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Involvement of an oxidative burst, usually related to incompatible plant/pathogen interactions leading to hypersensitive
reactions, was investigated with Erwinia amylovora, the causal agent of fire blight of Maloideae subfamily of Rosaceae, in
interaction with pear (Pyrus communis; compatible situation) and tobacco (Nicotiana tabacum; incompatible situation). As
expected, this necrogenic bacterium induced in tobacco a sustained production of superoxide anion, lipid peroxidation,
electrolyte leakage, and concomitant increases of several antioxidative enzymes (ascorbate peroxidases, glutathion reduc-
tases, glutathion-S-transferases, and peroxidases), in contrast to the compatible pathogen Pseudomonas syringae pv tabaci,
which did not cause such reactions. In pear leaves, however, inoculations with both the disease- and the hypersensitive
reaction-inducing bacteria (E. amylovora and P. syringae pv tabaci, respectively) resulted in superoxide accumulation, lipid
peroxidation, electrolyte leakage, and enzyme induction at similar rates and according to equivalent time courses. The
unexpected ability of E. amylovora to generate an oxidative stress even in compatible situation was linked to its functional
hrp (for hypersensitive reaction and pathogenicity) cluster because an Hrp secretion mutant of the bacteria did not induce
any plant response. It is suggested that E. amylovora uses the production of reactive oxygen species as a tool to provoke host
cell death during pathogenesis to invade plant tissues. The bacterial exopolysaccharide could protect this pathogen against
the toxic effects of oxygen species since a non-capsular mutant of E. amylovora induced locally the same responses than the

wild type but was unable to further colonize the plant.

Erwinia amylovora is a necrogenic bacteria causing
fire blight of Maloideae subfamily of Rosaceae such
as apple (Malus spp.) and pear (Pyrus spp.) (Billing,
1983). It provokes progressive necrosis in aerial parts
of susceptible host plants and the typical hypersen-
sitive reaction (HR, rapid and localized plant cell
death at the infection site) in non-host plants.

Molecular genetic studies of the bacteria lead to the
identification of various genes involved in the estab-
lishment of compatibility and incompatibility. An hrp
cluster (for HR and pathogenicity) has been identi-
fied on its chromosome and encodes components of
an Hrp secretion apparatus (type III secretion sys-
tem), common to several necrogenic bacteria (for re-
view, see Lindgren, 1997). At least three proteins are
known to be secreted through this apparatus: (a)
harpin, a major HR elicitor also involved in pathoge-
nicity (Wei et al., 1992; Barny, 1995; Dong et al., 1999);
(b) DspA, an essential pathogenicity determinant
(Gaudriault et al., 1997); (c) HrpW, which shares
similarities with harpin but acts as a negative effector
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of the HR mechanisms (Gaudriault et al., 1998). Be-
sides, exopolysaccharides, whose synthesis is con-
trolled by an ams cluster (for amylovoran synthesis),
is another major pathogenicity determinant of E.
amylovora, which may protect the bacteria against
host defense reactions (Bugert and Geider, 1995).
However biochemical mechanisms leading to disease
(in compatible situations) or HR (in incompatible
situations) are not well understood yet.

The oxidative burst, a rapid production of reactive
oxygen species (ROS) released into the apoplast, is
described as one of the earliest responses to pathogen
infection and is generally associated with HR (for
review, see Lamb and Dixon, 1997). Among the ROS
produced during plant/pathogen interactions, the
first detectable oxidants are superoxide anion (O, ")
and hydrogen peroxide (H,O,), which is produced
by spontaneous or enzymatic dismutation of super-
oxide. These compounds are moderately reactive, but
they can be converted into more reactive species
(especially the hydroxyl radical OH’). ROS have di-
rect antimicrobial activities and can therefore reduce
pathogen viability. They have been also implicated in
the destruction of the challenged plant cells, either
through lipid peroxidation or through initiation of
programmed cell death (for review, see Greenberg,
1997). However, in at least two cases it has been
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demonstrated that ROS by themselves are not suffi-
cient to cause cell death (Glazener et al., 1996; Dorey
et al., 1999). H,O, has been shown to play a central
role in the expression of disease resistance in several
plant/pathogen systems. It serves as substrate for
oxidative cross-linking of various plant cell wall
components leading to the reinforcement of cell walls
and as a diffusible signal for the induction of defense-
related genes in healthy adjacent tissues (Lamb and
Dixon, 1997).

