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Abstract

Accurate assessment and monitoring of the Plasmodium falciparum Kelch 13 (pfk13) gene

associated with artemisinin resistance is critical to understand the emergence and spread of

drug-resistant parasites in malaria-endemic regions. In this study, we evaluated the geno-

mic profile of the pfk13 gene associated with artemisinin resistance in P. falciparum in Nige-

rian children by targeted sequencing of the pfk13 gene. Genomic DNA was extracted from

332 dried blood (DBS) spot filter paper samples from three Nigerian States. The pfk13 gene

was amplified by nested polymerase chain reaction (PCR), and amplicons were sequenced

to detect known and novel polymorphisms across the gene. Consensus sequences of sam-

ples were mapped to the reference gene sequence obtained from the National Center for

Biotechnology Information (NCBI). Out of the 13 single nucleotide polymorphisms (SNPs)

detected in the pfk13 gene, five (F451L, N664I, V487E, V692G and Q661H) have not been

reported in other endemic countries to the best of our knowledge. Three of these SNPs

(V692G, N664I and Q661H) and a non-novel SNP, C469C, were consistent with late parasi-

tological failure (LPF) in two States (Enugu and Plateau States). There was no validated

mutation associated with artemisinin resistance in this study. However, a correlation of our

study with in vivo and in vitro phenotypes is needed to establish the functional role of

detected mutations as markers of artemisinin resistance in Nigeria. This baseline informa-

tion will be essential in tracking and monitoring P. falciparum resistance to artemisinin in

Nigeria.
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Introduction

Malaria, one of the major global health challenges, has co-existed with humans for over 40 cen-

turies. Control of this ancient disease heavily relies upon the use of antimalarial drugs [1].

Artemisinin-based combination therapies (ACTs) [e.g., artemether-lumefantrine (AL) and

artesunate-amodiaquine (AA)] are the current line of treatment for malaria. These drugs were

recommended by the World Health Organization (WHO) as first-line treatment for uncom-

plicated falciparum malaria in 2001 and have since been widely adopted to treat falciparum

malaria globally [2]. Artemisinin (ART)-resistant P. falciparum has been confirmed to have

emerged from the Greater Mekong Subregion (GMS) Thai-Cambodian border [3, 4] and has

spread to other malaria endemic regions [5–8].

Several point mutations in the pfk13 gene (F446I, N458Y, M476I, Y493H, R539T, I543T,

P553L, R561H, P574L and C580Y) have been validated to correlate with clinical ART resis-

tance in Southeast Asia and South America [2, 9] and confirmed to confer elevated survival

rates based on Ring-stage Survival Assays (RSA)0–3 h [10–12]. Furthermore, mutations and

increased copy numbers of genes such as P. falciparum multidrug resistant gene-1 (pfmdr1)

and P. falciparum chloroquine resistance transporter (pfcrt) gene have been linked to resis-

tance in artemisinin (and derivatives) partner drugs such as lumefantrine, amodiaquine, mef-

loquine and piperaquine [13–18]. Due to these mutations, the efficacy of ACTs may be

compromised [19]. Recently for the first time in Africa, two of the validated mutations

(R561H and P574L) on the pfk13 gene have been reported in Rwanda to be associated with in
vitro resistance to ACTs [7, 8]. However, in other sub-Saharan African countries such as Nige-

ria, no association between ART-resistant parasites and the ten validated mutations has been

found [20–23].

Despite the need to regularly survey for the emergence of these pfk13 mutant alleles in dif-

ferent malaria-endemic regions of Nigeria, only a small number of systematic molecular epide-

miological studies on field P. falciparum isolates have so far been conducted [2]. A few studies

have reported cases with delayed response to ACTs [22, 23], and a sporadic scan for amino

acid mutations in the pfk13 gene identified three nonsynonymous mutations (G592R, Q613H,

and G665S) and other synonymous mutations [9].

