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Abstract
Explainable artificial intelligence (XAI) is an emerging, multidisciplinary field of research that seeks to develop methods 
and tools for making AI systems more explainable or interpretable. XAI researchers increasingly recognise explainability 
as a context-, audience- and purpose-sensitive phenomenon, rather than a single well-defined property that can be directly 
measured and optimised. However, since there is currently no overarching definition of explainability, this poses a risk of 
miscommunication between the many different researchers within this multidisciplinary space. This is the problem we seek 
to address in this paper. We outline a framework, called Explanatory Pragmatism, which we argue has two attractive features. 
First, it allows us to conceptualise explainability in explicitly context-, audience- and purpose-relative terms, while retaining 
a unified underlying definition of explainability. Second, it makes visible any normative disagreements that may underpin 
conflicting claims about explainability regarding the purposes for which explanations are sought. Third, it allows us to distin-
guish several dimensions of AI explainability. We illustrate this framework by applying it to a case study involving a machine 
learning model for predicting whether patients suffering disorders of consciousness were likely to recover consciousness.

Keywords  Explainable artificial intelligence · XAI · Medical artificial intelligence · Explanation · Understanding · Ethics of 
artificial intelligence

Introduction

Medicine and healthcare are often highlighted as some of the 
most promising domains of application for artificial intel-
ligence (AI). Building on recent breakthroughs in machine 
learning, medical AI systems are developed to take on 
increasingly critical roles in assisting with clinical reasoning 
tasks such as diagnosis, prognosis and treatment decisions.

For example, in one recent study researchers used 
machine learning to build a prognostic model to predict 
whether patients at a military hospital in Beijing suffering 

from disorders of consciousness (DoC) following brain 
injury would recover within 12 months (Song et al., 2018).1 
The model takes inputs from fMRI scans and a few clinical 
details to generate a predicted score on a standard 23-point 
scale for signs of consciousness, as well as a binary predic-
tion of whether the patient will recover consciousness.2 The 
results were promising: the model achieved 88% accuracy 
in predicting consciousness recovery on external validation 
data (including from a different hospital in Guangzhou), 
with similarly promising true positive and true negative 
rates. The system was reported by the World Economic 
Forum as one of the “7 amazing ways artificial intelligence 
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1  DoC is defined as conditions where a patient’s capacity for arousal 
or awareness is absent or inhibited. These mainly include coma, per-
sistent vegetative state and minimally conscious state.
2  Specifically, a regression model was first trained to predict patients’ 
score on the Coma Recovery Scale-Revised (CSR-R), which com-
bines six sub-scales estimating auditory, visual, motor, oromotor, 
communication, and arousal functions. To produce a binary classifi-
cation, a cut-off point on the predicted CSR-R scores was then calcu-
lated, above which patients were predicted to recover consciousness 
(defined as a score of 3 or higher on the Glasgow Outcome Scale). 
The cut-off point was selected to maximise the sum of true positive 
and true negative classifications in the training data.
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is used in healthcare” (Gray, 2018) and used in the daily 
operations of the Beijing hospital (Chen, 2018).

We highlight this case for a couple of reasons. First, it 
illustrates the potential benefits that could be gained from 
medical applications of machine learning and related tech-
nologies. For instance, the model correctly predicted seven 
out of eight patients in the validation dataset who regained 
consciousness, despite doctors scoring them below 7 for 
signs of consciousness, the legal threshold for a family to 
withdraw life support (Chen, 2018). This also illustrates 
how machine learning may be relied upon in high-stakes 
decision-making. When a patient is predicted not to recover, 
this could lead to life-support being removed or therapeutic 
interventions being prioritised for other patients (Song et al., 
2018, pp. 1-2).

What interests us most about this case, though, is the 
claim by the authors that their model “also has good inter-
pretability, thereby providing a window to reassure physi-
cians and scientists about the significance of different pre-
dictors” (p. 21). This claim is significant, since it addresses 
one of the major concerns about the increased reliance on 
AI systems in high-stakes contexts, such as the medical 
domain, namely that they are “opaque” (Burrell, 2016), 
“black boxes” (Castelvecchi, 2016), or lacking in “inter-
pretability” or “explainability” (Watson et al., 2019). This 
concern is taken seriously by many, including policy makers 
and technology companies. For instance, a recent survey 
found that 73 out the 84 reviewed AI ethics guidelines pro-
posed ethical principles relating to Transparency (includ-
ing ‘explainability’, ‘explicability’, ‘understandability’ and 
‘interpretability’), making it the most commonly discussed 
type of principle (Jobin et al., 2019). In response, a growing 
body of technical AI research has emerged, which seeks to 
develop methods for making AI systems more “interpret-
able” or “explainable” (see e.g., Doshi-Velez & Kim, 2017; 
Biran & Cotton, 2017; Chakraborty et al., 2018; Guidotto 
et al., 2018; Gunning & Aha, 2019), a field often known as 
Explainable AI (XAI).3

An overarching difficulty in this research is that the end 
goal of having an explainable or interpretable system lacks a 
precise definition (Doshi-Velez & Kim, 2017; Lipton, 2017). 
XAI researchers are increasingly recognising explainability 
as a context- and audience-sensitive phenomenon, rather 
than a single mathematically defined property that can be 
directly measured and optimised (Kim, 2021; Tomsett et al., 
2018). The lack of precise definitions is problematic for 

several reasons. First, for technical researchers it means a 
constant need for direction verification and course correction 
to make sure they focus on the right goals and make pro-
gress toward them (Kim, 2021). Second, discussions about 
explainability involve many different groups, including the 
technical machine learning community, domain experts 
who are meant to use models, human-computer interaction 
researchers working to bridge the gap between technical 
models and users, and regulators and ethicists seeking to 
establish principled ways to safely oversee these advances. 
In a multidisciplinary space such as this, having clear defini-
tions of key terms is crucial to ensure productive communi-
cation and common goals. In short, the problem is this: how 
can we conceptualise explainability in a way that is unified 
enough to allow cross-disciplinary communication, while 
also capturing its context- and audience-sensitivity?

This is the problem we aim to resolve in this paper. We 
will outline a framework, called Explanatory Pragmatism, 
which we argue can illuminate some nuances and key ques-
tions relevant to evaluating explainability in AI systems, 
especially in medical applications. We start by briefly 
reviewing some of the recent developments in the technical 
research and ethical debates about explainable AI. Next, we 
propose and defend a general account of what it means for 
an AI system to be explainable, based on pragmatic accounts 
of explanation and understanding in philosophy of science. 
We highlight several attractive features of this framework. 
First, it allows us to conceptualise explainability in explic-
itly context-, audience- and purpose-relative terms, while 
retaining a unified underlying definition of explainability. 
Second, it makes visible any normative disagreements 
that may underpin conflicting claims about explainability 
regarding the purposes for which explanations are sought. 
Third, it allows us to distinguish several dimensions of AI 
explainability. Finally, we apply Explanatory Pragmatism 
to the consciousness recovery case study introduced above, 
to illustrate its usefulness for distinguishing and analysing 
different types of explainability in medical AI.

