostic workflow consists of several tasks (T). CT volumes are reviewed merely 

in the axial, coronal, and sagittal 2D planes using conventional radiological systems. After 

the initial 2D scroll through the CT data, the radiologists locate the pancreas and evaluate 

the pancreas volume for presence of lesions (T1). If found, they study the lesion morphology 

(T2) by scrolling back and forth in the 2D views, mentally reconstructing its 3D anatomy 

and internal features (as in Sec. 3). By scrolling again through the images, radiologists try to 

determine if the lesion is connected to the duct (T3), which can often be visible only if well 

dilated. When making the final diagnosis (T4), the lesion location within the pancreas and 

patient’s age and gender are also considered, and no CAD system is used. Radiologists use 

linear measurements on subjectively chosen 2D slices to calculate lesion size (T5).

Design Motivations.

Interpretation of lesion morphology (T2) on 2D views is challenging. For example, lesion 

walls with complex non-convex shape may appear similar to internal septation (Fig. 1a–c). 

Similarly, examining the duct (T3) is cumbersome as it splits into multiple components 

through cross sections (Fig. 1d–f). A typical span of the pancreas can be 150–200 axial 

slices. Mental reconstruction of 3D structure of lesion, duct, and duct-lesion relationship 
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requires significant scrolling and mental effort. Additionally, the variability in radiologists’ 

expertise, lack of specialized tools for lesion detection (T1), analysis (T2, T4), and accurate 

measurement (T5), introduce diagnosis inconsistencies. Based on these time and quality 

challenges, we introduce specialized 3D tools. This is also motivated by previous works 

[54, 55], that emphasize importance of 3D for augmenting diagnosis, treatment, and 

surgery. Our system further aims to maximize the CT scans information and to introduce 

more consistency into the characterization of pancreatic lesions through exploratory 3D/2D 

visualization accompanied with machine learning-based automatic lesion classification. Dr. 

Matthew Barish (M.B., co-author) and Dr. Kevin Baker (K.B.), each with more than 10 

years of experience, served as our expert radiologists. From conversations with them about 

the tasks and limitations of their current workflow, we have outlined the following:

1. Develop an automatic algorithm for pancreas and lesion segmentation (supports 

T1).

2. Provide 3D and 2D visualizations of the pancreas and lesions with inter-linked 

views to explore and acquire information from different views. Provide presets 

modes to visualize the lesion and enhance its characteristic internal features 

(supports T2).

3. Develop a method for semi-automatic extraction of the pancreatic duct, and 

support 3D visualization and 2D reformed viewpoints for detailed analysis 

of the relationship between the duct and lesions. These include (a) an 

orthogonal cutting plane that slides along the duct centerline (centerline-guided 

re-sectioning) to improve visual coherence in tracking the footprint (cross-

section) of the duct across its length, and (b) a CPR of the pancreas to visualize 

the entire duct and the lesion in a single 2D viewpoint (supports T3).

4. Employ simpler local 1D transfer functions (TFs) by leveraging the already 

segmented structures, and provide a simplified interface for TF manipulation to 

keep the visualizations intuitive and avoid misinterpretation of data. While being 

more extensive, this tool performs similar to grayscale window/level adjustment 

commonly used by radiologists (supports T2-T3).

5. Incorporate a module for the automatic classification of lesions, based on a 

detailed analysis of the demographic and radiological features (supports T4).

6. Create a tool for automatic and manual assessment of the size of the lesions 

(supports T5).

VP is intended to provide comprehensive visualization tools for qualitative analysis using 

the radiologists’ expertise in identifying characteristic malignant features, while augmenting 

the diagnostic process with quantitative analysis, such as automatic classification and 

measurements.

5 VP Pipeline

The VP system pipeline is illustrated in Fig. 3. Broadly, it employs the following modules: 

(1) automatic segmentation of the pancreas and lesions; (2) semi-automatic extraction 

Jadhav et al. Page 6

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of primary pancreatic duct, followed by centerline and CPR computation; (3) automatic 

lesion classification into four common types; and (4) a full featured user-interface for 

exploratory visualizations and measurement tools. The input abdominal CT scan is first 

passed through the automatic segmentation module, which segments the pancreas and 

pancreatic lesions, if present. The segmentations are then passed to a Duct Extraction 
Window where the radiologist isolates the primary pancreatic duct interactively through 

a semi-automatic process. The radiologist may skip this step if a duct is invisible. Here, 

the user is provided an opportunity to manually correct any errors in the segmentation 

masks through automatic invocation of 3D Slicer [56]. Finalizing the segmentation results 

then triggers the computation of the pancreas and duct centerlines, CPR, and automatic 

classification of the segmented lesions. The input CT volume, segmented pancreas, lesions, 

duct, computed centerlines, and the classification probabilities are then loaded into the main 

visualization interface. In the following subsections, we describe the VP components that 

support tasks T1-T5, along with discussions and feedback from radiologists as appropriate. 