This study aims to describe the potential emergence and spread of ART-resistance alleles in

the pfk13 gene in three Nigerian States. The study was designed to inform malaria policy-

makers and research scientists in accordance with the objectives of the therapeutic efficacy

study (TES) of the National Malaria Elimination Program (NMEP) of the Federal Republic of

Nigeria recommended by the WHO.

Materials and methods

Study site

This is a retrospective, cross-sectional, community-based study which is part of the TES for

monitoring antimalarial efficacies of Artesunate-amodiaquine (AA), Artemether-lumefantrine

(AL) and Dihydroartemisinin-piperaquine (DHP) in the treatment of uncomplicated P. falcip-
arum infections in children aged 6–96 months old in Nigeria. A cohort of 586 children was

enrolled from three sentinel sites of the 2018 antimalarial drug efficacy testing and monitoring

of the NMEP of the Federal Ministry of Health, namely; Kura (n = 200), Barkin Ladi (n = 185)

and Agbani (n = 201), in Kano, Plateau and Enugu States respectively. Full description of

study sites is available online at https://www.health.gov.ng/doc/2018-TES-FINAL-REPORT.

pdf

PLOS ONE Molecular markers of artemisinin resistance in Nigeria

PLOS ONE | https://doi.org/10.1371/journal.pone.0264548 February 28, 2022 2 / 14

Funding: This work is made possible by support

from Flu Lab and a cohort of generous donors

through TED’s Audacious Project, including the

ELMA Foundation, MacKenzie Scott, the Skoll

Foundation, and Open Philanthropy. This work was

supported by grants from the National Institute of

Allergy and Infectious Diseases (https://www.niaid.

nih.gov), NIH-H3Africa (https://h3africa.org)

(U01HG007480 and U54HG007480 to C.T.H), the

World Bank grant (worldbank.org) (ACE IMPACT

project) to C.T.H. The U.S President’s Malaria

Initiative (USPMI) funded the primary drug efficacy

study from which samples were obtained for the

current study. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://www.health.gov.ng/doc/2018-TES-FINAL-REPORT.pdf
https://www.health.gov.ng/doc/2018-TES-FINAL-REPORT.pdf
https://doi.org/10.1371/journal.pone.0264548
https://www.niaid.nih.gov
https://www.niaid.nih.gov
https://h3africa.org


Enrolment and sample collection

Children were enrolled if they were 6–96 months old. Children were eligible for enrolment if

they had symptoms compatible with acute uncomplicated malaria, P. falciparum mono-infec-

tion with parasite count ranging from 2,000–200,000 asexual forms/μl by microscopy and

body (axillary) temperature of� 37.5 ˚C or a history of fever in the 24 hours preceding presen-

tation. Children with severe malaria, severe malnutrition, serious underlying diseases (renal,

cardiac, or hepatic diseases), and known allergies to the study drugs were excluded. Follow-up

clinical and parasitological evaluations were done daily on days 1 to 3 and then on days 7, 14,

21, 28, 35, and 42.

Two to three drops of finger-pricked blood samples were blotted on 3mm Whatman filter

paper (Whatman International Limited, Maidstone, United Kingdom) before treatment initia-

tion (Day 0) and post-treatment initiation on days 7, 14, 21, 28, 35 and 42. Blood samples

impregnated on filter papers were allowed to air-dry appropriately at room temperature and

kept in airtight envelopes with silica gel at room temperature until analysed. A total of 586

DBS filter paper samples from children were sent to the African Centre of Excellence for

Genomics of Infectious Diseases (ACEGID), Redeemer’s University, for molecular analysis.

Samples were collected during the intense malaria season (August-October) of 2018.

Ethical declaration

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was

approved by the National Health Research Ethics Committee, Federal Ministry of Health

(FMOH), Abuja, Nigeria. Written informed consent was obtained from parents/guardians for

children prior to enrollment in this study. Child assent was obtained from children aged 84–96

months.

