Table 2.
Reference/year | Country | Study design | AI classifier | EUS mode | Development cohort | Validation cohort | Validation Methods | Gold standard diagnosis | Sensitivity (%) | Specificity (%) | TP | FP | FN | TN | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|||||||||||||||
Case | Control | Case | Control | Malignancy | Benign | ||||||||||||
Nortonet al., 2001[23] | USA | Retrospective case-control | ANN | B-mode | 21 PC | 14 FC | None | None | None | Pathology | Pathology | 100 | 50 | 21 | 0 | 7 | 7 |
Zhanget al., 2010[24] | China | Retrospective case-control | SVM | B-mode | 76 PC | 32 noncancer (CP, NP) | 77 PC | 31 noncancer (CP, NP) | Independent test set | Cytology/pathology/clinical 12 months | Cytology/pathology/clinical 12 months | 94.3 | 99.4 | 73 | 4 | 0 | 31 |
Kumonet al., 2010[25] | USA | Prospective cohort | LDA | B-mode | 13 PC | 7 CP | Cross validation* | Pathology | Clinical | 84.6 | 71.4 | 11 | 2 | 2 | 5 | ||
Kumonet al., 2012[26] | USA | Prospective cohort | LDA | B-mode | 15 PC | 15 CP | Cross validation* | Cytology/pathology | Diagnostic criteria | 80 | 87 | 12 | 3 | 2 | 13 | ||
Saftoiuet al., 2012[27] | Europe$ | Prospective cohort | ANN | Elastography | 211 PC (645 videos)** | 47 CP (129 videos)** | Cross validation* | Cytology/pathology/clinical ≥6 months | Cytology/pathology/clinical ≥6 months | 87.5 | 82.9 | 565 | 80 | 22 | 107 | ||
Zhuet al., 2013[28] | China | Retrospective case-control | SVM | B-mode | 262 PC | 126 CP | Cross validation* (leave-one-out) | Cytology | Diagnostic criteria | 91.6 | 95.1 | 240 | 22 | 6 | 120 | ||
Saftoiuet al., 2015[19] | Europe$ | Prospective cohort | ANN | Contrast- enhanced | 112 PC | 55 CP | 70% training, 15% validation, 15% testing | Independent test set | Cytology/pathology | Diagnostic criteria | 94.6 | 94.4 | 106 | 6 | 3 | 52 | |
Ozkanet al., 2016[29] | Turkey | Prospective cohort | ANN | B-mode | 160 PC | 100 NP | 42 PC | 30 NP | Independent test set | NA | NA | 83.3 | 93.3 | 35 | 7 | 2 | 28 |
$ European EUS Elastography Multicentric Study Group (Romania, Denmark, Germany, Spain, Italy, France, Norway, UK); *In cross- validation method, the performance results are averaged over entire development dataset; **The unit of analysis was number of video. AI: Artificial intelligence; PC: Pancreatic cancer; FC: Focal pancreatitis; CP: Chronic pancreatitis; NP: Normal pancreas; SVM: Support vector machine; ANN: Artificial neural network; MLR: Multilinear regression; TP: True positive; FP: False positive; FN: False negative; TN: True negative; LDA: Linear discriminant analysis; NA: Not available