These have been expressed after using VP on multiple real-world patient scans.

5.1 Segmentation of Pancreas Anatomy

Being deeply seated in the retroperitoneum, the pancreas is quite difficult to visualize. 

Its close proximity to obstructing surrounding organs (stomach, spleen, liver, intestine), 

further complicates its visual analysis and diagnosis. Segmentation of important components 

(pancreas, lesions, duct) can provide better control on visualization design and interactions 

due to explicit knowledge of structure boundaries (supports T1, T2).

5.1.1 Automatic Pancreas and Lesion Segmentation

Architecture.: Our segmentation method was designed with computational efficiency and 

universality in mind. We use the same architecture and training procedure to perform 

segmentations for both the pancreas and lesions, which demonstrates the generality of our 

approach. Additionally, it also simplifies the implementation due to the common pipeline for 

both structures. The novel architecture is based on a multi-scale 3D ConvNet for processing 

3D sub-volumes, which has two branches: (1) to detect whether or not the sub-volume 

contains the target structure for segmentation (healthy tissue of the pancreatic gland or 

tissue of a lesion), and (2) to predict a set of voxels that constitutes the target structure. In 

addition to improving convergence [57], such a two-branch model speeds up the inference 

by avoiding predicting a full-resolution segmentation mask for a sub-volume if it does not 

contain the target structure, speeding up the inference process, on average, by 34.8%.

The input to our network is a 3D sub-volume of the original CT scan, and the outputs are 

a binary label and a binary mask of the target segmentation tissue. Similar to classical 

segmentation approaches, our model consists of decoder and encoder paths. However, 

unlike classical models, these paths do not mirror each other. The overall architecture is 

illustrated in Fig. 4. More formally, the encoder includes three consequently connected 

convolutional layers of various kernel sizes and strides, each followed by a Leaky ReLU 

activation function and batch normalization layers, proceeded by three ResNet blocks [58]. 

The decoder includes three ResNet blocks, followed by two convolutional layers, where the 

last layer ends with a sigmoid function. Additionally, an auxiliary branch is connected to 
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the encoder to perform a binary classification of the input for the presence of the target 

structure. This auxiliary branch is composed of one convolutional layer of 32 kernels of 

1×1×1 size, followed by a max-pooling and reshaping layers and three fully-connected 

layers, each connected by the Leaky ReLU function, while the last layer ends with a 

sigmoid.

Training Methodology.: The proposed network was trained to minimize a joint loss, which 

is a summation of a binary voxel-wise cross-entropy from the auxiliary classifier and a 

Dice coefficient (DC)-based loss from the decoder part of the model. However, the latter 

loss function is known for being challenging to optimize when the target occupies only 

a small portion of the input due to the learning process getting trapped in the spurious 

local minima without predicting any masks. Several workarounds have been proposed, 

including for methods targeting segmentation of the pancreas and pancreatic lesions [59, 

60]. However, these methods were tailored for segmenting a particular structure, and cannot 

be easily extended for other structures. Contrarily, we propose a novel training methodology 

for minimizing the DC-based loss function which can be applied for the segmentation of 

any structure, regardless of its size, using any base model. Specifically, we describe an 

optimization technique which is based on the following iterative process. To alleviate the 

obstructive issues of the target structure being too small with regards to the overall input 

size, we begin training a model on the smaller sub-volumes extracted from the center 

of the original sub-volumes and upsampled to the target input size. This allows us to 

pretrain a model where the target structure can occupy a significant portion of the input 

sub-volume. By gradually increasing the size of the extracted sub-volumes we can fine-tune 

the model weights without it getting stuck in a local minima. Eventually, we fine-tune 

the model on the original target resolution, which is 32 × 256 × 256 for both pancreas 

and its lesion segmentation. Our system was developed and validated using 134 abdominal 

contrast-enhanced CT scans imaged with a Siemens SOMATOM scanner (Siemens Medical 

Solutions, Malvern, PA).

