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Abstract

Rationale: Current guidelines do not sufficiently capture the
heterogeneous nature of asthma; a more detailed molecular
classification is needed. Metabolomics represents a novel and
compelling approach to derive asthma endotypes (i.e., subtypes
defined by functional and/or pathobiological mechanisms).

Objectives: To validate metabolomic-driven endotypes of
asthma and explore their underlying biology.

Methods: In the Genetics of Asthma in Costa Rica Study
(GACRS), untargeted metabolomic profiling, similarity network
fusion, and spectral clustering was used to identify metabo-
endotypes of asthma, and differences in asthma-relevant phenotypes
across these metabo-endotypes were explored. The metabo-
endotypes were recapitulated in the Childhood Asthma Management
Program (CAMP), and clinical differences were determined.
Metabolomic drivers of metabo-endotype membership were
investigated by meta-analyzing findings from GACRS and CAMP.

Measurements and Main Results: Five metabo-endotypes were
identified in GACRS with significant differences in asthma-relevant
phenotypes, including prebronchodilator (p-ANOVA=8.33 1025)
and postbronchodilator (p-ANOVA=1.83 1025) FEV1/FVC. These
differences were validated in the recapitulated metabo-endotypes in
CAMP. Cholesterol esters, trigylcerides, and fatty acids were among

the most important drivers of metabo-endotype membership.
The findings suggest dysregulation of pulmonary surfactant
homeostasis may play a role in asthma severity.

Conclusions: Clinically meaningful endotypes may be derived
and validated using metabolomic data. Interrogating the drivers
of these metabo-endotypes has the potential to help understand
their pathophysiology.
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At a Glance Commentary

Scientific Knowledge on the Subject: Asthma is an
extremely heterogeneous condition; however, current
therapeutic approaches do not take this heterogeneity
into account.

What This Study Adds to the Field: We propose five
validated asthmametabo-endotypes that differ in clinically
important lung function phenotypes. These metabo-endotypes
provide an improved understanding of asthma heterogeneity
and a step toward precisionmedicine for this
common condition.
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Asthma affects 26 million children and adults
in theUnited States and remains a leading
cause ofmorbidity (1). Asthma is characterized
by variable reversible airflowobstruction,
nonspecific airway hyperresponsiveness, and
airway inflammation; however, there is
substantial heterogeneity in its etiology,
pathology, andmanifestation (2). Current
guidelines for defining asthma, which
categorize cases frommild to severe, do not
sufficiently capture this heterogeneity, leading
to suboptimalmanagement strategies in
certain subgroups (3). Amore detailed
molecular classification is needed.

It is hypothesized there aremultiple
asthma endotypes (i.e., subtypes defined by
functional or pathobiologicalmechanisms)
that confer clinicallymeaningful differences
in patient outcomes (4). Treatments and
management strategies based on these
underlying pathobiologicalmechanisms,
rather than a “one-size-fits-all” approach,may
bemore effective in terms of improved
outcomes and optimized use of healthcare
resources. The relative contribution of genetics
and environment to the formation of these
mechanistically driven endotypes is likely to
vary between endotypes.Metabolomics
reflects genetics, environmental factors, and
their interactions (5) and as the -ome closest to
phenotype provides insight into the
physiological state of an individual. As such, it
represents a novel and compelling approach to
identify asthma endotypes.

Interrogating high-dimensional omic
datasets to infer biological meaning can be
challenging. Clustering methods have proven
powerful in the identification of molecular

subtypes of asthma that differ by atopic status,
eosinophil count, and cytokine concentrations
(4, 6–10), but to date, none have taken an
untargeted approach leveraging the global
metabolome. In this study, we aim to derive
clinically meaningful “metabo-endotypes” of
asthma and to validate these findings in an
independent population.

Some of the results of this study have been
previously reported in the formof an abstract
(11), and some of the results of this study have
been previously reported in the formof a
preprint (https://doi.org/10.21203/rs.3.rs-
358819/v1).Metabolomic datawere generated
as part of theNHLBITrans-Omics for
PrecisionMedicine Initiative (TOPMed).
These datawill be released to the scientific
community in their entirety viaNIH-
designated repositories according to the
TOPMed data release timeline. Full details can
be found at https://www.nhlbiwgs.org/topmed-
data-access-scientific-community. All statistical
analyseswere conducted using freely available
packages in R version 4.0.0; all such packages
are stated and referenced in theMETHODS and
eMETHODS in the online supplement.