Several works based on the interaction between
pathogenic bacteria (mainly pathovars of Pseudomo-
nas syringae) and suspension-cultured plant cells de-
scribed the oxidative burst as a two-phase phenom-
enon (Keppler et al., 1989; Baker et al., 1991; Levine et
al., 1994; Glazener et al., 1996). Phase I is an imme-
diate and very transient ROS production, non-
specifically stimulated by compatible, incompatible,
and even saprophytic bacteria. In contrast, phase Il is
a delayed (1-3 h after the addition of bacteria) and
prolonged ROS production that is specifically stimu-
lated by incompatible HR-causing bacteria and is
therefore characteristic of the HR.

E. amylovora induces both ROS phases when co-
cultured with tobacco (Nicotiana tabacum) cell suspen-
sions (incompatible situation), whereas a mutant of
the same strain that does not produce the HR elicitor
harpin induces only the ROS phase I (Baker et al.,
1993). Furthermore cell-free preparation of harpin is
able to elicit ROS production when incubated with
tobacco cells. These results strongly suggest that
harpin may be the bacterial elicitor of ROS produc-
tion at least during incompatible situations.

In this work, we examine the possible involvement
of ROS in the initiation of infection of pear by E.
amylovora. To compare with previous works dealing
with pathovars of P. syringae, we studied different
interactions involving E. amylovora and Pseudomonas
syringae pv tabaci either in compatible (fire blight on
pear and wild fire on tobacco, respectively) or in
incompatible situations (HR on tobacco and on pear,
respectively). Oxidative burst (O, generation) and
its consequences, i.e. lipid peroxidation, electrolyte
leakage, change in activity of antioxidative enzymes,
were investigated in leaves of pear and tobacco chal-
lenged with these bacteria. A secretory hrp mutant
and an ams mutant of E. amylovora were also included
in the study to determine the role of different bacte-
rial pathogenicity determinants.

RESULTS

Symptoms Obtained after Infiltration of the
Different Strains

Infiltration of both wild types E. amylovora
CFBP1430 (Ea 1430) and P. syringae pv tabaci
CFBP2106 (Pst 2106), as well as of the non-capsular
ams mutant E. amylovora PMV6089 (Ea 6089), at a
bacterial concentration of 10° cfu (colony forming
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unit) mL™', into young leaves of pear provoked
within 24 h generalized necrotic lesions of the entire
infiltrated area. At this stage no noticeable differ-
ences could be detected between the three strains.
The following days, only plants infiltrated with Ea
1430 showed progressive necrosis reaching the peti-
ole of the infiltrated leaves and the stem. One week
after infiltration, these plants were almost completely
necrosed when symptoms on plants infiltrated with
Ea 6089 or Pst 2106 did not show any evolution. No
symptoms at all were recorded with the Hrp secre-
tory mutant E. amylovora PMV6023 (Ea 6023). At-
tempts to re-isolate the different strains in stems of
inoculated plants several days after infiltration
proved to be successful only in plants inoculated
with Ea 1430 in which high bacterial populations
were found (results not shown).

Infiltration of Ea 1430 and Ea 6089 (10® cfu mL ™)
into tobacco leaves induced the typical HR within
24 h, i.e. brown collapsed areas corresponding ex-
actly to the infiltrated zones. For Pst 2106 at the same
concentration, the infiltrated areas showed a partial
collapse of tissues without brown discoloration
within 24 h. These green collapsed areas were sur-
rounded with a dark-green margin. In the case of Pst
2106 only, a blackening of veins in the infiltrated
zones was observed the following days, as well as a
yellow halo surrounding the collapsed area. No
symptoms were recorded after infiltration of the Hrp
secretory mutant Ea 6023.

