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ABSTRACT

The CRISPR-Cas9 genome editing tool is used
to study genomic variants and gene knockouts,
and can be combined with transcriptomic analyses
to measure the effects of such alterations on
gene expression. But how can one be sure that
differential gene expression is due to a successful
intended edit and not to an off-target event,
without performing an often resource-demanding
genome-wide sequencing of the edited cell or
strain? To address this question we developed
CRISPRroots: CRISPR–Cas9-mediated edits with
accompanying RNA-seq data assessed for on-target
and off-target sites. Our method combines Cas9
and guide RNA binding properties, gene expression
changes, and sequence variants between edited and
non-edited cells to discover potential off-targets.
Applied on seven public datasets, CRISPRroots
identified critical off-target candidates that were
overlooked in all of the corresponding previous
studies. CRISPRroots is available via https://rth.dk/
resources/crispr.

INTRODUCTION

The CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats)-Cas9 system is an RNA-guided
antiviral defense complex capable of cleaving foreign DNA
complementary to a short segment of a guide RNA (gRNA)
molecule at a DNA site juxtaposed to a motif known as
PAM (Protospacer Adjacent Motif) (1). This machinery,
originally discovered in prokaryotes, has recently been
transformed into a multipurpose genome engineering and
visualization technology (2). Among the main applications
of CRISPR–Cas9 there are (i) gene knockouts, used to
investigate the effects of single or multiple allele losses and
(ii) knockins of sequence variants, in which endogenous
genes are altered to study genetic disorders. In the
former case, gene loss is achieved by mutagenic errors at

the cleavage site introduced by error-prone DNA repair
pathways such as the non-homologous end-joining (NHEJ)
or the microhomology-mediated end joining (MMEJ) (3).
In the latter case, a DNA template carrying the genomic
variant of interest is delivered to the cell and integrated
via homology-directed repair (HDR) after cleavage at a
nearby location (4). Following Cas9-mediated editing, cells
are sequenced at the targeted locus to examine if the
editing was successful. Additionally, few off-target sites
predicted by bioinformatics tools based on a gRNA–target
sequence-similarity search are typically sequenced to verify
the absence of unwanted cleavage events (5).

Genome engineering can be combined with RNA
sequencing (RNA-seq) to identify genes whose expression
levels are altered as a consequence of the edit (knockin
or knockout) (6–13). RNA-seq data can additionally be
used to evaluate the presence and abundance of the
modified transcript and its possible down-regulation, or
total absence, after monoallelic or multiallelic knockout
(8). In this regard, RNA-seq can also highlight unwanted
editing effects that remain hidden in the sequencing of a
short DNA region overlapping the target cleavage site, such
as extended loss of heterozygosity and partial or complete
loss of a chromosome, all events that have been previously
observed in Cas9-edited cells (14–18). In the past few years,
RNA-seq data was used in the analysis of potential Cas9
off-target effects either by comparing variants discovered
in the transcriptome of edited and non-edited cells (9), or
by incorporating off-target predictions with gene expression
changes to identify downregulated genes overlapping
potential off-targets (7). Although neither of these methods
provide a complete assessment, the combination of both
allows to prioritize predicted off-targets for validation by
pointing to scenarios presenting tangible transcriptome
variations. This procedure exploits fully the RNA-seq data,
which is instead ignored by generic off-target prediction
tools that are based solely on the search for gRNA targets in
a given genome while ignoring the transcriptional activity.

Although the literature currently contains a modest
number of studies applying CRISPR editing in combination
with RNA-seq of at least three replicates of edited and
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wild-type samples (required for statistical significance), we
anticipate that the number of such studies will grow rapidly
in the future. In 2011, there were only two papers in
PubMed (19) combining CRISPR and RNA-seq, while this
number has increased to about 300 per year, with a current
total of 843 (Supplementary Table S1). Automatizing the
screening of such datasets is currently hindered by the lack
of details on the gRNA(s) and the edited site(s) in the data
repositories. These are usually provided separately (e.g. in a
related article), and need to be found manually.

To better exploit the potential of RNA-seq data we
developed CRISPRroots, a tool that compares RNA-seq
reads from Cas9-edited cells and corresponding isogenic
controls to evaluate potential off-targets and verify on-
target editing outcomes. We assess CRISPRroots on seven
published RNA-seq datasets with at least three replicates
of edited and control samples and show that there are
multiple potential off-targets of high relevance that were
not taken into account by the corresponding studies. The
pipeline around CRISPRroots integrates pre-processing,
mapping, gene quantification, differential expression, off-
target prediction, variant discovery, Cas9-gRNA binding
properties, and assessment of genome integrity with
cutting-edge tools. The CRISPRroots pipeline is made in
a user-friendly Snakemake (20) workflow that optimizes
the handling of computing resources, parallelises tasks,
and minimizes software prerequisites via the definition
of Conda environments (https://docs.anaconda.com/),
facilitating re-usability and reproducibility.