Methods

Study Populations
The study populations have previously been
described. TheGenetics of Asthma inCosta
Rica Study (GACRS) (12) recruited 1,165
childrenwith asthma aged 6–14 years
(physician’s diagnosis and>2 respiratory
symptoms or asthma attacks in the prior year).
At enrollment, all children completed a

protocol including questionnaires, blood
collection, and spirometry conductedwith a
Survey Tach Spirometer (Warren E. Collins) in
accordancewithAmerican Thoracic Society
recommendations (12).Written parental and
participating child consent and/or assent was
obtained. The studywas approved by theMass
General BrighamHumanResearch
Committee at Brigham andWomen’s
Hospital, protocol #2000-P-001130/55, and the
Hospital Nacional deNi~nos. All childrenwho
had available plasma sampleswith sufficient
volumewere selected for this current study.

The Childhood AsthmaManagement
Program (CAMP) (13) (Clinicaltrials.gov:
NCT00000575) is a completed randomized
clinical trial of inhaled treatments for mild to
moderate asthma (symptoms for.6 months
in the year prior to interview and provocative
concentration of methacholine causing a
20% drop in FEV1 [PC20], 12.5 mg/ml) in
children aged 5–12 at baseline. All children
completed a similar protocol to GACRS. The
study was approved by the institutional
review board of Mass General Brigham
Healthcare (protocol #1999-P-001549/29), by
all participating clinical centers and the Data
Coordinating Center. Child assent and
parental written consent was obtained.
Participants who had available plasma
samples with sufficient volume from the end
of the trial visit (5 to 6 years after baseline)
were selected for this current study (see the
online supplement).

Metabolomic Profiling
Metabolomic profiling was conducted using
four complementary liquid chromatography
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tandemmass spectrometry (LC-MS)
platforms as part of the TOPMed initiative
(14). Three nontargeted LC-MSmethods
using high resolution, accurate mass
(HRAM) profiling measured 1) polar and
nonpolar lipids (C8-pos); 2) free fatty acids,
bile acids, andmetabolites of intermediate
polarity (C18-neg); and 3) polar metabolites
including amino acids, acylcarnitines, and
amines (HILIC-pos). An additional targeted
LC-MS profiling methodmeasured
intermediary metabolites including purines
and pyrimidines, and acyl CoAs (Amide-
neg) (15, 16). Datasets were restricted to
those metabolites that were present in both
GACRS and CAMP, resulting in a total of
589 metabolites for analysis (C8-pos n=205;
C18-neg n=88; HILIC-pos n=195; and
Amide-neg n=101). Of these, 398 of 589
(67.6%) were confirmed at the Metabolite
Standards Initiative level 1 with authentic
standards. Full details are in the online
supplement (Tables E1 and E2). We
generated metabolite residuals for each
individual regressing on sex, body mass
index (BMI), and age to account for the
potential influence of these factors on the
metabolome and to ensure they did not drive
subgroup formation. All analyses were
conducted on the residuals.

Statistical Methods

Derivation of “metabo-endotypes” in
GACRS. We grouped 1,151 subjects from
the GACRS based on their metabolite
residuals into distinct metabolomic-
driven endotypes, using Similarity
Network Fusion (SNF) (R package
SNFtool version 2.2) (17) and spectral
clustering. SNF is a patient-centered
method for integrating “omic” data
through the construction and integration
of patient networks (17, 18) (Figure E1) in
which patient similarity networks are
constructed from nodes (asthma cases)
connected by edges (similarity in
metabolomic profile between cases). The
similarity between any two given asthma
cases is based on the Euclidean distance
between those two cases with a scaled
exponential similarity kernel to determine
the weight of the edge (17). For this
kernel, two parameters must be set: k, the
number of neighbors, and a, the decay
rate of the exponential (17). In this study,
we set the parameters k = 288 and a= 0.8.
k was computed based on the
recommended algorithm n/c, in which n is

number of participants and c is the
expected number of clusters, and a was set
based on the recommended setting in
Wang and colleagues, 2014 (17). We
hypothesized c = 4 asthma endotypes
based on previously published work
(7, 19–21).