Production of O,

Leaves were sampled from pear and tobacco seed-
lings at various times following infiltration of bac-
teria at a concentration of 10® cfu mL™!, and the
leaf samples were infiltrated with nitroblue tetrazo-
lium (NBT). Accumulation of insoluble blue-colored
formazan complex (reduced NBT) is an indicator of
generation of ROS, in particular O, (Doke, 1983).
This accumulation was observed in pear leaves after
infiltration of the wild-type Ea 1430, the non-capsular
ams mutant Ea 6089, or the wild-type Pst 2106, and in
tobacco leaves after infiltration of the two HR-
inducing bacteria Ea 1430 and Ea 6089 (Fig. 1). No
reaction was detectable after infiltration of the Hrp
secretory mutant Ea 6023 in leaves of both species
and infiltration of Pst 2106 in leaves of its host plant
tobacco (except some blue spots due to wounding
during infiltration).

NBT reduction was a transient phenomenon. In
pear leaves, the reaction began to be detectable 6 h
after inoculation, whatever the bacteria, and reached
a maximum of intensity on average 12 h after inoc-
ulation. After this period of time, staining declined
rapidly, preceding the apparition of necrosis. In to-
bacco leaves, formazan was detectable earlier (4 h after
inoculation), and the maximum of staining intensity
was reached approximately 8 h after inoculation.
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Figure 1. NBT staining in pear and tobacco leaves 12 and 8 h, respectively, after infiltration of Ea 1430, Ea 6089, Ea 6023,
and Pst 2106. Bacterial suspensions were adjusted to 10® cfu mL™". The black staining indicates the presence of O, .

Lipid Peroxidation

Induction of lipid peroxidation was assessed by
determining the accumulation of thiobarbituric acid
reactive species (TBARS) at various time following
infiltration of bacterial suspensions adjusted to a con-
centration of 10® cfu mL™"' in intact leaves of pear
or tobacco. Increasing levels of TBARS were detected
only in such plant/bacteria combinations where NBT
reduction was observed, i.e. Ea 1430/ pear or tobacco,
Ea 6089/pear or tobacco, Pst 2106/ pear (Fig. 2). No
significant lipid peroxidation was recorded after in-
filtration of the Hrp secretory mutant Ea 6023 in pear
or tobacco and of Pst 2106 in tobacco for the whole
duration of the experiment (24 or 30 h according to
the plant species).

When detected, accumulation of TBARS began be-
tween 8 and 12 h after bacterial infiltration in pear
leaves and between 6 and 9 h after bacterial infiltra-
tion in tobacco leaves. This coincided exactly with the
maximum O, production observed in equivalent
and similarly treated leaves of both plant species.
Time-course of lipid peroxidation were similar for
the three inducing bacteria in pear and the two in-
ducing bacteria in tobacco (Fig. 2).

AsPOX, GR, GST, and POX Activities

Intact leaves of pear and tobacco were infiltrated
with bacterial suspensions adjusted to a concentra-
tion of 10" cfu mL ™" and sampled at various times for

Figure 2. Changes in lipid peroxidation ex-

pressed as equivalents of TBARS in pear (A) and 100+

tobacco (B) leaf tissues after infiltration of Ea E L
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enzyme extractions. The lower bacterial concentra-
tion used in these experiments (107 as compared with
10° cfu mL™") caused only small necrotic lesions in
the infiltrated leaves at the end of the sampling pe-
riod. Extracted proteins originated mainly from ap-
parently healthy tissues surrounding the dying cells.
At a concentration of 10° cfu mL™', generalized ne-
crosis occurred too rapidly to allow the thorough
assessment and comparison of enzyme activities
(high variability, drastic decrease in protein contents,
which artificially increased enzyme activities if any).

In pear leaves, ascorbate peroxidase (AsPOX), glu-
tathione reductase (GR), glutathione-S-transferase
(GST), and peroxidase (POX) were similarly acti-
vated following infiltration with both compatible and
incompatible wild-type strains Ea 1430 and Pst 2106,
or with the non-capsular ams mutant Ea 6089 (Fig. 3).