Assessment of treatment outcome

Response to drug treatment was evaluated using the following treatment indices:

1. Adequate clinical and parasitological response (ACPR), early treatment failure (ETF), late

clinical failure (LCF) and late parasitological failure (LPF) [Full description of WHO TES

study protocol available at https://www.who.int/docs/default-source/documents/

publications/gmp/methods-for-surveillance-of-antimalarial-drug-efficacy.pdf?sfvrsn=

29076702_2].

2. Asexual parasite reduction ratio (PRR) one or two days after treatment initiation (PRRD1

or PRRD2) defined as the ratio of asexual parasitaemia pre-treatment initiation and that on

day one or two, respectively.

3. Asexual parasite positivity on day 1 (APPD1), 2 (APPD2) or 3 (APPD3) is defined as the

proportion of children with residual asexual parasitaemia one, two or three days after treat-

ment initiation, respectively Asexual parasite clearance time (PCT) defined as the time

elapsing between drug administration and absence of microscopic detection of viable asex-

ual parasitaemia.

Parasite genomic DNA extraction

A total of 300 pre-treatment (Day 0) DBS filter paper samples from all three sites were utilised

in this study. Of the 300 samples, 32 had LPF making a final total of 332 samples selected for
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analysis. Parasite genomic DNA was extracted from 332 DBS samples using the Zymo Quick-

DNA Miniprep Plus kit (17062 Murphy Avenue Irvine, California 192614, United States of

America) according to the manufacturer’s protocol.

Amplification of pfk13 gene and targeted sequencing

The pfk13 propeller domain was amplified by nested PCR using PuReTaq Ready-To-Go PCR

beads (GE Healthcare UK Limited) according to the manufacturer’s protocol. We used prim-

ers kelch-outer-F 50-gggaatctggtggtaacagc-30 and kelch-outer-R 50-cggagtgaccaaatctggga- 30 for

the primary PCR, and kelch-inner-F 50-gccttgttgaaagaagcaga-30 and kelch-inner-R 50-

gccaagctgccattcatttg-30 for the nested PCR. The nested PCR product was 849 bp and corre-

sponds to nucleotide sequence 1279–2127 (representing codons 427–709) of PF3D7_1343700

K13 propeller domain, which included mutations correlated with delayed parasite clearance

[10].

The ready-to-go PCR beads were reconstituted to a final volume of 20 μL in the primary

reaction, 2 μL of DNA was amplified with 0.5 μM of each primer. Cycling conditions were 95

˚C for 1 minute, followed by 35 cycles at 95˚C for 20 seconds, 58 ˚C for 20 seconds, and 60 ˚C

for 1 minute, with a final extension at 60 ˚C for 3 minutes.

One microlitre of the primary reaction was further amplified with 0.5 μM of each primer in

the nested PCR reaction. Cycling conditions were 95 ˚C for 1 minute, followed by 35 cycles at

95 ˚C for 20 seconds, 56 ˚C for 20 seconds, and 60 ˚C for 1 minute, with a final extension at 60

˚C for 3 minutes. Nested amplicons were analysed by electrophoresis on a 2% agarose gel to

confirm amplification. We purified the nested amplicons using ExoSAP-IT (Affymetrix, Santa

Clara, CA, USA), and we sequenced them using BigDye Terminator v.1.1 (Life Technologies,

Carlsbad, CA, USA) and the same primers as for nested PCR (kelch-inner-F and kelch-inner-

R). We carried out sequencing using an Applied Biosystems 3500 XL series Genetic Analyser

at ACEGID, Redeemer’s University, Ede, Osun State, Nigeria.

Data analysis

Identification of polymorphisms. Chromatograms of the individual sequences were

viewed using Geneious v2020.0.4 [24, 25] and manual base calling was carried out as needed

for some of the sequences. Consensus sequences were generated for all samples. The consensus

sequences were generated by first aligning the forward and reverse reads for individual sam-

ples using Geneious alignment. A consensus was reached from the resulting alignment by

choosing the highest quality base and also carrying out manual base calling for regions of

ambiguities. To detect polymorphisms in the sequences encoding the pfk13 propeller gene, we

obtained the reference nucleotide sequence of the pfk13 gene from the NCBI database

(PF3D7_1343700 sequence region spanning region 1,724,817–1,726,997 bp of chromosome

13). We mapped the consensus sequences of the samples to the reference gene sequence using

Geneious v2020.0.4.