We considered each of the four
metabolite platforms as separate “omics”,
built a network for each platform, and then
fused the platforms in the network fusion
step of SNF, a nonlinear method based on
message-passing theory (22). To compute the
fused matrix, for each platform-specific
patient similarity network, the k-nearest
neighbor approach is used to measure the
local affinity by creating a kernel matrix
where the similarity of nonneighbors is set to
zero. The kernel matrices for each network
are then used to iteratively update each
normalized patient similarity matrix until it
converges to one final patient similarity
network (17). During the fusion procedure,
patient-to-patient connections are
accentuated if they occurred in multiple
platforms and dropped if the connections
were weak or only supported by a single
platform (17, 18).

We applied spectral clustering (23) to
both platform-specific networks and the
fused network to identify metabolomic-
driven clusters within each platform. Spectral
clustering is a method derived from graph
theory to cluster patients using a similarity
network as the input. This method first
calculates the relevant eigenvectors of a
Laplacian matrix of the similarity network,
and then cluster the patients on those
eigenvectors using k-means clustering (23)
We used two approaches, the rotational cost
approach (17) and the eigengap approach
(24), to identify the optimal number of
clusters for each platform. For the eigengap
approach, the optimal number of clusters is
determined by the largest eigengap (i.e.,
difference between consecutive eigenvectors)
(24). For the rotational cost approach, the
optimal number of clusters is calculated
based on minimizing the value of a cost-
function over all possible rotations that best
aligns the eigenvectors with the canonical
coordinate system (25).

Exploration clinical characteristics of
metabo-endotypes. We examined whether
the omic-derived alterations in biological
pathway between the clusters (metabo-
endotypes) resulted in measurable clinical or
epidemiological differences using one-way

ANOVA for continuous variables and chi-
square tests for categorical variables.

Validation of metabo-endotypes. In
CAMP, we used the label propagation
classifier approach as a graph-based
semisupervised machine learning method to
predict the metabo-endotype (as defined in
GACRS) (17). The label propagation
algorithm is an iterative process where
labeled nodes in a network (i.e., GACRS
patients in a combined CAMP and GACRS
patient similarity matrix) propagate their
label to its nearest neighbors to assign a label
to unlabeled nodes (i.e., CAMP patient) (26).
To use this approach, we first constructed a
similarity matrix using SNF combining the
GACRS and CAMP populations using their
metabolite residual data, then applied the
classifier to assign each of the CAMP
validation subjects to one of the GACRS-
definedmetabo-endotypes. In this way, an
individual in metabo-endotype 1 in CAMP
had a similar metabolomic profile to an
individual in metabo-endotype 1 in GACRS,
and individuals in metabo-endotype 2 in
CAMPwere metabolomically similar to
those in GACRSmetabo-endotype 2, and so
on. We then assessed the clinical and
phenotypic characteristics of CAMP subjects
within these metabo-endotypes as before.

We considered our metabo-endotypes
as validated if the clinical characteristics that
differentiate the asthmametabo-endotypes
generated in GACRS also differentiated the
asthmametabo-endotypes in CAMP.

Identification of metabolomic drivers
of meta-endotypes. We used independent
logistic regression models and a one-
endotype-versus-the-rest approach to
identify the metabolites that contributed the
most to the formation of each metabo-
endotype. To generate a single effect estimate
for the contribution of each metabolite to the
generation of the metabo-endotypes, we
meta-analyzed the GACRS and CAMP
results using a random effects model and the
R package meta (version 4.18–0). We
restricted to those metabolites that were in a
concordant direction of effect in the two
cohorts, had a P value less than 0.05 in both
cohorts, and applied a Bonferroni correction
to the meta-analyzed P value assuming 589
metabolites. To explore the biology of these
significant metabolites, we employed
ChemRICH (analysis of chemical similarity
enrichment) (27). ChemRICH is a
metabolite enrichment approach that
automatically detects and labels
nonoverlapping sets of metabolites based on
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their structural and chemical similarity,
rather than their biological annotations, then
uses Kolmogorov-Smirnoff statistics to test
the significance of differential regulation
among the defined metabolite sets between
two conditions of interest. For each of the
one-endotype-versus-the-rest analyses, we
entered the effect estimates and P values for
the 485 metabolites that could be assigned
SimplifiedMolecular Input Line Entry
System (SMILES) IDs and therefore could be
included in the ChemRICH online tool to
identify the metabolite sets of interest.