Current directions in explainable AI

Much progress has been made in the last few years in 
response to the above concerns about explainability. Early 
debates tended to focus on black-and-white questions of 
whether or not AI systems could be explainable and still 
predictive or whether they should be deployed at all with-
out being fully explainable. For instance, the UK House of 
Lords report on AI stated that “it is not acceptable to deploy 
any artificial intelligence system which could have a sub-
stantial impact on an individual’s life, unless it can generate 
a full and satisfactory explanation for the decisions it will 
take” (House of Lords, 2018, p. 40). Meanwhile, critics, 

3  There is considerable terminological variation in these literatures. 
Some use terms such as ‘interpretability’ and ‘explainability’ more 
or less interchangeably, while others define them to mean different 
things (e.g. Lipton 2017). Our account is framed in terms of ‘explain-
ability’ (for reasons that will become apparent below) and we will 
mainly be using this term, except when quoting others.
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such as Weinberger (2018) and London (2019), rejected 
blanket requirements for explainability on the grounds that 
this would risk forgoing the highest possible accuracy, by 
giving preference to simpler but less accurate models, which 
in high-stakes medical contexts ultimately would translate 
into higher morbidity and mortality for patients.

More recently, however, researchers have questioned 
whether there is in fact an inherent trade-off between 
explainability and predictive power (Kim, 2021). There has 
been a proliferation of approaches to improving explainabil-
ity without necessarily restricting oneself to simpler models. 
Some current directions in XAI research include verification 
of explanations (Camburu et al., 2019), making explana-
tions more amenable to human understanding by defining 
concept-equivalent components rather than explanations 
based on individual features (e.g. training an algorithm in 
a pathology context to recognise groups of pixels as glands 
rather than just pointing to particular regions on the image 
in isolation) (Cai et al., 2019; Kim et al., 2018), and auto-
matically discovering such concepts (Ghorbani et al., 2019). 
Some researchers have also started to explore explainability 
at a system-level, where developers can struggle to explain 
the behaviour of ensembles of models because of unpre-
dictable or unforeseen interactions between the component 
models, and suggest new ways of building systems to meet 
this challenge (Lawrence, 2020; Zittrain, 2019).

More generally, researchers have started to investigate 
explainability in specific contexts rather than as an abstract 
desideratum. For instance, in a recent paper in the applied 
machine learning space, Sendak et  al. (2020) built and 
deployed a tool to detect sepsis. They raise several instruc-
tive points in relation to their case study of developing 
and deploying this model. First, they question whether the 
purposes for which explainability is being used—e.g. as a 
way to build trust in machine learning models in medicine 
or to ensure transparency—have been overemphasised. 
In their case study, they found that there were other ways 
of developing trust and accountability, for instance in the 
ways that teams were designed. These included involving 
domain stakeholders in the development and acknowledging 
the labour of interpreting and translating the outputs of the 
model into clinical practice. They also raised more detailed 
points about which parts of the model required explainability 
and which did not. For instance, clinicians were not inter-
ested in interpreting the cause of sepsis since the treatment 
pathways were the same regardless, but they did want to 
know key facts about the model such as what input data the 
model used, how it had been validated, and which types of 
decisions it was designed to support.

Regulatory thinking has also come some distance from 
the earlier statements, such as the 2018 House of Lords 
report. For instance, recently released regulations addressing 
clinical trials for machine learning-based decision support 

tools include more specific guidelines for researchers and 
developers aiming to deploy models in the clinical context, 
including thinking about the skills needed for people to use 
and understand the models as well as error cases and evalu-
ation contexts (Liu et al., 2020; Heaven, 2020; Genin & 
Grote, 2021).

Finally, there is an increased focus on the need for con-
ceptual clarification. While ‘explainable AI’ and related 
terms are widely used in the technical and policy literatures, 
commentators have highlighted that these terms lack any 
clear, agreed-upon definition (Besold & Uckelman, 2018; 
Felten, 2017; Kirsch, 2017; Krishnan, 2019; Lipton, 2017; 
Selbst & Barocas, 2018; Tomsett et al., 2018; Weller, 2017; 
Zednik, 2019). As the brief review in this section illustrates, 
there is considerable variety in what kinds of things are 
meant to be explained—e.g., models, components of mod-
els, individual decisions, interacting ensembles of models, 
the design process that produced a given system—and the 
types of features that are claimed to make a given system 
or model (etc.) explainable. Moreover, when motivating 
the need for explainability, people highlight many differ-
ent kinds of problems it is supposed to help alleviate. What 
people regard as an adequate explanation seems to vary by 
user, context and purpose.

In response to this apparent disunity, some have doubted 
the usefulness of the term ‘explainable AI’ (Krishnan, 
2019). Others have proposed more contextual accounts of 
explainability, aiming to accommodate this plurality within 
a general, unified framework (Besold & Uckelman, 2018; 
Tomsett et al., 2018; Zednik, 2019).

We subscribe to the latter approach. Being able to com-
pare and contrast different approaches to explainability 
within a unified framework will be valuable as a means to 
facilitate communication within and across the different 
communities working on XAI. Of course, such a frame-
work also needs to be flexible enough to genuinely capture 
the different aspects of the problem(s). In the next section, 
we develop an account of explainability which, we argue, 
achieves just that.

A framework for explainable AI

A natural starting point for an account of explainability is to 
ask what counts as a good explanation. We start by outlining 
an answer to this question, based on some ideas from the 
philosophical literature on explanation and understanding, 
before proposing a definition of explainability and compar-
ing it to some extant proposals. We defend our framework 
against some potential objections in “Potential Objections”.

In recent decades, philosophers of science have increas-
ingly emphasised that scientific explanations vary along sev-
eral different dimensions, such as the type of information 
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provided (e.g. general laws or local causes), implicit con-
trast-classes (why did you close the window vs. why did you 
close the window), and level of abstraction and idealization 
(e.g. Jackson & Petit, 1992; Potochnik, 2016; Sterelny, 1996; 
Weisberg, 2007). Often, for the very same phenomenon, sev-
eral valid explanations are available. For instance, if we ask 
why the cheetah is able to reach speeds of up to 120 km/h, 
the available explanations include: a physiological expla-
nation, highlighting facts about the build, muscle-structure 
and metabolism of the cheetah’s body; an ecological expla-
nation, highlighting that the cheetah’s ecological niche 
involves hunting certain kinds of fast prey for which the 
ability to reach high speed is necessary; and a phylogenetic 
explanation, which tracks the series of historical speciation 
events that led to the emergence of the cheetah. Crucially, 
all three types of explanations are valid and can, depending 
on purpose and audience, count as the best or most adequate 
explanation.