5.1.2 Semi-Automatic Primary Duct Extraction—We have developed a semi-

automatic approach for duct segmentation (supports T3), based on a multi-scale vesselness 

filter [61], using an adjustable threshold parameter. Vesselness filters are designed to 

enhance vascular structures through estimation of local geometry. The eigenvalues of a 

locally computed Hessian matrix are used to estimate vesselness (or cylindricity) of each 

voxel x ∈ P, where P is the segmented pancreas. Higher values indicate higher probability 

of a vessel at that voxel. We compute normalized vesselness response values R(x). The user 

then adjusts the threshold parameter t to compute a response:

R′(x) = 0, R(x) < t
R(x),  otherwise  (1)

Note that this is not a binarization, but a thresholding that results in multiple connected 

components of R′(x) if zero values are considered as empty space. Default value for t is set 

to 0.0015. A total vesselness value SCi is calculated for each resulting connected component 

Ci as the sum of response values within Ci:
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SCi = ∑
x ∈ Ci

R′(x)
(2)

The pancreatic duct is selected by the user as the first n connected components with largest 

SCi values. In other words, the list of connected components is sorted by SCi values (largest 

value first), and the first n components are chosen as the duct segmentation mask. Integer 

value of n is chosen by user through a spin button. The default n = 1 is sufficient in most 

cases. We found that our metric (Eq. 2) is more reliable than simply picking n largest 

components by volume, since it provides a more balanced composition of both size and 

vesselness probability of a component. While the vesselness enhancement filter [61] is 

well-known, our contribution lies in applying Eq. 2 to eliminate occlusion due to noisy 

regions and tailoring the filter to extract the pancreatic duct with minimal user interaction.

Expert Feedback.: The radiologists appreciated the automatic segmentation of the pancreas 

and lesions, which significantly improves and simplifies the workflow in comparison to 

manual or semi-automatic approaches [62]. They also expressed their liking of the duct 

segmentation, which was easy to extract adjusting a single slider. While the overlap between 

the produced and manual outlines was not 100% accurate, the radiologists noted that it 

only slightly deviated from the true boundaries, which is sufficient for practical use when 

studying duct-lesion relationship.

5.2 Centerline Computation

Once the duct has been segmented and the Duct Extraction Window has been closed, the 

two centerlines: the duct centerline and pancreas centerline (see Fig. 5), are computed 

(supports T3). Both the pancreas and duct centerlines create navigation paths for viewing 

3D rendering compared with orthogonal 2D raw CT sections of the pancreas volume 

(Sec. 5.4.3). The duct centerline provides a strict re-sectioning along the duct volume, 

which can be used for closer inspection of duct boundary and cross-section in the raw 

CT data. It is also used for computing the CPR view (Sec. 5.4.4). On the other hand, the 

pancreas centerline provides smoother re-sectioning of the entire pancreas volume as it is 

geometrically less twisted, and is also used by the automatic lesion classification module for 

determining the location of the lesion within the pancreas.

Pancreas Centerline.—The pancreas centerline is computed using our penalized distance 

algorithm [63]. This approach uses a graph to represent paths in a grid of voxels. Penalty 

values are assigned to every voxel (graph node) x in pancreas P, based on that voxel’s 

distance from the pancreas surface. The path between the pancreas extreme ends with the 

minimum cost in the graph, is calculated as the centerline. A distance field d(x) is computed 

on each node as the shortest distance to the pancreas surface. Since we want the centerline 

to pass through the pancreas inner-most voxels, we want the penalty values to be higher 

for voxels closer to the surface. Thus, we substract each voxel distance value from the 

maximum distance dmax:

d′(x) = dmax − d(x) (3)
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This results in higher penalty values for the voxels closer to the pancreas surface, as desired. 

Note that d′(x) is always positive, as d(x) ≤ dmax. We then use the distance field d′ as 

penalty values and compute the pancreas centerline [63].

Duct Centerline.—Due to the noise in CT scans and variability in dilation, the extracted 

duct volume may be fragmented into multiple connected components. Since the pancreas 

itself is an elongated object, we model the duct centerline to follow the entire pancreas 

length, as well as pass through every connected component of the extracted duct. The 

centerline follows the pancreas shape wherever the primary duct is disconnected. The 

penalized distance algorithm [63] focuses on a single object boundary for computing 

skeleton curves. When computing our duct centerline, we face the problem of handling 

multiple objects (multiple connected components of the duct and pancreas). A naive 

approach could be taken where individually computed centerlines of duct components 

could be connected with each other and to the pancreas extreme ends using the penalty 

field d′ (Eq. 3). However, this leads to excessive curve bending as it enters and exits the 

duct components due to abrupt change in penalty field (see Fig. 6). Our contribution is 

to intuitively model a curve that passes through the primary duct components and also 

respects the pancreas geometry without excessive correction as it enters and exits the 

duct components. The duct centerline uses the same end-points (x0, x1) as the pancreas 

centerline, and passes through all of the extracted duct fragments. In local regions where 

the primary duct is not contiguous, the duct centerline follows the pancreas shape. This 

is achieved by a trade-off between finding the shortest path and maintaining a constant 

distance to the pancreas surface. The trade-off is modelled through a modification of the 

penalized distances used in the algorithm as described below (see Fig. 7).