All analyses were conducted in R
version 4.0.0, with the exception of
ChemRICH, which was performed using the
web interface at http://chemrich.fiehnlab.
ucdavis.edu.

Results

Study Population
In GACRS, 1,151 subjects had plasma
samples available for metabolomic profiling,
and in CAMP, 911 subjects had suitable
plasma samples extracted at the end of trial
(Table 1). In the original CAMP trial, no
significant difference in lung function
outcomes between the study arms was found
(13). The GACRS discovery population was
slightly younger (mean age, 9.22 yr [SD, 1.88
yr], vs. 12.94 yr [SD, 2.14 yr]) in CAMP and
had a lower BMI (mean, 18.28 kg/m2 [SD,
3.77 kg/m2] vs. mean, 21.42 kg/m2 [SD, 4.70
kg/m2]). Furthermore, all GACRS subjects
were Hispanic, whereas CAMP subjects were
primarilyWhite (69.2%) with only
approximately 10% Hispanic subjects.

GACRS Metabo-Endotypes
The optimal numbers of clusters of GACRS
asthmatics were determined to be two, two,
two, and three based on metabolite residuals
from the C8-pos, C18-neg, HILIC-pos, and
Amide-neg platforms, respectively. We
applied SNF to fuse the networks from the
four platforms, with convergence after 10
iterations, and performed spectral clustering.
We determined five was the optimal number
of clusters, containing 213, 270, 222, 232, and
214 asthma cases, respectively, and we
designated these as the asthmametabo-
endotypes (Figure E2). We compared the
ways in which individuals clustered between
each platform with how they clustered to
formmetabo-endotypes based on the fused
networks (Figure E3). Individuals in metabo-
endotype 1 and 2 tended to cluster within

these groupings in all platforms, whereas
overall the fused metabo-endotype
clusterings were most similar to those of the
Amide-neg platform (adjusted Rand
index=0.297) (Table E3).

There was no difference between the
clusters in terms of sex, age, BMI, vitamin D
concentration, or current smoking status
(P. 0.5) (Table 2). However, there was a
significant difference across the endotypes in
measures of lung function:
prebronchodilator FEV1/FVC ratio
(P=8.253 1025) for which metabo-
endotype 2 had the lowest ratio
(mean=83.1%; range=50.6–98.8%) and
metabo-endotype 3 the highest
(mean=86.5%; range=64.2–99.9%) and
postbronchodilator FEV1/FVC ratio
(P=1.823 1025). Again, metabo-endotype 2
(mean=85.9%; range=52.2–100%) was the
lowest and metabo-endotype 3
(mean=89.1%, range=69.0–100%) the
highest. The same pattern was observed
when considering percent predicted FEV1/
FVC ratio (prebronchodilator
P=4.463 1025; postbronchodilator
P=1.003 1025) (Figure 1). Consequently,
metabo-endotype 2 andmetabo-endotype 3
were considered to be of greatest interest,
representing poor and good lung function,
respectively.

The metabo-endotypes differed in the
use of oral (P=0.007) and inhaled
(P=4.973 10213) corticosteroids and the
use of b2-agonists (P=3.253 10210).
Asthma cases in metabo-endotype 2 were the
most likely to have taken oral steroids
(57.8%) or b2-agonists (30.4%) in the
previous year, but the least likely to have
taken inhaled steroids (33.7%). Metabo-
endotype 3 had the lowest number who
reported the use of b2-agonists in the
previous year (Figure E4).

Finally, there was evidence of a
significant difference in eosinophil
concentrations across the metabo-endotypes.
Metabo-endotype 2 had the highest
concentrations of blood eosinophils (log10
eosinophil count=2.67 cells/μl;
range=1.0–3.41 cells/μl) and the highest
percentage of individuals with eosinophilic
asthma (74.8%) defined as untransformed
eosinophil count. 300 cells/μl (28)
(Figure E5).

Validating Metabo-Endotypes
in CAMP
The recapitulated metabo-endotypes
contained 99, 375, 45, 207, and 185 CAMP

cases in metabo-endotypes 1, 2, 3, 4, and 5,
respectively. Individuals within the same
number metabo-endotype across the two
cohorts can be considered metabolomically
equivalent; therefore, we sought to determine
if they also displayed the same clinical
differences.