Oxidative Stress Induced by Erwinia amylovora in Pear

The maximum of activation was generally reached
approximately 30 h after bacterial infiltration. The
level of enzyme activities remained low and not sig-
nificantly different from the control when leaves
were infiltrated with the Hrp secretory mutant Ea
6023. In tobacco leaves, the two HR-inducing bacteria
Ea 1430 and Ea 6089 only were able to identically
activate the four families of enzymes. The tobacco
compatible strain Pst 2106 as well as the Hrp secre-
tory mutant Ea 6023 had no effect on the level of
these enzymes that remained identical to the level of
enzymes extracted from control plants.

Electrolyte Loss Assessment

The two wild-type strains, Ea 1430 and Pst 2106
and the non-capsular ams mutant Ea 6089 showed the
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Figure 3. Changes in the activities of AsSPOX (A
and B), GR (C and D), GST (E and F), and POX
(G and H) in pear (A, C, E, and G) and tobacco
(B, D, F, and H) leaf tissues after infiltration of Ea
1430 (M), Pst 2106 (A), Ea 6089 (A), Ea 6023
([J), and water (-). Bacterial suspensions were
adjusted to 10”7 cfu mL™". Data are means * SE
of at least nine repetitions from three indepen-
dent experiments.
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same ability to induce electrolyte leakage from pear
discs (Fig. 4). In contrast with tobacco discs a signif-
icant difference was recorded between the response
induced by the compatible strain Pst 2106 and the
responses induced by the incompatible strains Ea
1430 and Ea 6089. The latter induced a fast and high
electrolyte loss when the first one caused a progres-
sive and weak leakage. The Hrp secretory mutant Ea
6023 did not induce any leakage from pear discs as
well as from tobacco discs.

DISCUSSION

Our results show that a sustained production of
ROS and its immediate consequences in plant tissues,
usually ascribed to incompatible plant-pathogen in-
teractions, can also be a feature of a compatible in-
teraction in the case of E. amylovora. This has been
previously demonstrated in three compatible plant-
fungi interactions (Phaseolus vulgaris/Botrytis cinerea
[Tiedemann, 1997], Capsicum annuum /Botrytis cinerea
[Deighton et al., 1999], and Avena sativa/Drechslera
spp- [Gonner and Schlosser, 1993]) only. To our
knowledge, this is the first report of such a phenom-
enon during a compatible plant/bacteria interaction.
However it can be noticed that this particular inter-
action is associated with the rapid necrosis of in-
vaded tissues. Such a necrosis is not usual for every
compatible plant/bacteria interaction.

E. amylovora induced the production of superoxide
anion O, for several hours both in the compatible
(pear) and the incompatible (tobacco) situations, in
contrast to P. syringae pv tabaci, which induced this
production in the incompatible situation (pear) only.
Although we did not quantify the production of O, ",
no macroscopic differences could be detected be-
tween the accumulation of formazan induced by the
two wild-type bacteria in pear tissues, in terms of
intensity as well as the time course of this coloration.
The absence of any accumulation of formazan after
infiltration of the Hrp secretory mutant of E. amylo-
vora in pear or tobacco tissues or after infiltration of
P. syringae pv tabaci in tobacco tissues suggests that
the non-specific ROS phase I is not detectable with
this method and that the production of O, observed
with both wild-type strains corresponds to the ROS

phase II, usually ascribed to incompatible situations
leading to HR.

Lipid peroxidation, leading to the loss of mem-
brane integrity, has been described as consequence of
oxidative burst in numerous systems (Adam et al.,
1989; Keppler and Baker, 1989; May et al., 1996; Rust-
erucci et al., 1996). This phenomenon can be initiated
directly by ROS (Keppler and Baker, 1989) and indi-
rectly through the involvement of lipoxygenase
(Buonaurio and Servili, 1999). As for ROS phase 1I, it
has been generally ascribed to HR-producing combi-
nations. The results obtained in this work with P.
syringae pv tabaci are in accordance with previous
works involving various pathovars of P. syringae
(Keppler and Novacky, 1986; Adam et al., 1989; Kep-
pler and Baker, 1989). Lipid peroxidation and elec-
trolyte leakage occurred only during the HR (or
O, 7 )-producing combination. No lipid peroxidation
and a delayed and slight electrolyte leakage were
recorded in the compatible situation where no O,
was detected. As suggested by Keppler and Novacky
(1986) for P. syringae pv lachrymans, P. syringae pv
tabaci could provoke cellular damages in its host
plant through a mechanism different from lipid
peroxidation.