We first calculate the centerlines {ξi} for each connected component of the duct volume 

independently, using the same process as described for the pancreas centerline. The 

centerline fragments are then oriented and sorted correctly to align along the length of the 

pancreas. Each pair of consecutive fragments (ξk, ξk+1) are then connected by computing 

the shortest penalized path {ζi} between their closest end-points. This includes connections 

to the global end points x0 and x1. When computing a connecting curve ζ0 between end 

points e1 and e2, the previously computed pancreas distance field d′(x) from Eq. 3 is 

transformed as:

d′′(x) = l − d′(x) (4)

where l = (d′(e1) + d′(e2))/2 is the average value between e1 and e2. The modified distance 

field d″(x) is used as penalty values in the voxel graph for computing the connecting curve 

ζ1. Together, alternating curves {ζ1} and {ξi} form a single continuous duct centerline.

5.3 Automatic Lesion Classification

We utilize our previously developed CAD algorithm for classification of pancreatic cystic 

lesions [50], which uses patient demographic information and the CT images as input 

(supports T4). The classifier is comprised of two main modules: (1) a probabilistic random 

forest (RF) classifier, trained on a set of manually selected features; and (2) a CNN for 

analyzing the high-level radiological features. To automatically estimate the lesion location 
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within the pancreas, we divide the centerline of the pancreas into three even segments, 

representing its head, body, and tail, and determine the closest segment to the segmented 

lesion center of mass. The final classification probabilities for the four most common lesion 

types are generated by the Bayesian combination of the RF and CNN, where the classifiers 

predictions were weighted using the prior knowledge in a form of confusion matrices. The 

overall scheme of our CAD algorithm is depicted in Fig. 8 and the visualization of the 

classification results in the user interface is shown in Fig. 14f. Our previously developed 

lesion classification pipeline [50] has been tested using a blinded study [51]. The model 

achieves an overall accuracy of 91.7%. For more details, see our previous work [50].

Expert Feedback.—The lesion automatic classification was very appreciated, with the 

radiologists noting that it can provide a crucial assistance during the diagnosis process, 

especially to radiologists who may have had little exposure to pancreatic pathology. They 

particularly commented on how viewing the RF and CNN classification probabilities 

separately before they are combined allowed them to weight the importance of each and 

refine the final diagnosis.

5.4 Visualizations and User Interface

Once the pancreas, lesions, and duct are segmented, the centerlines are computed, and the 

classification probabilities are generated, they are available in the user interface for visual 

diagnosis. A snapshot of the user interface is shown in Fig. 9. The screen space is broadly 

divided into seven frames. To the left is a searchable table with the patient information 

and CT image metadata extracted from the CT Scan DICOM header. Below the patient 

information table is a pancreas CPR 2D view that can switch between Centerline-Guided 
Re-sectioning (Sec. 5.4.3) and Duct-Centric CPR (Sec. 5.4.4) view. In the top center, a 

viewport displays the Pancreas-Centric 3D view for all our 3D visualizations. To the right, 

the three conventional planar views: axial, coronal, and sagittal views that are common in 

radiology applications, support the interactions common in radiological interfaces, including 

panning, zooming, and window/level adjustment.

Linking of rendering canvases such as viewports and embedded cutting planes/surfaces is 

often used for correlation of features across viewpoints in diagnostic and visual exploration 

systems [64, 65]. In our system, the 3D and 2D views are linked to facilitate correlation of 

relevant pancreas and lesion features across viewpoints. A point selected on any of the 2D 

views will automatically navigate the other 2D views to the clicked voxel. Additionally, a 

3D cursor highlights the position of the selected voxel in the 3D viewpoint. Similarly, the 

user can also directly select a point in 3D by clicking from two different camera positions 

(perspectives). Each time the user clicks the 3D view, a ray is cast identifying a straight line 

passing through the 3D scene. Two such clicks uniquely identify a 3D point. The 2D views 

are automatically changed to the selected voxel. This linking of views allows comparison 

between features in 3D visualizations with CT raw intensities in 2D.

Finally, at the screen bottom, we place the user tools/options to control the 3D and 2D 

visualizations and their parameters. These include visibility (show/hide) and opacity of 

segmented structures, clipping planes, and window/level setting (grayscale color map) 
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common for all the 2D views. Please refer to the supplementary video for the VP 

visualization and user interface in action.

5.4.1 Pancreas-Centric 3D View—The Pancreas-Centric 3D view renders the 

segmented anatomical structures (pancreas, lesions, duct) individually or in different 

combinations, as shown in Fig. 10b–d (supports T1, T2). The context around the pancreas 

can also be visualized in the form of the entire CT volume. The user is provided with two 

clipping planes (top and bottom) to restrict this context view (see Fig. 10a). This is useful to 

reduce occlusions and focus on the region of interest.

The TF is pre-designed for the context volume (CT volume surrounding the pancreas) and 

does not require manual editing as CT intensities have a similar range across patients. 