The significant difference across
metabo-endotypes for FEV1/FVC ratio
before and after bronchodilator validated in
CAMPwith an almost identical pattern, with
individuals in metabo-endotype3
demonstrating the best lung function
(Table 3 and Figure 1). Given that before
sample collection, CAMP subjects had been
randomized to differing treatment regimens,
we could not directly compare medication
use, and no significant differences were
observed (Figure E6).

The differences in log10 eosinophil
count and hay fever prevalence seen in
GACRS were borderline significant across
the metabo-endotypes in CAMP (P=0.050
and P=0.061, respectively). However, the
patterns differed (Figure E5). In addition,
there was evidence that vitamin D
concentrations differed significantly across
the metabo-endotypes in CAMP
(4.833 1025).

Sensitivity Analyses
To confirm that the significant differences in
lung function metrics across the metabo-
endotypes were not confounded by inhaled
corticosteroid (ICS) use, we ran analysis of
covariance models for the four significant
lung metrics: prebronchodilator FEV1/FVC,
postbronchodilator FEV1/FVC, percent
predicted prebronchodilator FEV1/FVC, and
percent predicted postbronchodilator FEV1/
FVC, adjusting for ICS use in the previous
year in GACRS and corticosteroid use since
the last visit in CAMP. The
between–metabo-endotype differences
retained significance in both GACRS and
CAMP for all four metrics with this
additional adjustment (Table E4). These
results indicate that differences in lung
metrics across metabo-endotypes are not
being driven by steroid usage in those with
poorer lung function.

Key Metabolite Metabo-Endotype
Drivers
In a meta-analysis of GACRS and CAMP,
147, 256, 161, 332, and 269 metabolites were
significantly associated with membership of
metabo-endotypes 1, 2, 3, 4, and 5,
respectively, after Bonferroni correction and
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restriction to those metabolites with
concordant directions of effect and a P value
less than 0.05 in each individual cohort
(Tables E5–E9). There was some crossover in
the metabolites associated with each metabo-
endotype (Table E10 and Figure E7),
although the direction of effect often differed.
For example, 9,10-diHOME, which has been
shown to correlate with lung function (29),
was lower among the individuals in metabo-
endotype 3 who had the best lung function
(b=20.400; P=2.233 10215) relative to all
other metabo-endotypes, but at higher
concentrations among those in metabo-
endotype 2 who had the worst (b=0.595;
P=1.783 10228). Similarly, two
polyunsaturated fatty acids (PUFAs), linoleic
acid (b=0.595; P=1.783 10228) and
arachidonic acid (b=20.564;
P=1.043 1025), which are also thought to
play key roles in lung function (29, 30), were
lower in metabo-endotype 2 relative to all
other metabo-endotypes. We also identified a
number of metabolites unique to each
metabo-endotype (Table E11).

ChemRICH analysis was used to
determine overall metabolomic pathway
enrichment or depletion for each metabo-
endotype (Figure 2, Figures E8–E10, and
Table E12). Overall, lipids, and in particular
triglycerides and phospholipid
concentrations, were among the greatest
drivers of membership. Metabo-endotype3,
which had the lowest degree of lung
obstruction, was characterized by depletion
of hydroxy and unsaturated fatty acids (false

discovery rate [FDR]=4.63 10219 for both
sets), carnitines (FDR=1.43 1029), and
cholesterol esters (FDR=1.73 1029) and by
enrichment of triglycerides
(FDR=4.63 10219) among others
(Figure E3 and Table E12). In contrast,
metabo-endotype2, which demonstrated a
high degree of lung obstruction, was
characterized by depletion of triglycerides
(FDR=2.63 10219 for both saturated and
unsaturated triglycerides), unsaturated
phosphatidylcholines and
lysophosphatidylcholines (FDR=2.63 10219

for both), and unsaturated fatty acids
(FDR=2.33 10213), among others (Figure 2
and Table E12).

Discussion

In this study, we identified and validated five
asthmametabo-endotypes with differing
lung function and clinical characteristics
driven by distinct metabolomic pathways.