Concerning E. amylovora, its ability to provoke elec-
trolyte leakage from host and non-host tissues has
been previously shown (Brisset and Paulin, 1991), but
we demonstrate here a close correlation between O, ™
accumulation, lipid peroxidation, and electrolyte
leakage in non-host as well as in susceptible host
tissues. This suggests that in the case of this bacte-
rium, O, " -initiated lipid peroxidation is the mecha-
nism through which membranes are altered, even
during disease reaction. Furthermore, the identical
patterns obtained with both parameters after infiltra-
tion of E. amylovora (disease) or P. syringae pv tabaci
(HR) in pear tissues confirm the similar generation of
O, induced by both the compatible and the incom-
patible bacteria in this plant.

AsPOX, GR, POX, and GST are part of the reper-
toire of anti-oxidative defense system of the plant.
AsPOX and GR are constituents of the ascorbate-
glutathione cycle that detoxifies H,O, (Foyer and
Halliwell, 1976). Various POX use H,0O, as a sub-
strate (i.e. extracellular POX for the generation of

Figure 4. Electrolyte leakage induced in pear 400
(A) and tobacco (B) leaf disks after infiltration of
Ea 1430 (M), Pst 2106 (A), Ea 6089 (A), Ea 6023 z 350 -
((J), and water (-). Bacterial suspensions were 3
adjusted to 10® cfu mL™". Data are means * St 2 3004
of six repetitions from two independent ‘5 250
experiments. 3

§ 200 |

150

Conductivity (US/cm)

100

2168

20 30 40 0 10 20 30 40
Time after inoculation (h)

Plant Physiol. Vol. 125, 2001



phenoxyl radicals during lignin formation) and thus
participate to the disappearance of ROS (Bestwick et
al., 1998). GST detoxifies lipid hydroperoxides deriv-
ing from lipid peroxidation by conjugation with re-
duced glutathione (Mars, 1996). Enzymes of antioxi-
dant metabolism are usually found to be co-regulated
and their activities increase in response to stress
(Mullineaux and Creissen, 1997). This is in accor-
dance with our results showing the concommitant
activation of these enzymes in each situation where
an oxidative stress was recorded. Besides Levine et
al. (1994) demonstrated the direct induction of sev-
eral cellular protectant genes in soybean cells by
exogenous H,0,. This induction was correlated with
increasing concentrations of H,O, up to 2 mm (lower
doses than required for cell death), higher concentra-
tions giving a weaker response (but triggering cell
death). In this work and for enzymatic studies, we
used lower bacterial concentrations than those re-
quired for confluent cell death of the infiltrated areas.
According to Levine et al. (1994), the similar patterns
of activation obtained in the case of each enzyme
after infiltration of E. amylovora or P. syringae pv
tabaci in pear tissues are an additional confirmation
of an identical level of production of ROS in both
compatible and incompatible situations.

The Hrp secretory mutant of E. amylovora used in
this study was unable to induce any response, in pear
as well as in tobacco tissues. These observations con-
firm the essential role of Hrp-secreted proteins in
O, generation, as already demonstrated for one of
them, harpin, on tobacco cell suspensions (Baker et
al., 1993). However the relative role of each Hrp-
secreted proteins (e.g. harpin, DspA, and HrpW) in
this phenomena remains to be determined, especially
during the compatible interaction. On the other hand,
the bacterial exopolysaccharide does not seem to play
any role in O, generation because the non-capsular
ams mutant of E. amylovora induced a similar oxida-
tive stress than the wild-type strain. But it could play
a protective role against the toxic ROS, since the ams
mutant conversely to the wild type was unable to
colonize the plant.