Statistical analysis of treatment outcome. Discrete variables (such as proportions of fre-

quencies) were compared by calculating χ2 using Yates’ correction, Fisher’s exact or Mantel

Haenszel tests. Normally distributed, continuous data were analysed by Student’s t-test or

analysis of variance (ANOVA) as it is applicable. Mann–Whitney U tests or Kruskal Wallis

tests (or by Wilcoxon ranked sum test) was used to compare data that did not conform to nor-

mal distribution. P values of<0.05 were taken to indicate significant differences.
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Results

Demographics

Of the 300 participants’ samples analysed, 165 (55%) were male. The mean age of all children

was 58.42±25.71 months (95% confidence interval (CI) 55.71–61.52). The geometric mean of

the asexual parasitemia was 17,765 μL-1 (95%CI 15498–20363) (Table 1). Children enrolled in

Kano State were significantly (p<0.0001) younger and had significantly (p = 0.046) lower

enrollment asexual parasitaemia compared to children enrolled in other States (Table 1).

Study treatment outcome

The overall ACPR_c values for AA, AL and DHP in Enugu, Kano and Plateau States were

100%, 99.3% and 100% respectively. The ACPR_c values for AA in Kano and Plateau States

were 100% respectively while the ACPR_c values for AL in Enugu, Kano and Plateau States

were 98%, 100% and 100% respectively. Only Enugu State tested DHP and recorded an

ACPR_c value of 100%. Of the 32 presented with LPF, 14 occurred in Enugu, 11 in Kano and 8

in Plateau State (Table 2).

Pfk13 gene mutations

We amplified and sequenced the pfk13 gene from all the 332 samples (300 pre-treatment sam-

ples and 32 LPF samples). Thirteen pfk13 gene mutations were detected in 21 out of the 332

sequences analysed in this study (Table 3). The prevalence of parasites with mutations on chro-

mosome 13 in the propeller region of the pfk13 protein was 6.3%, 93.7% did not have muta-

tions (Fig 1). The highest occurring mutation Q613H (1.5%) was detected in five samples

(three from Plateau State and two from Enugu State). The C469C mutation with 1.2% was

detected in four samples from Enugu State. Mutations V692G and G449S were detected in

0.6% of samples (G449S in Kano State; V692G in Enugu and Plateau States). We summarized

mutations detected in this study and previous Nigerian studies in Table 4.

Treatment outcome of children infected with mutated P. falciparum
Characteristics of the children with P. falciparum with pfk13 mutations are shown in Table 5.

Children infected with the mutated parasites are relatively older children (mean age: 53.7 ± 22

months, 14 of 21 were aged�48 months). They were also characterized by low enrollment

Table 1. Demographic characteristics of children at enrollment.

Parameter Enugu Kano Plateau All P value

n 100 100 100 300

Gender

M: F 55:45 60:40 50:50 165:135 0.36

Age (Months)

Mean 57.69 51.7 66.54 58.62 <0.0001

95% CI 52.33–63.05 46.6–56.8 62.24–70.85 55.71–61.52

� 60months 60 70 47 177 0.004

Asexual Parasitemia

Geometric mean 17098 14526 22984 17765 0.046

95% CI 13060–22384 12130–17395 17801–29676 15498–20363

� 100,000 10 3 16 29 0.004

https://doi.org/10.1371/journal.pone.0264548.t001
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asexual parasitaemia (geometric mean parasitaemia: 17,530 μL-1; 16 of 21 children had enroll-

ment asexual parasitaemia < 50,000μL-1), relatively slow clearance time (two-third of the

cohort cleared parasitaemia by after day 1). Following artemisinin-based combination treat-

ment of the uncomplicated infection, 7 of 21 children (33%) had recurrent parasitaemia within

21–42 days of follow-up post treatment initiation (mean time to recurrence: 29±6.3 days), of

these seven, only one child from Enugu State had recurrent parasitaemia due to recrudescence

while four children from Enugu State and two from Plateau State had recurrent parasitaemia

due to reinfection. It appears LPF was consistent with C469C (predominant in Enugu State)

and V692G (observed in Enugu and Plateau States). Also, the Q613H mutation occurring in

these States had ACPR phenotype.