Similarly, the TFs used for the pancreas, lesions, and duct volume are also pre-designed and 

are re-scaled to the scalar intensity ranges within the segmented structures for every patient. 

We provide simplified controls over the optical properties of our 3D visualizations. They 

can be modified through a simplified interface using two sliders: opacity and offset; rather 

than editing a multi-node polyline which can have significantly more degrees of freedom. 

The opacity slider controls the global opacity of the segmented structure and the offset slider 

applies a negative/positive offset to the TF to control how the colors are applied to the 

segment. We provide an advanced tab in the toolset where the 1D TFs can be edited as a 

multi-node polyline, if desired.

Expert Feedback.: The radiologists tested our 3D visualizations using multiple real-world 

cases. They noted that the 3D pancreas-centric visualizations combining pancreas outline 

along with lesion and duct volumes are very useful to assess the duct and lesion relationship. 

For example, in case of an IPMN it is critical to investigate if the lesion arises from the 

duct. They were also able to identify the shape of duct dilation and further analyze the IPMN 

type (main duct vs side branch communication) through our 3D visualization, which not 

only helps in lesion characterization, but can also inform the decision making in surgery. 

Such analysis would be much harder in 2D planar views as the shape of duct dilation and 

connectivity with side branches can be misleading in 2D slices. K.B. also suggested that 

the 3D visualization and measurement capabilities of the system could be potentially useful 

for a pre-operative planning since the surgeons can visualize the structures in 3D before the 

actual procedure. The radiologists also found our simplified two-slider TF editing interface 

very simple and intuitive as compared to editing a multi-node polyline.

5.4.2 Lesion Visualization—As described in Sec. 3, the morphology and appearance 

of the pancreatic lesions (Fig. 2) on CT scans are paramount in their diagnosis. This 

includes an assessment of visible characteristics of the lesions, such as septation, central and 

peripheral calcification, and presence of cystic and solid components (task T2). To this end, 

we visualize the internal features of lesions in two different modes, namely: direct lesion 
rendering (DLR) and enhanced features rendering (EFR).

The DLR visualization mode performs a lesion direct volume rendering using a two-color 

(red, yellow) preset TF that applies a higher opacity red color for darker regions (e.g., cystic 

components), and a lower opacity yellow color for relatively brighter ones (e.g., septation, 
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solid components). This allows the radiologist to easily find the correct boundary between 

features (e.g., septation, cystic components). Another example of DLR rendering is in Fig. 

10f.

Similar to a previous curvature-based approach [66] to enhance features in volume 

rendering, the EFR mode visualizes the lesion through enhancement of local geometry 

using a Hessian-based enhancement filter (Fig. 10a–d). A locally computed Hessian at 

multiple scales can quantify the probability of a local structure, such as a blob, plate, or a 

vessel. We apply the plate enhancement for wall structures and blob enhancement along with 

thresholding for calcifications. Both volumes are then combined as a 2-channel (red-green) 

3D texture for simultaneous volume rendering of enhanced features (see Fig. 10g).

Expert Feedback.: When testing the 3D lesion visualization capabilities, the radiologists 

noticed the visible septation, cystic components, and calcifications. They were able to 

understand relative sizes of the cystic components, particularly in cases of SCA and SPN 

that have macro-cystic appearance. Through the lesion 3D shape, they were also able to 

characterize IPMN lesions between main duct and side branch IPMNs, since side branch 

IPMNs have a more regular spherical shape as compared to main duct IPMNs.

5.4.3 Centerline-Guided Re-sectioning—In VP, we incorporate an exploratory 

visualization that combines 3D visualization with a 2D slice view of raw CT intensities. 

An orthogonal intersecting plane slides along either the pancreas or duct centerline and 

renders the raw CT intensities in grayscale (see Fig. 5c). Simultaneously, all 3D anatomical 

structures (pancreas, lesions, primary duct, surrounding CT volume), can be combined in 

the visualization through visibility controls. The sliding plane represents a centerline-guided 

re-sectioning of the pancreas volume, and can be viewed in the 3D view and separately as a 

2D slice view. This sectional view provides coherent tracking of the primary duct along its 

length and closely studying its relationship with the lesion (task T3). Radiologists can take 

a closer look at how the 3D anatomical structures, such as lesions and duct, correspond with 

raw CT values (tasks T2, T3) by directly overlapping the 3D rendering with the intersecting 

plane. This approach instills greater confidence in the radiologists during diagnosis as they 

can correlate 3D structures to 2D images that they are traditionally interpreting. It also 

provides a better comparison than switching context across multiple viewports.