In conclusion, our results show that E. amylovora
seems to behave like an HR-inducing bacteria in its

Oxidative Stress Induced by Erwinia amylovora in Pear

host plant, conversely to P. syringae pv tabaci. As
suggested for Dreschselera spp. (Gonner and
Schlosser, 1993) and Botrytis cinerea (Tiedemann,
1997), this bacteria could take advantage of the gen-
eration of active oxygen species as a tool to kill the
host cells during pathogenesis and to invade the
plant. It remains to be determined how the bacteria
can overcome the plant defenses usually elicited in
tissues surrounding cells undergoing an oxidative
burst.

MATERIAL AND METHODS
Plant Material

Experiments were performed on pear seedlings (six to
eight leaves) from open-pollinated pear (Pyrus communis
cv Kirchensaller) and on tobacco (Nicotiana tabacum cv
Xanthi) plants (10-12 leaves). Plants were grown in indi-
vidual pots in the greenhouse at 20°C to 25°C under natural
photoperiod.

Bacteria and Inoculation Procedures

Bacterial strains used in this study are listed with their
main characteristics in Table I. For inoculum preparation,
bacteria were grown on solid King’s medium B (King et al.,
1954) supplemented with chloramphenicol (20 mg L") for
the transposon mutants at 27°C for 24 h. Except for assess-
ment of electrolyte leakage (see below), bacterial suspen-
sions were prepared in sterile distilled water to yield a
concentration of 10”7 or 10® c¢fu mL™' according to the
experiments. Inoculation was performed by vacuum infil-
tration of the three youngest fully expanded leaves of pear
seedlings and by infiltration with a syringe of young leaves
of tobacco.

NBT Staining

O, was detected in situ as described by Doke (1983)
with some modifications. Leaves were vacuum-infiltrated
with 0.05 M sodium phosphate buffer (pH 7.5) containing
0.05% NBT. After 15 min of staining at room temperature
under light, the NBT-treated tissues were placed in 96%

Table 1. Bacterial strains used in this study

Strain?® Relevant Characteristics”

Reference or Source

Erwinia amylovora

CFBP1430 Wild-type, isolated from Crataegus

PMV6023 hreV :: MudlIPR13, Path™, HR™, Cm®

PMV6089 ams :: MudlIPR13, Path™, HR*, EPS™, Cm®
Pseudomonas syringae pv tabaci

CFBP2106

Paulin and Samson (1973)
Barny (1995)
Tharaud et al. (1994)

Wild-type, pathotype strain, isolated from Nicotiana tabacum CFBP

* CFBP, Collection Francaise de Bactéries Phytopathogenes, Institut National de la Recherche Agronomique-Angers, France; PMV, Pathologie
Moléculaire et Végétale, Institut National de la Recherche Agronomique-Institut National Agronomique Paris-Grignon, Paris, France. b hre,
Hypersensitive response conserved (Hrp secretion mutant); Path™, non-pathogenic; HR, hypersensitive response; Cm®, chloramphenicol

resistance; EPS, exopolysaccharides.

Plant Physiol. Vol. 125, 2001
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(v/v) ethanol to stop reaction, remove chlorophyll, and
preserve tissue integrity.

Lipid Peroxidation Analysis

Lipoperoxidation was monitored with the spectrophoto-
metric determination of malondialdehyde using thiobarbi-
turic acid according to Popham and Novacky (1991). Plant
material (1 g fresh weight) was homogenized in 2 mL of
trichloroacetic acid (10% [w/v]) and centrifugated at
15,000¢ for 20 min. To 250-uL aliquot of crude extract was
added 250 pL of trichloroacetic acid (10% [w/v]) plus 1 mL
of thiobarbituric acid (0.2% [w/v] in trichloroacetic acid
10%). The mixture was boiled at 95°C for 30 min and cooled
in ice for 5 min. After centrifugation at 10,000¢ for 10 min,
the absorbance of supernatant was determined at 532 nm.
The value of nonspecific Aqy, was measured and sub-
stracted. Due to the limited specificity of the method, the
concentration of TBARS was calculated by using the ex-
tinction coefficient of 155 mM ! cm ™}, and results were
expressed as nanomols TBARS per milligram FW.