Our account of AI explainability draws on two, broadly 
pragmatist ideas that philosophers of science have proposed 
to account for this plurality in what counts as good explana-
tions: a communicative view of explanation and an inferen-
tialist view of understanding.

Communicative view of explanation

It has been noted that the verb ‘explains’ can take at least 
three different kinds of things as its subject (Craver, 2014, 
cited by Potochnik, 2016): a fact or entity in the world (“the 
cold explains his sore throat”), a theory or other represen-
tation of the world (“infections are explained by the germ 
theory”) and an agent (“the doctor explains how the vaccine 
works”). Existing philosophical theories differ as to which 
of these uses constitute the most fundamental phenomenon 
and which are merely derivative. Communicative views pri-
oritise the third use (Franco, 2019; Potochnik, 2016; Wilk-
enfeld, 2014).

We adopt the following formulation of the communica-
tive view: explanations are communicative acts where an 
explainer conveys some information to an audience, in order 
for that audience to obtain some relevant understanding. 
This contains two ideas. First, that explanations should be 
conceived as speech acts (Austin, 1962) and thus be evalu-
ated in terms of how well they achieve their communica-
tive function. Second, that the characteristic communicative 
function of explanations is for the audience to obtain some 
relevant understanding (Franco, 2019). In other words, the 
‘goodness’ of an explanation depends on whether it would, 
under the right circumstances (the audience is attentive, 
makes an effort to understand what was said, etc.), help the 
audience obtain the relevant type of understanding. Expla-
nations can of course be used for other purposes, such as to 
mislead or manipulate people into trusting the explainer. 

But these uses are parasitic on the paradigmatic function of 
explanations, viz. to improve the audience’s understanding, 
in the same way that lying is parasitic on the fact that asser-
tions are generally assumed to aim at conveying truthful 
information.

As Wilkenfeld (2014) points out, this view avoids impos-
ing any general constraints on the structure of explanations 
or the type of information they should cite. Instead, an expla-
nation is functionally defined simply as the kind of thing 
that, under the right circumstances, produces the right kind 
of understanding. This is how the communicative view 
builds in the plurality and context-sensitivity noted above, 
while maintaining an underlying unified notion of explana-
tion (Wilkenfeld, 2014: 3367-69). This is not to say that 
there are no constraints whatsoever or that all explanations 
are equally good. Rather, what counts as explanatory (or a 
good explanation) in a given context depends on what best 
helps the audience obtain the relevant kind of understand-
ing. The point is that these constraints are derived from what 
constitutes ‘relevant understanding’, rather than the concept 
of explanation itself.

Inferentialist view of understanding

What is relevant understanding, then? As several philoso-
phers have argued, understanding is closely related to the 
ability to draw relevant practical and theoretical inferences 
(e.g. de Regt, 2017; Leonelli, 2009; Stuart, 2018; Wilken-
feld, 2013). While understanding (at least of the kind con-
veyed through explanations) involves having some kind of 
information or representation of the thing understood, sim-
ply knowing a set of facts is insufficient for understanding. 
A person might know many facts about computers through 
reading an authoritative textbook: e.g. that the harddisk 
stores programmes, that most computers require stored pro-
grammes to function, that overheating can cause components 
to break, etc. However, if they are unable to use this infor-
mation to competently draw inferences like “the computer 
stopped working because the harddisk broke” or “we should 
identify potential sources of overheating to prevent this from 
happening again”, we would be reluctant to say that they 
understand computers.4

4  There is a debate over whether abilities are an essential part of 
understanding. Some argue that inferential and practical abilities are 
simply the typical consequence of the right kinds of knowledge, e.g. 
of inferential or explanatory relations (Kelp, 2015; Sullivan, 2018). 
Others argue that these types of knowledge are simply the typical 
means of achieving the right kind of abilities (e.g. Stuart, 2018; Wilk-
enfeld, 2013). For our purposes, it is not crucial how this debate is 
resolved. In practice, robust inferential and practical abilities can usu-
ally only be achieved through having at least some relevant knowl-
edge; conversely, we can usually only know that someone has certain 
beliefs or representations if they manifest some relevant abilities.
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Notably, ascriptions of understanding are context-sensi-
tive (Kelp, 2015; Wilkenfeld, 2017). When we say that a 
person “understands” something, we do not simply praise 
their ability to draw any inferences whatsoever. Rather, the 
conversational context will implicitly pick out some pur-
pose which in turn determines a class of inferences that are 
relevant for achieving that purpose. For instance, if Mo says 
“I understand how my fridge works” in an everyday con-
text, he may simply mean that he knows how to use it to 
keep food fresh. However, if it breaks and Mo exclaims “I 
don’t understand this fridge, I wish Jill was here!”, he is 
making a different purpose salient—namely repairing the 
fridge—which he thinks Jill is able to achieve. Notice that 
the context-sensitivity here tracks the conversational context 
of the speaker, not the subject of understanding-ascriptions. 
Given the purpose Mo makes salient, whether he is correct 
to say that Jill understands the fridge depends on whether 
she is in fact able to repair it, regardless of whether she has 
any interest or intention of doing so.

Explanatory pragmatism

Putting together the above ideas, we obtain the following 
account of good explanations: a communicative act is a good 
explanation to the extent it provides information that, under 
the right circumstances, enables the audience to competently 
draw inferences that are needed to achieve the contextually 
salient purposes. Based on this, we propose the following 
schematic definition of explainability:

Explainability: in the conversational context C, a given 
phenomenon (model, system, prediction, …), P, is 
explainable by an explainer, S, to an audience, A, to 
the extent S is able to convey information to A that 
enables A to draw inferences about P that are needed 
to achieve the purposes that are salient in C.

The explainer can either be a human, possibly supported 
by some technical XAI tool for extracting relevant informa-
tion, or a fully automated explanation-generator.5 The key 
point here is that explainability by this definition is always 
relative to a specific audience and contextual purpose. With-
out first specifying the relevant audience and purpose, there 
is no well-defined sense in which a given system is more or 
less explainable.

This definition forms the core of our framework. Its 
main function is to help elucidate what is at stake in dif-
ferent claims about explainability (or the lack thereof), by 

suggesting a series of heuristic questions. Given some claim 
about whether a system (or model, decision) is explainable, 
ask first: to whom does it need to be explainable and why, 
i.e., who is the audience and what purposes motivate this 
need? Second, what inferences does this audience need to 
be able to draw in order to achieve this purpose? Third, what 
information does the audience need in order to competently 
draw those inferences? Finally, who is supposed to supply 
this information, i.e., who is the explainer? The answers to 
these questions will determine to what extent the system is 
explainable, namely to the extent that the explainer is able 
to convey the necessary information to the audience. This 
heuristic, together with our definition of explainability, con-
stitutes the framework we call Explanatory Pragmatism. In 
the rest of this section, we clarify a few of its key features.