Although several studies have attempted
to identify asthma endotypes (31, 32), these
have been somewhat limited and have
tended to use one of two general approaches:
a priori definitions of a phenotype based on
characteristics of subjects, or pathobiologic
differences in sputum or bronchoscopy
specimens (4, 33–36). The resulting
endotypes have often demonstrated high
overlap in important clinical features,
rendering them challenging for clinical use.
More importantly, they provide little

information on underlying mechanisms.
Among the few studies using omic data to
derive clusters (31, 32, 37–39), sample sizes
have been small; however, results support the
existence of multiple heterogeneous asthma
subtypes with differing molecular profiles
and pathophysiological pathways. Although
several studies have incorporated
metabolomics into their exploration of
endotypes (6, 8, 9, 40, 41), to date none have
leveraged unsupervised clustering of the
global blood metabolome to subphenotype
individuals with asthma.

There were significant differences in
asthma-relevant phenotypic characteristics
across our metabo-endotypes. Metabo-
endotypes 2 and 3 were of greatest interest,
demonstrating the highest and lowest
degree of airflow obstruction, respectively,
as well as differences in the usage of oral
corticosteroids and b2-agonists. We
recapitulated these metabo-endotypes in
an independent population and observed
almost identical differences in FEV1/FVC.
Although we did not observe the same
differences in medication usage in CAMP
that were seen in GACRS, we hypothesize
that this is because CAMP blood was
collected at the end of a clinical trial, which
would have dictated use of steroids in the
previous year, as well as differences in the
prescribing and therapeutic approaches
applied by the respective health systems of
the Costa Rican–based discovery cohort,
and U.S.-based validation cohort. In
contrast, FEV1/FVC, which was
significantly different between metabo-
endotypes in both populations, provides a
more objective measure. Additional
adjustment for steroid usage did not
nullify the significant differences in lung
obstruction metrics across the metabo-
endotypes, suggesting steroids are not the
driving their formation.

There were several other differences of
interest between the discovery metabo-
endotypes. In GACRS, metabo-endotype 2,
which had the greatest degree of lung
obstruction, displayed the highest blood
eosinophil counts and proportion of
eosinophilic asthmatics. This was not
observed in CAMP, which may be
explained by the underlying differences in
immune phenotypes between the two
populations, with CAMP displaying
significantly higher log(IgE) concentrations
(mean [SD], 2.63 kU/L [0.65 kU/L] vs. 2.50
kU/L [0.67 kU/L] in GACRS,
P=1.573 1025), prevalence of hay fever

Table 1. Characteristics of the Discovery and Validation Populations

Discovery GACRS (n= 1,151) Validation CAMP (n=911)

Age, yr, mean (SD) 9.22 (1.88) 12.94 (2.14)
Sex, male, n (%) 682 (59.3%) 549 (60.3%)
Sex, female, n (%) 469 (40.7%) 362 (39.7%)
Height, cm, mean (SD) 132.66 (11.85) 155.89 (13.35)
Weight, kg, mean (SD) 33.02 (11.49) 53.23 (17.32)
BMI, kg/m2, mean (SD) 18.28 (3.77) 21.42 (4.70)
Race
White, n (%) — 630 (69.2%)
Black, n (%) — 117 (12.8%)
Hispanic, n (%)* 1,151 (100%) 84 (9.2%)
Other, n (%) — 80 (8.8%)

Treatment arm†

Budesonide, n (%) — 270 (29.6%)
Nedocromil, n (%) — 269 (29.5%)
Placebo, n (%) — 372 (40.8%)

Definition of abbreviations: BMI=body mass index; CAMP=Childhood Asthma Management
Program; GACRS=Genetics of Asthma in Costa Rica Study.
*GACRS represents a unique population isolate where participants were selected on the basis
of having six or more great-grandparents born within the central valley of Costa Rica.
†The CAMP population was from a completed clinical trial.
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(53.2% vs. 31.8%; P, 2.23 10216) and
eczema (28.0% vs. 4.7%; P, 2.23 10216),
and mean number of total skin prick tests
(6.05 [2.38] vs. 3.05 [1.84]; P, 2.23 10216)
across the total population.