Table 2. Summary of treatment outcome by State and drug.

State Treatment Outcome Drug Total

AA AL DHP

Enugu Number of samples 50 50 100

ETF 0 0 0

LCF 0 0 0

LPF 11 2 14

ACPR_u 39 48 87

ACPR_c 49 50 99

%ACPR_c 98 100 99

Kano Number of samples 50 50 100

ETF 0 0 0

LCF 0 0 0

LPF 2 9 11

ACPR_u 48 41 89

ACPR_c 50 50 100

%ACPR_c 100 100 100

Plateau Number of samples 50 50 100

ETF 0 0 0

LCF 0 0 0

LPF 1 7 8

ACPR_u 49 43 92

ACPR_c 50 50 100

%ACPR_c 100 100 100

Total Number of samples 100 150 50 300

ETF 0 0 0 0

LCF 0 0 0 0

LPF 3 27 2 32

ACPR_u 97 123 47 267

ACPR_c 100 149 50 299

%ACPR_c 100 99.3 100 99.7

Crude ACPR (ACPR_u); PCR-corrected ACPR (ACPR_c).

WHO protocol for parasite genotyping to differentiate recrudescence from new infections available at http://whqlibdoc.who.int/publications/2008/9789241596305_eng.

pdf.

https://doi.org/10.1371/journal.pone.0264548.t002

PLOS ONE Molecular markers of artemisinin resistance in Nigeria

PLOS ONE | https://doi.org/10.1371/journal.pone.0264548 February 28, 2022 6 / 14

http://whqlibdoc.who.int/publications/2008/9789241596305_eng.pdf
http://whqlibdoc.who.int/publications/2008/9789241596305_eng.pdf
https://doi.org/10.1371/journal.pone.0264548.t002
https://doi.org/10.1371/journal.pone.0264548


Table 3. Pfk13 polymorphisms observed in Enugu, Kano and Plateau States.

S/

N

K13 Amino Acid

Locus

Nucleotide

Locus

Reference

Allele

Mutant

Allele

Mutation Type Country Previously Observed Nigerian State

Observed

1. K438N 1314 A T Non-synonymous SE Asian Countries Kano

2. G449S 1345 G A Non-synonymous Mali Kano

3. F451L 1353 T - Non-synonymous - Kano

4. C469C 1407 C T Synonymous Kenya, Malawi, Senegal, Niger, Congo, DRC Enugu

5. V487E 1460 T A Non-synonymous - Enugu

6. A557S 1669 G T Non-synonymous Congo, DRC, Côte d’Ivoire Enugu

7. A578S 1732 G T Non-synonymous Uganda, Kenya, DRC, Gabon, Mali, Ghana,

Cameroon, Cambodia, India

Enugu

8. Q613H 1839 A T Non-synonymous Senegal, Ghana, Tanzania Enugu & Plateau

9. A621A 1863 T A Synonymous - Enugu

10. Q661H 1983 A - Non-synonymous - Enugu

11. N664I 1991 A T Non-synonymous - Plateau

12. V692G 2075 T G Non-synonymous - Enugu & Plateau

13. N694K 2082 T A Non-synonymous Angola, Cote d’Ivoire Kano

https://doi.org/10.1371/journal.pone.0264548.t003

Fig 1. A chart showing the frequency distribution of pfk13 gene polymorphisms observed in this study.

https://doi.org/10.1371/journal.pone.0264548.g001
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Comparison of responsiveness indices following treatment initiation in

children with and without mutated Pfk13
As a result of the small number of samples with mutations in our study (n = 21), samples with

mutation were matched for age, gender, enrolment asexual parasitaemia, same day presenta-

tion and same treatment with those without. Following treatment intiation, treatment indices

such as APPD1-2 and PRRD1-2 were similar in the 2 groups (P>0.2). None of the children

Table 4. Molecular surveillance of Pfk13 propeller polymorphisms in Nigeria.