As with the Mo/Jill fridge example in “Inferentialist 
view of understanding”, the context-sensitive elements 
of this definition, i.e. what the salient purpose, explainer 
and audience are, is determined by the speaker context, i.e. 
the conversational context within which an explainability 
claim is put forward and evaluated. The intentions, wants 
and needs of the explainer and audience themselves have 
no direct relevance, except insofar as they happen to be the 
ones discussing the explanation claim. It is because differ-
ent speakers may have different audiences and purposes in 
mind that they risk talking past each other. By providing 
a framework for making these presuppositions explicit, 
Explanatory Pragmatism can facilitate cross-disciplinary 
communication and help resolve disagreements that arise 
from such misunderstandings.

This is not to say that the framework will automatically 
resolve all disagreements. In particular, there may remain 
substantive normative disagreements over which purposes 
it is important that the audience is able to achieve. Our 
framework is neutral with regards to those questions. Simi-
larly, a given type of explainability may sometimes trade 
off against other important purposes. Again, Explanatory 
Pragmatism does not provide guidance as to how such trade-
offs should be resolved. Disagreements will instead have 
to be resolved through independent normative arguments 
and value judgements. The value of our framework is that 
it forces us (designers, evaluators, etc.) to make these disa-
greements explicit such that they can be directly debated and 
potentially resolved.

As mentioned, we are not the first to highlight the impor-
tance of audience and purposes for XAI. Besold & Uckel-
man (2018) argue that a criterion for explainability is that 
the system can satisfy the user’s “subjective epistemic long-
ing”, i.e., that it helps the audience learn things they desire 
to know. Tomsett et al. (2018) distinguish between different 
roles agents can play in the “machine learning ecosystem”, 
such as creators, examiners, operators or decision-subjects. 
They argue that the goals of a given agent depend on the 

5  We are open to the explainer and audience in some cases being the 
same individual. We would construe this as a limiting case of our def-
inition where “S is able to convey information to A” reduces to “A is 
able to obtain information”.
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role(s) they play, and that this in turn affects what kinds 
of explainability the agent requires to achieve those goals. 
Building on Tomsett et al., Zednik (2019) distinguishes dif-
ferent types of explanation-seeking questions that different 
stakeholders require answers to. For instance, he argues that 
system operators need to know what the system is doing, i.e., 
how it maps inputs to outputs, while decisions subjects (the 
individuals about whom predictions and decisions are being 
made) require answers to why its outputs are appropriate, 
i.e., what correlations in the environment make the outputs 
a reliable guide to a given decision.

Like Explanatory Pragmatism, these accounts define 
explainability to depend on audience and purposes. How-
ever, their starting point is the explanatory interests (desires, 
goals) of the audience (or generic roles, e.g., decision-sub-
jects in general). By contrast, our framework starts from 
the purposes that are salient in the speaker context and asks 
what inferences different agents need to be able to draw 
to achieve those purposes. Thus, it highlights that debates 
about explainability can involve normative disagreements 
about what the audience should be able to do, rather than 
what the audience happens to want or desire.

Notice, finally, that our framework only gives a criterion 
for evaluating whether a system is explainable to a given 
audience, and a heuristic for identifying what kinds of infor-
mation the audience needs for the system to be explaina-
ble. It does not entail the further claim that conveying this 
information would count as an explanation of the system 
or, more generally, what type of explanation-seeking ques-
tion it would be an answer to.6 Similarly, we do not assume 
that the solution to lacking explainability is always to pro-
vide more information. Sometimes, a better solution is to 
change the system (e.g., making it simpler and easier to 
understand) or improve the audience’s inferential abilities 
by some other means. (We discuss an example of the latter 
in “Clinical reasoning”). In other words, if we take explain-
ability to mean something like “the things that need to be 
explained, can be explained”, there are two ways to ensure 
this: either make sure more things can be explained (i.e., 
provide more information) or make sure that fewer things 
need to be explained (i.e., change the system or the audi-
ence’s inferential abilities).

Potential objections

We flesh out Explanatory Pragmatism further in the follow-
ing sections, by using it to introduce and distinguish several 
different kinds of challenges to explainability (“Challenges 
to explainability”) and by applying it to a concrete case study 

(“Purposes and audiences in medical AI”). First, however, 
let us address a few potential objections. For, on this type of 
contextualist, pragmatist view, is there any objective basis 
or guidelines for deciding how good a given explanation 
is? Worse yet, since we impose no general restrictions on 
the salient purposes, does our view entail that anything can 
count as a good explanation? If so, doesn’t that trivialise 
the notion of explanation beyond the point of usefulness?7

Regarding the first point, our framework does have an 
objective basis for evaluating explanations, namely whether 
they improve the inferential abilities that the audience needs 
to achieve the salient purpose. Now, as mentioned, there is 
no determinate answer to how good a given explanation is 
independently of such purpose and audience. But once these 
are specified, Explanatory Pragmatism provides clear, objec-
tive guidelines for determining the quality of an explanation.

On whether this means that anything can count as a 
good explanation, the answer is no: only information which 
improves the audience’s inferential abilities can be explana-
tory. Nonetheless, in many cases there will still be some 
ingenious way to specify a purpose and an audience, such 
that a given type of information will improve the inferential 
abilities the audience needs to achieve the purpose. To take 
a vivid example (adapted from Kitcher and Salmon, 1987), 
suppose an AI system predicts that a patient will not recover 
from a coma, and their relatives ask why. Suppose, moreo-
ver, that the only contextually salient purpose is to enable 
the relatives to articulate a coherent narrative about their 
loved one’s illness and trajectory, irrespective of the truth or 
predictive accuracy of this narrative. If the relatives believe 
in astrology, information about the current position of the 
stars and their (supposed) influence on the patient’s specific 
condition might serve this purpose well. Then, according to 
our framework, this type of astrological information would 
count as a good explanation.

While true, this implication is less radical than it may 
sound. First, the fact that it counts as a good explanation 
in that context does not entail that it counts as good in all 
other contexts. Second, even when the ability to articulate a 
coherent narrative is a salient purpose, it is rarely the only 
one. Presumably, we are not just looking to help the relatives 
articulate a coherent narrative, but also one that is (at least to 
some extent) true or accurate. Assuming the position of the 
stars does not, in fact, influence or predict terrestrial events 
in anything like the way astrology postulates, and the model 
does not rely on this type of information either, no amount of 
astrological explanation would serve those purposes. Thus, 

7  We are grateful to an anonymous referee  for raising these points. 
The same reviewer also suggested we discuss a variant of Kitcher 
and Salmon’s (1987) astrology example. Notice, since most of 
Kitcher  and Salmon’s arguments focus on the details of Van Fraas-
sen’s (1980) view, they do not apply to our account.

6  Many thanks to an anonymous referee for alerting us to this ambi-
guity in our view.
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in most contexts conveying astrological information would 
not be a good explanation.