Individuals in metabo-endotype 3 had
the best lung function and were also found
to have the lowest concentrations of fatty
acids, carnitines, and cholesterol esters, all
of which have previously been associated
with asthma and lung function (42–44).
There is growing evidence that cholesterol
plays a particularly important role in

pulmonary physiology, serving as a primary
source of antioxidant vitamin D and a
promotor of surfactant production for
alveolar epithelial type II cells (43).
Pulmonary surfactant (45) lines the inner
surface of the lung and works to lower
surface tension and prevent alveolar
collapse as well as playing a role in innate
immune defense (46). Consequently,
dysregulation of surfactant homeostasis has
been implicated in pulmonary diseases and
reduced lung function in both adults and
children. However, excessive amounts of

cholesterol have been shown to impair
surfactant production, which may explain
why concentrations were lower among
patients with asthma in metabo-endotype 3
relative to the other metabo-endotypes (43).

Pulmonary surfactant also has multiple
integrated and highly regulated lipid
metabolite components, including
phospholipids (phosphatidylcholines,
phosphatidylglycerols, and
phosphatidylethanolamines), triglycerides,
cholesterols, fatty acids, and sphingomyelins
(47), which were found to be among the
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Figure 1. FEV1/FVC ratio before and after bronchodilator (BD) demonstrating significant difference across metabo-endotypes in both the
Genetics of Asthma in Costa Rica Study (GACRS) and the Childhood Asthma Management Program (CAMP). Mean and standard errors for the
specified metric in each metabo-endotype are shown. P values are derived from a one-way ANOVA test comparing the continuous variables
across the five metabo-endotypes.
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Figure 2. Chemical similarity enrichment analysis of (A) metabo-endotype 2 membership versus membership in any other metabo-endotype and (B)
metabo-endotype 2 membership versus membership in any other metabo-endotype. Figures include all enriched metabolite sets based on false
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greatest drivers of metabo-endotype
membership and therefore lung function.
There was evidence of an enrichment of both
saturated and unsaturated triglycerides in
metabo-endotype 3, whereas there was a
depletion of these metabolite sets in metabo-
endotype 2. Interestingly, although some
studies suggest that trigylceride
concentrations are higher in asthma cases
than controls, others report no association
(48), and to date no studies have compared
concentrations of triglycerides within asthma
cases. Further work is therefore needed to
disentangle the role of triglycerides in
asthmatic lung function. Metabo-endotype 2
was also associated with decreased
concentrations of both n3 and n6 long-chain
PUFAs. PUFAs have been shown to play a
role in pulmonary function and disease
through their role in the maintenance of the
proinflammatory–proresolvin pathways (30,
49) but again are also important in the
regulation of pulmonary surfactant
homeostasis.

A potential difference in blood
eosinophil count between asthmametabo-
endotypes is in agreement with existing
subphenotyping studies of asthmatics.
Clustering of nine clinical variables identified
and validated in the Airways Disease
Endotyping for Personalized Therapeutics
(ADEPT) and Unbiased Biomarkers for the
Prediction of Respiratory Disease Outcomes
(U-BIOPRED) cohorts identified four
groups with distinct clinical and biomarker
profiles, one of which had a “moderate,
hyperresponsive, eosinophilic” phenotype,
with moderate asthma control, mild airflow
obstruction, and predominant Type-2
inflammation (21). Similarly, three separate
studies of exhaled breath samples showed
that models based on volatile organic
compounds (VOCs) could classify asthma as
eosinophilic or neutrophilic with high
accuracy (8, 40, 50). Eosinophil count also
forms a component of the commonly cited
T-helper type 2 (Th2)-high and Th2-low
asthma endotypes (51). However, such
subgroups have not yet demonstrated clear
clinical utility (31). More promisingly,
endotypes based on gene expression profiles
in participants fromU-BIOPREDwere
shown to differ in their responses to oral
corticosteroids (39), whereas another study
on exhaled breath demonstrated that
concentrations of VOCs could help to
predict steroid responsiveness (41).