MATERIALS AND METHODS

Implementation

CRISPRroots is implemented as a pipeline consisting of
a number of key modules: (1) RNA-seq read processing
and mapping; (2) Somatic variant calling; (3) Variant-
based off-target screening; (4) Differential gene expression;
(5) Assessment of on-target knockins and knockouts;
(6) gRNA off-target prediction; (7) Expression-based off-
target screening. Combining these modules as depicted
in Figure 1 results in an on/off-target report elucidating
whether the on-target edit was successful or not and
highlighting possible off-target events found in the RNA-
seq data or in promoter regions, which are therefore
potentially involved in gene expression regulation. In the
following we describe the content of these modules.

(1) RNA-seq read processing and mapping. The quality of
raw reads is assessed with FastQC v.0.11.9 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and summarized with MultiQC v.1.9 (21). This process
is repeated after each of the subsequent filtering steps.
The removal of adapters (provided as FASTA files)
is performed with Cutadapt v.2.10 (22), which also
filters out short reads and low-quality reads. Additional
filters can be defined in the configuration file. Reads are
cleaned from residual ribosomal RNAs with Bbduk
v.37.62 (https://sourceforge.net/projects/bbmap/).
Clean reads are mapped to the genome with STAR
v.2.6.1a (2-pass mode) (23), and the resulting mapping
files are sorted and indexed with SAMtools v.1.9 (24).

(2) Somatic variant-calling. Somatic variants between
multiple edited and wild-type samples are discovered
with the Mutect2 (25) tool from GATK v.4.2.0.0 (26)
after processing the reads as follows: (i) mapped reads
are sorted by query name with SortSam (Picard
v.2.23.0; http://broadinstitute.github.io/picard); (ii)
duplicated read pairs are marked and sorted by
coordinates with MarkDuplicates (GATK); (iii)
split reads are separated with SplitNCigarReads
(GATK); (iv) short variants are called with Mutect2
(min base quality=30; minimum callable depth=10);
(v) results are filtered with FilterMutectCalls
(GATK). Step (iii) is specific and necessary to call
variants in RNA-seq data, as the splicing of introns
results in Ns in the CIGAR string describing the
mapping. Mutect2 is used with default options, and
learns unknown parameters in the filter models from
the unfiltered data (25). Because step (iv) is highly
demanding in terms of computational resources,
reads are first grouped by chromosome, and separate
instances of Mutect2 are executed in parallel with
GNUparallel (27).

(3) Variant-based off-target screening. Possible cleaved loci
are derived from the coordinates and pattern of somatic
short variants (SNVs and indels) as follows (Figure
2A): (i) SNVs: the phospho-diester bonds immediately
before or after the variated nucleotide; (ii) insertions:
the phospho-diester bond linking the nucleotides in
the reference between which the insertion is located;
(iii) deletions: the phospho-diester bonds immediately
before and after any of the removed bases. Knowing
that the cut site is three nucleotides upstream from the
PAM, all possible related PAM sites, on any strand,
are identified. The search for a PAM can be extended
up to n nucleotides (default n = 2), to account for
possible bulges between the PAM and the cut site.
Then, possible gRNA binding regions are defined as
the complementary sequences upstream of the cut
site that have the same length as the gRNA plus an
arbitrary number of m nucleotides (default m = 2) to
account for possible bulges on the DNA. Bulges on
the gRNA are allowed as well. Interactions between
the gRNA and its possible targets are evaluated in
terms of resulting gRNA-DNA binding energy, �GB,
and complementarity in the seed region. The �GB is
computed following the CRISPRoff v.1.1 (28) binding
energy model: �GB = �PAM(�GH − �GO − �GU),
where �GH is the gRNA-DNA binding energy, �GO is
the energy penalty for opening the target DNA, �GU is
the penalty for opening up possible gRNA structures,
and �PAM is a PAM weight (NGG = 1, NAG = 0.9,
NGA = 0.8) (28). The weighted gRNA-DNA binding
energy, �GH, is computed by RIsearch1 v.1.2 (29),
which allows to force interactions to start at the 3′ end
of the target (DNA) and end at the 3′ and 5′ ends of
the query (gRNA) and the target, respectively. This
is done to penalize interactions with PAM-proximal
mismatches more severely compared to CRISPRoff
(a positive energy is added for mismatches instead of
not adding any cost) and to enable the evaluation
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Figure 1. Overview of the CRISPRroots pipeline. We implemented the following main external tools in the seven modules: (1) Cutadapt, Bbduk,
FastQC, MultiQC, STAR; (2) Mutect2; (3) RIsearch1; (4) featureCounts, DESeq2; (5) SAMtools; (6) RIsearch2, CRISPRoff; and (7)
BEDtools, RIsearch1. The CRISPRroots specific modules are colored in blue. Key input/output files are displayed in dashed boxes. As an option,
the off-target search and evaluation (modules 3, 6, 7) can run on a variant-aware version of the genome, generated after discovering germline variants with
HaplotypeCaller.