An analogy with other context-sensitive terms may be 
helpful here: whether something counts as ‘big’ depends on 
a contextually salient standard. 180 centimetres is tall for 
a miner, but short for a basketball player. 18 centimetres is 
big for an insect, but not at all for humans. 260 picometers 
is big for an atom, but small for most other things. However, 
this does not mean that there is no objective basis for calling 
things big or that there are no guidelines for determining 
whether a given entity is big, once the relevant standard is 
clear. Likewise, it is true that almost any size can count as 
big in some context, but this does not mean that they count 
as big in all other contexts. In most contexts, 260 picometres 
is very small indeed.

Granted, our framework is more permissive than what 
more restrictively minded philosophers might accept. But 
is it therefore useless? That depends (of course) on what 
we want to use the notion of explanation for. The restric-
tively minded philosopher, we suspect, wants to use it as a 
tool for criticism, by denying that astrology provides good 
explanations. If such explanations can count as good in some 
contexts (however unusual), that might seem to blunt the 
critical force of explanation claims. However, Explanatory 
Pragmatism leaves plenty of space for criticism.

First, if astrological explanations are evaluated in a con-
text where some degree of truth or predictive accuracy is 
a salient goal—which is arguably the case in most scien-
tific and medical conversations—one can point out that the 
proposed explanations lack those qualities. A proponent of 
astrology can of course retort that they believe their theory 
to be true (or accurate). But the same disagreement would 
arise even if we built some truth/accuracy constraint into the 
definition of ‘good explanation’.

Second, if a proponent of astrology only claims that their 
explanations are good relative to the purpose of articulat-
ing internally coherent narratives, one can highlight that 
there are many other important purposes that astrologi-
cal explanations do not serve well. Furthermore, one can 
plausibly argue that only giving patients and their relatives 
the ability to articulate coherent narratives is paternalistic 
and potentially manipulative. It is a widely accepted princi-
ple of medical ethics that patients should be given truthful 
information about their condition and the basis upon which 
medical decisions affecting them are made. Here, the under-
lying disagreement is revealed to be a normative, ethical 
one, namely about what purposes we should prioritise and 
thus what kinds of understanding our explanations should 
aim to provide. If anything, this strikes us as a stronger basis 
for criticism than whether astrological information can ever 
count as explanatory.

Finally, we regard it as a virtue of Explanatory Prag-
matism that it leaves space for these kinds of normative 

disagreements to be debated directly and explicitly, rather 
than packing them into a dispute about what counts as good 
explanations. For instance, it could be argued that the above-
mentioned principle can be defeated or outweighed in cer-
tain cases. In the case of terminally ill patients, for example, 
it might be argued that the overriding priority should be 
to help them articulate a coherent and meaningful narra-
tive about the end of their life. Regardless of whether one 
accepts this argument, we want our framework to leave space 
for the view that, in some cases, it would be inappropri-
ate to insist on truthfulness/accuracy as a criterion for good 
explanations.

To summarise, if any critical potential is sacrificed by 
Explanatory Pragmatism, it is negligible and more than 
made up for by its advantages, namely: (1) that it accom-
modates the plurality and context-sensitivity of explana-
tions within a unified framework, and (2) that it requires 
underlying factual and normative disagreements to be made 
explicit, thereby facilitating communication and preventing 
misunderstandings between different stakeholders and dis-
ciplinary communities.

Challenges to explainability

In our framework, the guiding question in determining 
whether an AI system is explainable is whether the audi-
ence has information that enables them to draw contextu-
ally relevant inferences. Building on earlier literature, we 
distinguish several different ways this can fail to be the case.

Some challenges arise due to features of the agents 
involved, i.e., the explainer and audience. Consider for 
instance:

Secrecy: even if the relevant information is avail-
able, the explainer may not be willing, permitted or 
designed to convey it to the audience. This can be for 
legitimate purposes, such as preserving trade secrets or 
other confidential information (Burrell, 2016).

Technical literacy: even if the explainer conveys the 
information, the audience may not be familiar enough 
with the relevant vocabulary to fully comprehend this 
information. For instance, they may not be familiar 
with certain types of mathematical formalism or the 
definition of technical terms, such as what it means for 
a model to be ‘optimised’ for a certain goal (Burrell, 
2016).

While these are both important, our focus in this paper 
will be on challenges that arise even if there are no restric-
tions on the types of information that can be conveyed by the 
explainer or comprehended by the audience.
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A further type of challenge arises due to intrinsic features 
of the model, in particular its size or complexity:

Complexity: even if the audience can comprehend the 
information, it may be too complex for the audience 
to effectively and efficiently reason with or about. For 
instance, advanced machine learning models, such as 
a deep neural networks or large ensemble models, can 
take hundreds or thousands of input variables and use 
these to calculate a highly nonlinear and non-mono-
tonic function (Selbst & Barocas, 2018, 1094-96), 
meaning that there are no simple, overall rules for 
whether increasing a given input variable will increase 
or decrease (and by how much) the probability of a 
given decision.

When a system becomes too large or complex, it can 
become infeasible for humans to competently draw infer-
ences about its behaviour (at least within timescales that do 
not defeat the point of automating decision making in the 
first place). For instance, it may become infeasible to mean-
ingfully follow and trace how the inputs get transformed into 
a given output, or to make even qualitative predictions about 
the behaviour of the system given different inputs.

Finally, often the inferences needed to achieve certain 
goals require relating the model to other relevant informa-
tion.8 We can distinguish two potential problems here.

Semantic mapping: even if the audience is able to 
effectively and efficiently reason about what goes on 
within the model itself (e.g., how a given decision 
depends on the input), they may not be able to mean-
ingfully relate this information to any of their other 
representations. Thus, they are unable to compare and 
integrate this information with any of their pre-existing 
knowledge.

Domain knowledge: even if the audience is able to 
relate information about the model to other represen-
tations of the world, these representations may not 
be sufficiently connected to other relevant pieces of 
background knowledge to allow the audience to com-
petently make the inferences they need to achieve the 
contextual purpose.

Another way to spell out the difference between the two 
challenges is this. Semantic mapping concerns the links 
between the model and other representations of the world: 
the extent to which the audience can translate or interpret 

information about the model in terms of their other knowl-
edge of the world. By contrast, domain knowledge concerns 
the links between these other representations: the extent to 
which the audience is able to make further, contextually rel-
evant inferences once they have interpreted the model (or its 
predictions) in terms of a given set of representations.

Here is a toy example to illustrate this distinction. Sup-
pose we have trained a machine learning system to predict 
where and when traffic congestion is likely to arise, based on 
input data from CCTV images of current traffic. We are able 
to extract the decision rules of the system and discover that 
predictions of congestion at junction J58 rely on a simple 
linear rule such that activity in a certain collection of pixels, 
F, makes future congestion at J58 more likely. Consider now 
three different scenarios:

1.	  F consists of a diffuse collection of pixels from several 
different cameras.

2.	  F consists of a region of a specific camera, depicting the 
turn-off onto road R15, one of the main roads leading to 
J58.