To be of use, it is crucial that omic-
driven endotypes have the ability to inform

therapeutic and management approaches.
Metabo-endotypes are uniquely positioned
to offer twofold translational potential: first,
the assignment of individuals to subgroups
that can receive treatment targeted to their
particular disorder, and second the
identification of the therapeutic targets
within those subgroups underlying that
treatment. For example, supplementation
with specific metabolites that can help to
restore the pulmonary surfactant
homeostasis imbalance in metabo-
endotype2. Furthermore, the measurement
of the metabolome is relatively inexpensive
compared with other omics. Yet, to date, no
omic-driven endotypes have been translated
into clinical practice, and additional work is
required before the metabo-endotypes
reported in this manuscript could be
employed in the management of asthma.
This should include validation of these
metabo-endotypes in larger and more
diverse populations, assessment of their
stability over time, and targeted
quantification of metabolites that may have
biomarker or therapeutic target potential.
However, if successful, these metabo-
endotypes could have an important impact
on a globally significant disorder.

There were several limitations to
these analyses. All participants were under
18 years old at blood collection.
Additional work in older populations is
required to determine the generalizability
of the findings to adult-onset asthma,
although we note that early-onset asthma
may represent the larger public health
burden owing to its higher prevalence
(52). Cluster analysis is a descriptive
method, and groups can be defined even
when there is no underlying structure in
the data; however, we addressed this using
two separate methods to define the
optimal number of cluster and by
assessing the clinical characteristics of the
clusters in two different populations. In
the determination of the patient similarity
network from which the metabo-
endotypes were derived, all four
metabolomic platforms were weighted
equally as per the SNF methodology.
However, this does not take into account
differences in the number and breadth of
metabolites measured in each platform. It
should be noted these clusters are based
on a single time point. The cross-sectional
nature therefore makes it challenging to
determine whether the observed
differences in lung function are the cause

of the metabolomic differences or an
effect of these differences. Similarly,
although we determined these differences
were not confounded by steroid use, we
cannot rule out additional unmeasured
confounding. Repeated sampling is
necessary to assess the temporal stability
of these metabo-endotypes, and this could
also help to address issues of cause and
effect. Encouragingly, previous clustering
studies in asthmatic populations have
demonstrated good longitudinal cluster
stability (21).

There is both a genetic and
environmental component to the
metabolomic profiles from which the
endotypes are derived. This environmental
component encompasses early life
exposures. Further work in cohorts with
more extensive longitudinal data is
required to disentangle the influence of
such exposures. Metabo-endotypes were
derived via metabolomic profiling of
blood. The utility of blood for asthma
studies is supported by the literature (53)
and has the benefits of being readily
accessible, vital for the development of
clinically translatable biomarkers.
However, future studies should address the
replicability of these metabo-endotypes in
different biosamples, particularly those
closest to the lung such as sputum. There
were also underlying differences in the two
populations in terms of age, BMI, and,
most strikingly, race. These differences
may explain why we did not see greater
replication of between–metabo-endotype
clinical characteristics in the two
populations. For example, there is
evidence that prevalence of immune
phenotypes can vary by race, as a product
of both underlying genetic susceptibility
and exposure profile (54), which may be
masking between–metabo-endotype
differences. However, we do note that
percent predicted FEV1/FVC, which
accounts for race in its calculation, did
replicate between the Hispanic GACRS
population and the multiethnic CAMP
population.

There are also several strengths to this
study. It is the largest endotyping study of
asthma to date, the first to employ a
unique design using a bottom-up approach
from molecular signatures to clinical
endotypes, unlike the majority of studies
that have clustered based on phenotype,
potentially missing mechanistic
information. The patient similarity
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networks were generated using state-of-the-
art metabolomic profiling platforms,
providing broad coverage and highly
reproducible data. We leveraged machine
learning approaches to derive endotypes,
and most crucially, we were able to
validate our findings in an independent
population with comparable metabolomic,
phenotypic, and clinical data, despite
underlying differences between the
cohorts.

Conclusions
Asthma represents a spectrum of disorders
with heterogeneous etiologies and clinical
presentations; yet its clinical definition has

remained unchanged for more than 50 years
(31). A significant proportion of patients
with asthma do not respond to the “one-size-
fits-all”management approach, and it is
these patients who are responsible for the
majority of the asthma-related economic
burden (55). This study, which is by far the
largest to leverage metabolomics for asthma
endotyping and the first to use an
unsupervised metabolome-wide clustering
approach, proposes five novel validated
asthmametabo-endotypes with differing
asthma relevant characteristics. These
metabo-endotypes provide strong candidates
for more precise asthmamanagement
strategies while informing on underlying

mechanisms, paving the way for more
personalized approaches to asthma
management.�
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