Electrolyte Leakage Measurements

Electrolyte loss was determined according to Dellagi et
al. (1998) with some modifications. Pear and tobacco leaf
discs (5-mm diameter) were vacuum infiltrated with bac-
terial suspensions adjusted to 10® cfu mL ™" in appropriate
assay medium (5 mM morpholinoethanesulfonic acid pH 6
for pear and 0.5 mm morpholinoethanesulfonic acid + 0.5
mwm CaCl,, pH 6, for tobacco). Discs were then blotted dry
for 30 min and incubated in vials with fresh pear or tobacco
assay medium under light conditions at 25°C with contin-
uous stirring. One experiment consisted in three assays of
seven pear or five tobacco leaf discs in 2.5 mL of medium
per bacterial treatment. Conductivity probes (Tacussel XE
120) were permanently immersed in each vial and con-
nected to a computer-monitored conductivimeter. Mea-
surements were automatically performed every 2 h for at
least 40 h.

Enzyme Extractions

Leaf tissues (0.5 g fresh weight) were homogenized in 1
mL of ice-cold 50 mm sodium phosphate buffer (pH 7.5)
containing 1 mm polyethyleneglycol, 1 mm phenylmethyl-
sulfonyl fluoride, 8% (w/v) polyvinylpolypyrolydone, and
0.01% (v/v) Triton X-100. Homogenates were centrifugated
at 16,000¢ for 20 min at 4°C and supernatants were imme-
diately assayed for enzyme activities.

Measurements of Enzyme Activities

Spectrophotometric methods were used to determine the
various total enzyme activities.

AsPOX (EC 1.11.1.11) activity was assayed by following
the oxidation of ascorbic acid at 290 nm (extinction coeffi-
cient of 2.8 mM ' cm ') according to the method of Na-
kano and Asada (1981). Ten microliters of leaf extract was

2170

added to 1 mL of the reaction mixture. The mixture con-
sisted of a solution of 0.2 m Tris/HCl buffer (pH 7.8), 0.25
mM ascorbic acid, and 0.5 mm H,0,.

GR (EC 1.6.4.2) activity was determined by following the
oxidation of NADPH at 340 nm (extinction coefficient of 6.2
mM ' cm ') according to Halliwell and Foyer (1978). Fifty
microliters of leaf extract was added to 1 mL of the reaction
mixture. The mixture consisted of a solution of 0.2 mm
Tris/HCl buffer (pH 7.8) containing 3 mm EDTA, 0.2 mm
NADPH, and 0.5 mM oxidized glutathione.

GST (EC 2.5.1.18) activity was determined by measuring
the formation of the conjugate reaction product (extinction
coefficient of 9.6 mm ™' em ') at 340 nm using 1-chloro-2,4-
dinitrobenzene and glutathione as substrates (Mauch and
Dudler, 1993). Fifty microliters of leaf extract was added
to 1 mL of the reaction mixture. The mixture consisted of a
solution of 0.1 M potassium phosphate (pH 6.5), 3.6 mm
reduced glutathione, and 1 mm 1-chloro-2,4-dinitro-
benzene.

POX (EC 1.11.1.7) activity was measured by following
the increasing A, due to the formation of tetraguaiacol
(extinction coefficient of 26.6 mm ™' cm ') as described by
Chance and Maehly (1955). Fifty microliters of enzyme
source (leaf extract diluted in 50 mm sodium phosphate 1:5
for pear extract or 1:10 for tobacco extract) was added to 2
mL of the reaction mixture. The mixture consisted of a
solution of 50 mm sodium acetate buffer (pH 7), 25 mm
guaiacol, and 25 mm H,0,.

Protein content in the extracts was determined according
to the method of Bradford (1976) using the Coomassie
Protein Assay Reagent (Pierce, Rockford, IL).

Experimental Design and Statistical Analysis

All experiments were performed with a minimum of
three tissue sample replicates per treatment and per time
point. Each experiment was realized at least three times
and data are expressed as the means (* SE).
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