3.	 F consists of a region of a specific camera, depicting a 
car park in a different part of the city than J58.

In the first scenario, F is not related in any meaning-
ful way to the concepts we use to understand traffic flows. 
Despite the simplicity of this decision rule, it does not help 
us understand the system’s ability to predict congestion at 
J58. It lacks an adequate semantic mapping.

By contrast, in scenario 2 we are able to relate the deci-
sion procedure of the system to our other representations of 
the traffic system, putting us in a better position to under-
stand the algorithm’s predictive power. We can for example 
infer that it predicts congestion at J58 by monitoring the 
amount of traffic going onto one of the main roads leading 
to J58. This in turn allows us to make predictions about the 
performance of the system under different circumstances, 
e.g. whether it will continue to be reliable if roadworks cause 
traffic on R15 to be diverted around J58.

However, having a meaningful representation is not 
sufficient to make these inferences: we also need the right 
kinds of domain knowledge about how traffic flows work. 
This is illustrated by scenario 3. Here, F does map onto our 
concepts and representations of the traffic system, so the 
decision rule has a good semantic mapping. But we lack 
the domain knowledge to infer what kind of causal chain 

8  Other commentators have emphasised that explainability (or the 
lack thereof) is often a product of the model’s relation to other back-
ground information or representations of the world, including Felten 
(2017), Selbst & Barocas (2018), Sullivan (2019), Zednik (2019), 
Heinrichs & Eickhoff (2020).
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might make activity in the parking lot predictively relevant 
to future congestion at J58.

To summarise, we have distinguished five potential chal-
lenges to explainability: (i) secrecy, (ii) technical illiteracy, 
(iii) complexity, (iv) inadequate semantic mapping, and (v) 
lack of relevant domain knowledge.9 What they have in com-
mon is that they in some way or another limit what infer-
ences can be drawn in relation to the system or its decisions.

Improving the explainability of a system can involve over-
coming any of these challenges. For instance, if technical 
literacy poses a challenge, improving explainability might 
involve high-level explanations of the nature and limitations 
of machine learning, while, if complexity is the issue, it may 
be possible to provide some kind of simplified (e.g., partial, 
localised or approximate) representation of the model or 
the relation between its inputs and outputs.10 Similarly, if 
semantic mapping or domain knowledge is the issue, what 
is needed may be explanations of how the model relates 
to model-external features of the world. Furthermore, as 
highlighted in “Explanatory Pragmatism”, sometimes the 
best way to improve explainability will involve changes to 
the model or improving the audience’s inferential abilities, 
rather than providing explanations. Overall, whether any of 
these potential challenges in fact undermine the explainabil-
ity of a system, and how best to overcome them, depends on 
the salient purposes, the audience’s background knowledge 
and other factors shaping their inferential abilities.

Purposes and audiences in medical AI

In this section we illustrate how our framework can be 
applied within the medical context, by using it to evaluate 
the explainability of the consciousness recovery prediction 
model introduced in the “Introduction”. We start by review-
ing why the authors regard this model as explainable. We 
then consider three salient purposes for making this model 
explainable: (i) further research, (ii) deployment decisions 
and (iii) clinical reasoning. While we do not provide an 
exhaustive analysis of what explainability would amount to 
in each case (that would go far beyond the scope of a single 
paper), we aim to illustrate the flexibility of our framework 
by identifying the varying requirements for explainability 
that arise across these contexts. Finally, we briefly summa-
rise and discuss some further lessons from these analyses 
(“Summary”).

Explainability in Song et al.

Song et al. highlight three factors in support of their claim 
that their model is “interpretable”. First, their model is fairly 
simple: in fact, it consists of a linear function of just nine 
input features. Moreover, they were able to use a technique 
called Significant Multivariate Correlation (sMC) to esti-
mate the relative importance of each input feature for the 
model’s predictions. Second, the input features of the model 
represent either clinical characteristics (aetiology, patient 
age and duration of condition) or features of the patient’s 
brain activity extracted from an fMRI scan of the patient. 
The latter represent either activity in specific well-defined 
brain areas or the functional connectivity between these 
brain areas. These include, for instance, areas in the default 
motor network (DMN), the executive control network (ECN) 
and the functional connectivity between parts of these two 
networks. Third, the authors highlight in their Discussion 
section that some of these brain areas have been related 
to disorders of consciousness in previous studies. In par-
ticular, they highlight that correct communication between 
DMN and ECN is “thought to be very important for optimal 
information integration and cognitive functioning” (p. 20) 
and that “A recent study reported that negative functional 
connectivities between the default mode network and the 
task-positive network were only observed in patients who 
recovered consciousness and in healthy controls, whereas 
positive values were obtained in patients with impaired con-
sciousness” (p. 20).

In terms of the typology developed in “Challenges to 
explainability”, what the authors are pointing out is that 
their model has

(a)	 Low complexity: the model is simple, and it is easy 
to determine the contributions each feature makes to 
model predictions;

(b)	 a good semantic mapping: the input features represent 
the world in the same way that a human neuroscientist 
would;

(c)	 at least some domain knowledge connections: the 
authors were able to reason about the relation between 
their results and previous studies of the neural mecha-
nisms involved in DoC.

9  A further challenge arises for systems that continue to change 
whilst being deployed, e.g., due to online-learning or frequent manual 
updates. Here, even if an explanation can be given at one time, the 
system may change in ways that render the explanation it provides no 
longer adequate. We will not discuss this challenge further.
10  See Erasmus et  al. (2020) for a useful typology of this type of 
explanation.
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Is this enough to make the model (or its decisions) 
explainable? As we have argued, this question cannot be 
fruitfully addressed in isolation from any particular contex-
tual purpose that a given audience needs to achieve.

Song et al. mention two audiences that could benefit from 
the explainability of their model: scientists and physicians 
(p. 21). They also suggest a purpose, namely to “reassure 
[them] about the significance of different predictors” (ibid.). 
However, there are arguably many different reasons these 
audiences might need such reassurance. For the purposes of 
our analysis, we distinguish three salient (but non-exhaus-
tive) purposes.11 First, we assume that by ‘scientists’, the 
authors mainly have in mind medical researchers and neu-
roscientists who need to use or build on the results of this 
study for further research on DoC. Second, for physicians, 
we consider two potential purposes: deployment decisions 
and clinical reasoning.

Further research

For the purpose of conducting further research, the relevant 
inferential abilities that researchers need include being able 
to see how the results of this study relate to other literature 
on the neural mechanisms involved in DoC. For instance, 
scientists need to be able to reason about the theoretical 
implications of the correlations found by Song et al., and to 
evaluate whether these are consistent with previous research. 
The model seems well-suited for this: first, the low complex-
ity makes it easy to identify and reason about the implica-
tions of the correlations built into the model (or at least, 
easier than if it had been a high-dimensional model with 
many nonlinear interactions between the input features); 
second, the semantic mapping makes it easy to compare the 
model to other relevant studies, as the authors themselves do.