Expert Feedback.: The radiologists interacted with the centerline-guided re-sectioning view 

embedded in the 3D pancreas-centric view. They very much appreciated the idea of being 

able to verify 3D features by directly correlating them with the 2D intersection plane of raw 

CT intensities. Through our implemented linked views and point selection, the radiologists 

were able to relate corresponding points between 3D and 2D views.

5.4.4 Duct-Centric CPR View—The primary duct size and its relationship with 

pancreatic lesions is important for visual diagnosis, as only IPMN lesions communicate 

with the primary duct. CPR techniques reconstruct the longitudinal cross-sections of vessels, 

which enables visualization of the entire vessel length in a single projected viewpoint. Points 

on the vessel centerline are swept along an arbitrary direction to construct a developable 

surface along the vessel length. The surface samples the intersecting volume at every point 
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and is flattened without distortion into a 2D image. Using the computed duct centerline as 

a guide curve, we generate pancreas duct-centric CPR views in Fig. 10h–j (task T3). The 

direction in which the centerline is swept CPR surface construction is chosen by the user 

through a widget that shows the surface rendering of the pancreas, lesion, and centerline 

curve. The sweeping direction is always normal to the screen. This widget allows to choose 

an appropriate direction to generate the desired CPR viewpoint, thus helping in visualizing 

the duct-lesion relationship in a single viewpoint.

Expert Feedback.: One of the radiologists was already familiar with the general concept 

of CPR reconstruction, and appreciated that we tailored it to the pancreas by including the 

primary duct and lesion in a single view. Through the 3D embedded CPR view showing both 

the CPR surface and 3D rendering of the duct and lesion, the radiologists found it helpful to 

verify that the duct is connected to the lesion, and also to identify how the duct dilates as it 

connects to the lesion. The duct dilation geometry would not be clearly visible in 2D views. 

Visualizing this dilation can also help in surgical decisions such as the location of potential 

resection to remove the malignant mass.

5.4.5 2D and 3D Measurements—Measurement is an integral part of visual diagnosis 

as it helps to quantify lesion size and cystic components (T5). We provide the capability to 

interactively measure in all our 2D planar views, by clicking and drawing measurements. We 

also provide automatic lesion 3D measurements of the lesions as the dimensions of its best 

fitting oriented bounding box. Additionally, automatic volume measurements of segmented 

structures (pancreas, lesions, duct) are also available. Please refer to the video for these tools 

in action.

Expert Feedback.: In the current workflow, measurements are performed by subjectively 

choosing an axis-aligned 2D slice. The radiologists explained that the choice of this plane 

can drastically affect measurement values. They agreed that estimating the volume of the 

segmented lesions and using a best fitting box for calculating size is a significantly more 

reliable approach to measurement.

6 Results and Evaluation

We evaluated our VP visualization system on real-world patient CT scans that were 

accompanied with ground truth masks of the pancreas and lesions outlined by a radiologist, 

and ground truth histopathological diagnosis confirmed by a pathologist after specimen 

resection. Due to the challenges associated with the manual segmentation of the duct, 

manual duct outlines were acquired for only four cases. The size of each volume is Z × 512 

× 512, where Z is the number of axial slices ranging from 418 to 967.

Segmentation.

To develop and test the automatic segmentation module, we randomly divided the dataset 

into training and testing sets using a ratio of 90%/10%. Qualitative evaluation of the 

performance was done by comparing the predicted masks Ŷ against the ground truth masks 

Y using the common DC-based metric DC(Y , Y ) = 2 |Y ∩ Y |
|Y | + |Y |

.
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Our model achieves an accuracy of 83.75% ± 12.76% and 80.07% ± 4.03% for pancreas and 

lesion segmentation, respectively, outperforming the current state-of-the-art solution [46] by 

4.52% and 16.63%, respectively.

Duct and Centerline Extraction.

A qualitative comparison of our duct extraction approach with manual segmentations is 

shown in Fig. 12b–c, which is able to overcome the noise and occlusions caused by noisy 

voxels, that are mistakenly enhanced with the vesselness filter (Fig. 12a). Additionally, our 

duct centerline approach reduces the excessive bending as it enters and exists the duct by 

utilizing a penalty model which weights both duct and pancreas geometry when computing 

the curve (Fig. 6).

CPR and Lesion Visualization.

Examples of the 3D pancreas-centric and CPR views are shown in Fig. 11 for two patients 

with dilated ducts. These can assist in determining the presence of connection between the 

duct and the lesion in particularly difficult cases when the conventional 2D axial views 

are inadequate. Examples of the DLR and EFR visualizations of the lesions are shown in 

Fig. 13. These facilitate better understanding of lesions shape and structure in comparison 

to viewing them in 2D images, by enhancing the characteristic lesion structures, such as 

external wall, calcification, internal septation, solid and cystic components.

Case Studies.