S/N Mutations Previously observed Year observed Reference

1 H136N 2015, 2016 [26]

2 K189T 2015, 2016 [26]

3 E433G 2018 [27]

4 F434I 2018 [27]

5 F434S 2018 [27]

6 K438N 2018 Observed in this study

7 P441S 2017, 2018 [28]

8 F442F 2018 [27]

9 G449S 2018 Observed in this study

10 F451L 2018 Observed in this study

11 D464N 2010, 2011 [29]

12 C469C� 2017 [28]

13 V487E 2018 Observed in this study

14 F492F 2018 [27]

15 G496G 2014 [30]

16 V510V 2016 [20]

17 P553P 2016 [20]

18 A557S 2018 Observed in this study

19 A578S� 2010, 2011 [29]

20 V589V 2016 [28]

21 K610R 2014 [30]

22 Q613H� 2010, 2011, 2015, 2016 [29, 26]

23 A621A� 2014 [31]

24 A626T 2014 [30]

25 A627A 2014 [30]

26 V650F 2016 [28]

27 Q661H 2018 Observed in this study

28 N664I 2018 Observed in this study

29 N664N 2017 [28]

30 G665C 2016 [20]

31 V666V 2016 [20]

32 A676A 2016 [28]

33 I684N 2018 [27]

34 I684T 2018 [27]

35 E688K 2018 [27]

36 V692G 2018 Observed in this study

37 N694K 2018 Observed in this study

�Mutations observed in previous studies and our study.

https://doi.org/10.1371/journal.pone.0264548.t004
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with mutant parasites had persistent asexual parasitaemia two or three days after treatment ini-

tiation. In comparison, 28.6% (6 of 21) of children and 4.8% (1 of 21) of children of the cohort

infected with non-mutant parasites had persistent asexual parasitaemia two and three days

after treatment initiation respectively. PCT was significantly longer in children infected with

non-mutant parasites than those infected with mutant parasites (2.3±1.2 days versus 1.7±0.5

days, respectively; P = 0.03).

Discussion

The knowledge of mutations in the pfk13 gene associated with slow clearance of artemisinin

derivatives provides the ability to track the emergence and prevent the spread of resistant para-

sites and assess the effectiveness of control measures.

In this study, we detected a total of 13 SNPs (out of which 11 were non-synonymous) in the

pfk13 gene of P falciparum obtained from Nigerian children. None of them was among the ten

SNPs (F446I, N458Y, M476I, Y493H, R539T, I543T, P553L, R561H, P574L and C580Y) which

have been validated to be associated with artemisinin resistance in Southeast Asia, South

Table 5. Clinical features of children with mutated P falciparum in this study.

Study

site

Sample

ID

Gender Age

(Month)

Enrollment asexual

parasitaemia (uL-1)

Mutation

Position

Parasite clearance time

(day)

Antimalarial

Treatment

Treatment

outcome

Enugu 33 M 48 30571 A578S 1 AL ACPR

89 F 60 12817 Q613H 2 AL ACPR

106 F 36 16290 Q613H 2 AL ACPR

134 M 72 57850 A621A 2 AL ACPR

154 M 60 3424 V487E 2 AL ACPR

179 M 36 61320 A557S 2 DHP ACPR

197 M 48 2055 C469C 2 DHP LPF (D42)

228+ F 24 91680 C469C 2 AL LPF (D21)