Thus, for the purpose of conducting further research by 
an audience of medical researchers and neuroscientists, 

the model can plausibly be said to have a high degree of 
explainability.

Interestingly, in the research context, more extensive 
semantic mappings (or more extensive domain knowledge) 
might detract from other important goals. Though a key to 
effective explanations of machine learning systems is inte-
gration of their outputs with existing knowledge (Gil, 2021), 
in many cases, the aim of using machine learning in research 
is to discover new correlations that extend or contradict our 
existing beliefs. Thus, there is a potential trade-off here. On 
the one hand, if we were to always insist on complete seman-
tic mappings so that all aspects of the model could be tied 
neatly to our existing understanding, we would miss out on 
new discoveries. On the other hand, if a new correlation can-
not be related in any way to existing knowledge, how would 
we be able to recognise or make sense of it?

Exactly how to balance this trade-off will involve con-
textual value judgements. In more exploratory research, a 
quite minimal semantic mapping may suffice, as developing 
more detailed understandings can be left for future research. 
In deployed contexts, where the health of patients is on the 
line and novel discoveries are at most a secondary concern, 
it is probably best to skew conservatively towards integration 
with accepted knowledge and clinical practice. However, 
as we emphasised in “A framework for explainable AI”, 
the Explanatory Pragmatism framework is not designed to 
directly adjudicate such decisions, but rather to help make 
explicit the value judgements involved.

Deployment decisions

In some contexts, physicians will have to make decisions 
about whether to deploy the model in a new hospital, either 
individually or in the role of a hospital administrator or 
health policy advisor (such as Chief Medical Officers in the 
UK). To constrain the case, let us assume that the population 
at the new hospital differs in a number of potentially rel-
evant factors (in, for example, genetic characteristics, socio-
economic status, age distribution, environmental exposures, 
etc.) from the population the model was tested on. We will 
also assume that the decision specifically concerns whether 
to deploy the model now, in its current form, or to wait for 
the model to be tested and possibly retrained on data from 
the new application context. The latter option would, of 
course, reduce the risk but gathering new data would also 
be costly and time-consuming, thus delaying any potential 
benefits that could be gained from the system.

For this purpose, the inferential capacities needed include 
being able to determine how likely the model is to perform 
reliably in this new setting and to evaluate the overall risks 
and benefits deploying the model would entail. This is nec-
essary to decide, e.g., whether decisions to remove life sus-
taining interventions can responsibly be based on, or at least 

11  We say non-exhaustive, as there are certainly other audiences and 
purposes for which explanations can be required. For reasons of space 
we have chosen to focus on a few in order to illustrate the utility of 
our framework. However, it is worth briefly mentioning two further 
important purposes that have been highlighted as motivations for 
requiring explainability in medical contexts. First, enabling patient-
centred care and patient autonomy through informed consent and 
shared decision-making practices arguably requires its own type of 
explainability (Bjerring & Busch, 2020; Keeling and Nyrup, manu-
script). Second, the issue of algorithmic bias remains an important 
problem (Buolamwini & Gebru, 2018; Crawford, 2017). For exam-
ple, in medical contexts, algorithms have been found to systematically 
underestimate the healthcare needs of Black patients relative to white 
patients (Benjamin, 2019; Obermeyer et al., 2019). Explanations that 
describe the construction and workings of AI systems are arguably an 
important tool for the purpose of auditing and ensuring fair systems, 
for which the relevant audiences include designers, regulators and 
potentially the wider public. Exploring the implications of our frame-
work for these is an important task for future research.
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informed by, the model’s predictions. As we have stipulated, 
the physician needs to be able to determine this from an 
explanation of the current model rather than by testing or 
retraining the model on new data. However, the model did 
achieve a high predictive performance at the hospitals in 
both Beijing and Guangzhou. The question, then, is whether 
the physician is warranted in expecting a similarly high per-
formance in the new population. In other words, does she 
have good reason to believe that the correlations that the 
model relies on, e.g. between activation in the default motor 
network and consciousness recovery, also obtain at the new 
hospital?

Inferences about whether the results from a given study 
apply in a new context are called extrapolation in philosophy 
of science, where their logic has been extensively studied.12 
A general lesson from this literature is that extrapolation 
always relies on some background knowledge or theory, in 
addition to information about the results in the study popula-
tion. In simple cases, we might know that two populations 
are generally similar (e.g. if one is a representative sam-
ple of the other). However, in cases like the one considered 
here, where the populations are known to be dissimilar, more 
detailed information about the conditions underwriting the 
performance achieved in the study population is required. 
For instance, there may be features of the study population 
that were necessary for producing a given correlation that 
are missing in the target population. Similarly, there may be 
additional features of the target population that modulate or 
block the same correlations from obtaining. Without a good 
understanding of which features could influence the cor-
relations that the model relies on, it is difficult to make reli-
able inferences about whether any of the known differences 
between the two populations are likely to affect the model’s 
performance and, similarly, if there are any unknown differ-
ences that might be relevant.

Returning to the consciousness recovery model, to be 
warranted in applying the model at the new hospital a phy-
sician needs some information about the world, namely what 
neural mechanisms and processes that underpin the correla-
tions embedded in the model. Despite the simplicity of these 
correlations, they may nonetheless be the result of highly 
complex neural processes involving many features not rep-
resented in the model itself. For instance, as noted above, 
one of the most important predictors in the model is activity 
in certain areas within the DMN and their functional con-
nectivity to areas in the ECN. However, the interpretation 
of DMN activity remains controversial within neuroscience 

(e.g. Harrison et al., 2008). A number of factors, both physi-
ological and environmental, have been shown to affect base-
line DMN activity. These include childhood poverty (Sri-
pada et al., 2014), being an experienced meditator (Brewer 
et al., 2011), off-task thought and mind wandering (Zhang 
et al., 2019), depression (Wise et al., 2017), antidepressants 
(Posner et al., 2013), systemic inflammation (Marsland 
et al., 2017), Alzheimer’s and cognitive decline (Zhang 
et al., 2020). It is possible that these factors could change 
DMN activity post-DoC as well. Thus, if the distribution of 
these factors—or other currently unknown factors affecting 
baseline DMN—differs significantly between the study and 
target population, this could invalidate the model’s predic-
tions. Even if overall predictive accuracy remains similar, 
there may be sub-populations within the target population 
for whom the model’s performance declines significantly.