Our expert radiologists: M.B. and K.B., used our VP system on multiple real-world 

datasets before providing their suggestions and feedback on VP components. The qualitative 

feedback regarding individual VP components of our system has been discussed throughout 

Sec. 5. We describe two real-world case studies conducted by M.B. with VP that 

demonstrate the effectiveness and utility of VP. He provided his analysis of the cases as 

below.

VP011 is a 35 years old male. Fig. 14 shows different visualizations used for the analysis. 

The 3D visualization (Fig. 14a) clearly shows the primary duct connected to a lesion 

through a fusiform (spindle shape) dilatation. M.B. didn’t notice the fusiform shape in the 

conventional 2D axial view, but immediately noticed it in 3D. He independently confirmed 

the shape through different viewpoints of 2D and 3D embedded CPR views (Fig. 14b). Third 

confirmation came from the automatic lesion classification (Fig. 14c) of IPMN probability 

of 39.9% from RF, 89.6% from CNN, and 63.8% combined. Based on multiple sources, 

including 3D visualizations showing main duct fusiform dilatation and the lesion shape, 

M.B. classified the lesion as a mixed main-duct and side-branch IPMN.

VP018 is a 72 years old female. Fig. 15a shows a 2D axial view of the primary duct and 

the lesion. M.B. expressed difficulty to confirm whether the primary duct enters the lesion 

or is simply adjacent to it. Using the 3D visualization (Fig. 15b) he inferred that the duct 

is touching the lesion, passing around without entering it. Noticing this information, along 

with the fact that the lesion shows a unilocular (spherical) shape, the radiologist concluded 

that this is consistent with the characteristic of side-branch IPMN. This conclusion is 
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confirmed by the automatic classification that characterizes the lesion as IPMN (RF: 25%, 

CNN: 73%, combined: 48%), which concurs with the ground truth. M.B. agreed that such 

characterizations would have been harder in the traditional workflow that uses only axis-

align 2D views, without the 3D and CPR visualizations.

Updated Workflow.

The radiologists were asked to compare the new VP system with their conventional 

workflow and how they would change their workflow. In the conventional workflow (as 

described in Sec. 4), the radiologists rely heavily on raw 2D axis-aligned views and often 

don’t use even familiar tools such as de-noising filters, cutting planes, and maximum 

intensity projections. Depending on the case, a radiologist could spent significant time 

scrolling back and forth for understanding the relationship between lesions and duct, when 

a typical span of the pancreas can be 150–200 axial slices. Based on the demonstrated 

datasets and analyzed real-world cases, the radiologists agreed that the 3D visualizations 

of VP could improve the diagnosis process effectiveness and provide additional data points 

for decision making. Based on our novel VP, they suggested an updated VP workflow 

as follows: (1) overview a case and inspect the lesions using 2D axis-aligned views and 

provided segmentation outlines; (2) visualize the lesion and its internal features in 3D 

to further understand the lesion morphological structure; (3) study the lesion and duct 

relationship in 3D, CPR view, and duct-centric re-sectioning views; and (4) finally confirm 

own diagnosis and characterization with the automatic classification results. Since our 

automatic classification (step (4)) is at least 91.7% accurate [51], and the other steps can 

further enhance this diagnosis accuracy, we anticipate that the radiologists’ accuracy using 

VP will improve substantially from the current 67–70% [2].

7 Conclusion and Future Work

We have presented 3D Virtual Pancreatography (VP), a comprehensive visualization 

application and its system that enables quantitative and qualitative visual diagnosis and 

characterization of pancreatic lesions. VP was developed in close collaboration between 

computer scientists and expert radiologists who are experienced in diagnosing pancreatic 

lesions with a goal to understand their requirements and cater VP to their needs. We 

developed a fully automatic segmentation pipeline for the pancreas and lesions, and a semi-

automatic approach for duct extraction. We presented combined 3D and 2D exploratory 

visualizations for effective diagnosis and characterization of lesions. Our novel approach 

to compute the pancreas centerline that incorporates the pancreas geometry as well 

as the connected components of the extracted duct is utilized to construct exploratory 

visualizations, such as duct-centric pancreas re-sectioning and CPR view. We incorporated 

feature enhancement visualizations for lesions and their internal features, such as septation, 

calcifications, and cystic/solid components. Quantitative analysis is supported through 

automatic lesion classification and automatic/manual measurements.

We have demonstrated the utility of our VP system and visualizations through real-world 

case-studies and expert radiologists’ feedback. In the future, we plan to perform a larger 

quantitative user study with multiple radiologists to concretely evaluate VP benefits and 
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shortcomings for further improvements and suitability for deployment in the real world. 