236 M 36 9794 C469C 2 AL LPF (D28)

239 M 72 6714 V692G 1 AL LPF (D28)

Q661H

254 M 96 29229 C469C 2 AL LPF (D28)

Kano

14 M 12 15923 N694K 2 AA ACPR

26 F 24 37880 F451L 1 AL ACPR

51 F 84 26523 K438N 2 AA ACPR

59 M 36 16888 G449S 2 AL ACPR

77 M 48 2250 G449S 1 AA ACPR

Plateau 31 F 84 26069 Q613H 1 AA ACPR

58 M 60 16304 Q613H 1 AL ACPR

62 F 72 61080 Q613H 2 AL ACPR

77 F 60 5428 N664I 1 AL LPF (D28)

155 M 60 54739 V692G 2 AA LPF (D28)

Mean

(SD)

53.71 (22) 17, 530� 1.67 (0.48) 29 (6.3)#

�Geometric mean;
#Mean LPF;
+Only sample with recrudescence recurrent parasitaemia.

https://doi.org/10.1371/journal.pone.0264548.t005
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America and Rwanda [2, 6–9]. The absence of the validated mutations in our study is in line

with many recent studies carried out in Africa [32–40] and in Nigeria [20, 27, 29, 34, 41, 42].

In addition, eight (A578S, C469C, Q613H, K438N, A621A, N694K, G499S and A557S) of

the 13 SNPs observed in our study have also been observed in Southeast Asia and other sub-

Saharan African countries [10, 28, 30, 31, 33, 34, 36, 39, 40, 43–47] as represented in Table 4.

The Q613H was the most prominent SNP observed in our study and has been reported in

recent studies in Nigeria [26, 29]. However, A578S is the most prominent SNP observed

among sub-Saharan African countries like Ghana, Kenya, Gabon, DRC, Uganda, Cameroon

and Mali [34, 39, 46]. This mutation (A578S) represents a change from a non-polar to a polar

amino acid and can alter the shape of the pfk13 protein in the regions it has been observed in

[35]. Therefore, more attention must be paid to this mutation as it is emerging to be the most

prominent mutation observed in the pfk13 gene in sub-Saharan Africa [34, 39, 36].

We detected five novel SNPs (F451L, N664I, V487E, V692G and Q661H), which to the best

of our knowledge, have not yet been described elsewhere. Three of these SNPs (V692G, N664I

and Q661H) and a non-novel SNP, C469C were associated with LPF in two States (Enugu and

Plateau States) (Table 5). More studies would have to be carried out to understand these muta-

tions better and unravel their effects or importance.

Data reported in this study suggests that all the thirteen (13) mutations observed in our

study are less likely to be associated with a delayed parasite clearance phenotype as evidenced

by similar parasite reduction ratios and proportion with persistent asexual parasitaemia fol-

lowing treatment initiation. In addition, significantly longer asexual PCT in children infected

with non-mutant pfk13 parasites indicate that the mutants identified in the parasites circulat-

ing in Nigeria do not confer resistance to artemisinin derivatives.

As some of these mutations seem to be indigenous to African parasites, it is imperative that

in vivo and in vitro studies are conducted to validate their possible roles in the emergence and

spread of ART reduced susceptibility/resistance in Nigeria and sub-Saharan Africa as a whole

as observed in previous studies [48, 49].

Although these polymorphisms reported in this study have not been associated with ART

resistance, recent studies have shown that two of the validated mutations (R561H and P574L)

associated with ART-resistance have been observed in Rwanda, a country which like Nigeria is

in the Sub-saharan African Region [7, 8]. This is worrisome because it is only a matter of time

before such mutant malaria parasites are introduced into Nigeria due to migration patterns

between these two countries. With the emergence of these mutations in the pfk13 gene, there is

a need for constant and routine monitoring to avoid bad surprises and to have in place control

strategies should resistant parasites emerge.

Conclusion

There was no validated mutation associated with ART resistance in this study. However, we

observed novel and other established mutations reported to be circulating in Nigeria and other

African countries. Correlation of mutation data obtained in this study with in vivo and in vitro
phenotypes is needed to establish the functional role of detected mutations as markers of arte-

misinin resistance in Nigeria.
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