The point is, given the current state of neuroscientific 
knowledge we simply do not know whether this will be the 
case. Thus, due to this lack of domain knowledge, we cannot 
explain the reliability of the model sufficiently well to allow 
physicians making deployment decisions to fully determine 
whether Song et al.’s model is likely to perform well in new 
contexts. So, for the purpose of deployment decisions to new 
populations, the model is not fully explainable. This is not 
to say that it is completely unexplainable. As the above dis-
cussion illustrates, the semantic mapping together with our 
existing domain knowledge does allow us (at least to some 
extent) to reason about what the potential risk factors are. 
Whether this is sufficient to warrant deploying the model in 
a given setting will depend on the other potential risks and 
benefits at stake in that context.

Clinical reasoning

Where the model is deployed in clinical practice, physicians 
who will be relying on its predictions face a further chal-
lenge, namely how to integrate these predictions with other 
pieces of evidence into their overall clinical reasoning. For 
example, suppose that in addition to the predictions of Song 
et al.’s model, the clinician also orders a blood test for a 
certain enzyme which (let us assume) is known to correlate 
with consciousness recovery. If the model predicts a low 
score for consciousness recovery, but the blood test comes 
back positive for a given patient, is this sufficient to dismiss 
the model’s prediction? Similarly, if the blood test and the 
model’s predictions are both positive, should that make the 
clinician extra confident? If so, by how much? For instance, 
if the model predicts a high score of 18 for one patient who 
tests negative for the enzyme, while another patient receives 
a lower prediction of 13 but tests positive for the enzyme, 
who should we prioritise for therapeutic interventions?

12  See e.g. Steel (2007), Cartwright (2011, 2013) and Khosrowi 
(2019) for general discussion, and Pietsch (2015, 2016) and North-
cott (2020) for analyses focused on machine learning and data-driven 
modelling. The extent to which a result can be extrapolated to new 
contexts is sometimes called its ‘external validity’.
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For the purpose of clinical reasoning, then, a salient con-
textual purpose is to make inferences about how to integrate 
the predictions of the model with other pieces of evidence. 
We outline two challenges to achieving this.

The first concerns how probabilistically independent the 
two types of evidence are, i.e. whether knowing the result 
of one makes the other more likely to be observed. For 
instance, if the enzyme turns out to be produced by the types 
of brain activity that the model relies on, observing both 
together would be less surprising and therefore add less con-
firmation. By contrast, if the enzyme is produced by a com-
pletely separate physiological process, consilience between 
the two pieces of evidence might significantly increase our 
confidence in the prediction. Now, for any two types of evi-
dence it may of course be possible to do additional testing 
to estimate how much they correlate. However, if this has 
to be done for many different types of evidence, the combi-
natorial explosion would quickly make this strategy infeasi-
ble. Additional knowledge about the biological mechanisms 
underlying these correlations—as in the example above—
can help overcome this challenge, allowing the physicians 
to reason about which pieces of evidence are more likely to 
be dependent. Here it is a lack of domain knowledge that 
limits explainability.

The second challenge is that these types of formal knowl-
edge may not be sufficient to figure out how to weigh the 
information provided by these machine learning models, 
even once validated. Some clinicians (e.g. see Norman, 
2006; Chin-Yee & Upshur, 2018) maintain that experien-
tial knowledge has been underemphasized in the teaching 
of clinical reasoning. Clinical practice is not just a matter 
of explicitly reasoning through the evidence, but also relies 
on recognition and clinical judgement. The latter is based 
on tacit knowledge which can arguably only be developed 
through practical experience. Thus, in addition to formal 
explanations, practical work is likely needed to help cli-
nicians develop sufficient experience of how to integrate 
machine learning models into clinical practice, includ-
ing how to weigh their predictions against other types of 
evidence and judgment that are available to them. As this 
experience develops, clinicians may in turn discover further 
knowledge gaps that need to be filled in order to improve 
their understanding of machine learning models. Thus, 
there will likely be an iterative interplay between formal 
explanation and clinical experience, through which new 
requirements for explanation will need to be developed and 
discovered.

An illustration of what this might mean in practice is 
given by the case study by Sendak et al. (2020) discussed in 
“Current directions in Explainable AI”. In this case study, a 
specialised team of two nurses was trained to continuously 
monitor their deployed machine learning model and translate 
its outputs into actions for the different medical specialists 

treating the patient. This translational work is non-trivial. 
These nurses’ specialisation consisted not just in their formal 
knowledge of the model, but also their clinical experience 
of working with the model in practice. This was critical to 
ensure that the requirements for explanation are fully dis-
covered and realised.

So, for the purpose of clinical reasoning, the model by 
Song et al. is not fully explainable. In order to make it more 
explainable, additional domain knowledge is needed in order 
to weigh the predictions against other clinical evidence and 
further practical and experiential knowledge of working with 
the model.

Summary

The preceding analyses illustrate some (though not all) of 
the ways context and audience matters to whether an AI 
system counts as explainable. For the purpose of further 
research, we saw that the low complexity of the conscious-
ness recovery model and its good semantic mapping made 
it sufficiently explainable. The limited available domain 
knowledge did not pose a challenge to explainability in this 
context. This turned out not to be the case for the other two 
purposes. In the case of deployment decisions, what was 
lacking was knowledge of the support factors that underpin 
the reliability of the model’s prediction and how these sup-
port factors relate to the potential deployment population. In 
the case of clinical reasoning, there was insufficient knowl-
edge about the relationship between the biological mecha-
nisms that this model relies on and those that are meas-
ured by other kinds of evidence. Thus, although the lack of 
explainability in both cases stemmed from limited domain 
knowledge, different kinds of domain knowledge was lack-
ing in each case. We also highlighted a further challenge in 
the case of clinical reasoning, namely that clinicians often 
also need certain kinds of practical and experiential knowl-
edge to integrate new forms of evidence into their decision-
making processes.

Conclusion

In this paper, we have proposed a pragmatist account of AI 
explainability. We have used it to classify five distinct chal-
lenges to explainability, as well as to elucidate the require-
ments for adequate explanations that arise in medical con-
texts with regards to three different purposes.

A key takeaway from our analysis is that the problem(s) 
of explainability cannot be exhaustively solved in the 
abstract. There is not going to be a single approach to XAI 
that can simply be applied off-the-shelf to generate adequate 
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explanations for any given AI system. Close attention to the 
context of application is necessary. In particular, we have 
highlighted three types of contextual detail that need to be 
considered. First, explainability on our account is relative 
to a specific audience and purpose. A strength of our frame-
work is that it makes visible disagreement about which pur-
poses are important and provides a way of analysing what 
is needed from explanations for each. Second, challenges 
to explainability often stem from the state of our domain 
knowledge, rather than (merely) the intrinsic complexity of 
the model or the limitations of the explainer or audience. 
Finally, as we discussed in relation to clinical reasoning, 
certain kinds of experiential knowledge are often necessary 
for a given audience to obtain the necessary inferential abili-
ties, in addition to formal explanations.

Thus, a context-sensitive and iterative approach to the 
discovery and development of explainability requirements 
will often be needed. As we have argued, the framework 
defended in this paper is both unified and flexible enough to 
guide such explorations.
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