As future enhancements, our radiologists also suggested that we add explicit tools to track 

lesion growth in a patient over time. Additionally, we plan to evaluate our segmentation 

model and the training procedure on other organs, potentially using a non-Dice-based 

metric.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of 2D slice views to 3D visualizations. (a) Axial slice of a lesion on pancreas 

head with apparent internal lesion septation wall (see arrow). (b)-(c) The same region can 

be external crevice rather than an internal septation wall. Thus, 3D visualizations reveal 

important shape and size information of the lesion cystic components, which can impact 

the diagnosis. (d) Axial slice of a lesion and primary duct (arrow) in the pancreas body. (e) 

Secondary duct that connects to the lesion appears very subtle on the slice view (arrow). (f) 

3D visualization clearly shows the branching secondary duct connecting with the lesion. 3D 

visualizations can draw attention to such subtleties.
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Fig. 2. 
(a) The pancreas. (b) Pancreatic lesions with classical radiological features: peripheral 

calcification (MCN), macrocystic components with septation (SCA), cyst encapsulated by 

solid component (SPN), multiple cystic components connected to pancreatic duct (IPMN).
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Fig. 3. 
A schematic overview of the VP system pipeline.
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Fig. 4. 
A schematic view of the segmentation model.
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Fig. 5. 
(a) Duct centerline (red curve) on case VP002. It passes through the primary duct (blue) 

two components, following the pancreas elongated shape, while approximately maintaining 

constant distance from the pancreas surface. (b) Pancreas centerline (red curve) on VP002. 

(c) Centerline-guided re-sectioning view embedded in the 3D view for VP011 (red: lesion 

volume, green: pancreas surface, blue: duct volume).
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Fig. 6. 
Comparing benefits of our approach to compute duct centerline: (a) computed naively using 

penalty field, and (b) our approach. Note the reduction in bending at entry and exit points. 

Smoother centerline is necessary for constructing CPR and re-sectioning views.
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Fig. 7. 
Duct centerline algorithm. (a) Pancreas with two duct components (blue). x0, x1 are end-

points of pancreas centerline. (b) ξ0, ξ1 are detached duct component centerlines. ζ0, ζ1, ζ2 

are connecting curves. Together, the path ζ0, ξ0, ζ1, ξ1, ζ2 forms the entire duct centerline.
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Fig. 8. 
A schematic view of our classification model.
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Fig. 9. 
The VP user interface.
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Fig. 10. 
(a-d) Pancreas-centric 3D visualizations of case VP011: (a) Context volume around the 

pancreas clipped from the top and bottom for focused visualization; (b-d) The segmented 

anatomical structures and the CT volume rendered in different combinations. (e-g) Enhanced 

lesion visualization for VP001: (e) Axial view of the lesion (red) and pancreas (green); 

(f) DLR view shows septation (yellow) and cystic components (red); (g) EFR view: 

calcifications (cyan blobs) and septation (red) are enhanced through a Hessian-based 

objectness filter to provide clearer view of internal lesion features. (h-j) CPR views of 

VP011: (h) Axial 2D view of pancreas: pancreatic primary duct does not lie in a single 

plane and appears broken; (i) Duct-centric CPR view of the pancreas: the primary duct is 

completely visible in a single plane along with a lesion sectional view; (j) CPR surface 

embedded in 3D view: incorporating such a view along with 3D visualization is helpful in 

understanding how the CPR view was constructed.
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Fig. 11. 
Pancreas-centric and CPR views, assisting in confirming presence (VP120, IPMN) or 

absence (VP001, SCA) of duct-lesion connection (see arrows).
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Fig. 12. 
Duct volume rendering. (a) Direct application of the vesselness filter. (b) Extraction using 

our approach. (c) Manual segmentations.
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Fig. 13. 
3D visualization of lesions enhancing the important characteristics that can inform their 

visual classification. VP156 in EFR mode to render wall structures (red) and calcification 

(cyan). Others are in DLR mode: cystic components (red), septation / soft tissue (yellow), 

and solid components (cyan) that is an SPN characteristic feature.
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Fig. 14. 
Case VP011. (a) 2D view with duct footprint (red arrow) next to grey lesion. (b) 2D lesion 

view as the duct (red arrow) merges into the lesion. It is difficult to visualize the separation 

between the duct and lesion, and thus notice the duct geometry. (c) 3D visualizations show a 

clear fusiform dilatation (white arrow) of the main duct as it connects with the lesion. (d-e) 

2D and 3D CPR views provide additional views to confirm the diagnosis. (f) Finally, lesion 

classification independently classifies the lesion as an IPMN (overall probability 63.8%).
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Fig. 15. 
Case VP018. (a) 2D axial view of the main duct (blue arrows) and the lesion (gray circular 

region, red arrow). It was hard for the radiologist to discern whether the duct is adjacent or 

enters the lesion. (b) 3D visualization clearly shows the main duct (blue arrows) touching the 

lesion (red arrow), but passes around without entering it.
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