of potential off-targets to which the gRNA binds
forming bulges on the DNA or on the gRNA itself. A
positive energy, defined in the RIsearch1 scoring
matrix, is added in the presence of bulges and thus
the binding is penalized. In RIsearch1, gRNA-target
bindings are evaluated using the scoring matrix ‘su 95’,
option ‘-f ’ to force the start and end of the interactions,
and the same array of Cas9 positional weights defined
in CRISPRoff. The gRNA minimum free energy,
�GU, is obtained with RNAfold v.2.2.5 (30). The
DNA–DNA opening energy, �GO, is computed with
the same function as in CRISPRoff, but limiting the
calculation to the DNA segment involved in the optimal
gRNA–DNA binding to avoid adding energy penalties
for unused bases (e.g. Figure 4B shows examples with
only a portion of the target DNA being involved in
the binding). For each variant, among all possible
gRNA bindings starting at any position on the DNA
and ending at the PAM site, the one with lowest �GB
is retained. Flags are added to the final results to
signal repeat-masked regions and known SNPs that
were intersected with the variant coordinates using
BEDtools intersectBed v.2.29.2 (31).

(4) Differential gene expression.featureCounts from
the Subread package v.2.0.1 (32) is used to quantify
the genes present in a merged set of annotations derived
from both GENCODE v.33 (33) and FANTOM-CAT
v.1.0.0 (34). Only non-chimeric reads are counted (both
mate reads for paired-end sequencing). If known, the

library type can be specified directly in the config file. If
unknown, the strand specificity can be discovered with
RSeQC v.4.0.0 (35) within the pipeline’s environment.
Differential expression analysis is performed on the
gene read counts with DESeq2 from Bioconductor
v.3.8 (36). The comparison is done between the
conditions ‘Edited’ and ‘Original’ (the non-edited
wild-type) which are defined in a sample table (see
Supplementary Table S2 for an example). A gene is
considered differentially expressed (DEG) if its absolute
log2 fold change is >0.5 and the related Benjamini-
Hochberg (37) adjusted Wald-test P-value is <0.01.
Genes with mean normalized read count across samples
<10 are considered as not expressed.

(5) Assessment of on-target knockins and knockouts.
Expected knockin mutations are defined in the
configuration file by their sequence pattern, genomic
coordinates, and possible role in splicing (splice
donor, splice acceptor, intron). For every edited
position CRISPRroots summarizes the number of
reads reporting the reference nucleotides, variants,
skips (which symbolize spliced introns), and other
events (insertions or deletions) from a pileup of the
mapped reads generated with SAMtools. Numerical
summaries of the read counts for the different alleles
and the genotype interpretation are provided. Special
attention is given to variations affecting splice sites
and introns, which can alter not only the sequence of
a transcript but also the way it is spliced (Figure 2B).
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Figure 2. Analysis of sequence variations at possible on-/off-targets. (A) Strategy for variant-based off-target screening. Short genomic variants discovered
from RNA-seq are screened to find Cas9 binding sites proximal to the possible ‘cut’ positions associated to the variants. All gRNA–DNA interactions
ending at one of the identified binding sites are evaluated, and the energetically most favourable one is retained as most likely off-target for each variant.
(B) Patterns of on-target single nucleotide variations. Four different types of on-target editing events are shown. For each of them, the reference pileup and
examples of other possible mutant pileups (in red) are given. The positions analyzed to evaluate on-target edits are highlighted with grey boxes.

For instance, if a splice acceptor is disrupted, splicing
can terminate at a downstream splice acceptor
(skipping continuation) or not take place at all
(intron retention). Because of this, while SNVs
affecting coding loci are assessed at a single genomic
position, neighboring nucleotides are included in the
evaluation of splice donors, acceptors, and introns.
Expression changes at the on-target gene are evaluated
with DESeq2. Read counts normalized by size factors,
the log2 fold change, and the adjusted P-value are
summarized in the output.

(6) gRNA off-target prediction. To examine potential off-
targets that impair expression or that are located
in untranscribed regions, and that hence might not
be captured by the analysis in (3), we perform a
genome-wide search for off-targets with CRISPRoff.
Following the CRISPRoff guidelines, off-targets with
up to 6 mismatches to the gRNA are searched with
RIsearch2 v.2.1 (38). This tool enables fast searching
of gRNA binding via a suffix arrays approach, but
does not allow to constrain and weight gRNA-
DNA interactions with any number of bulges as
RIsearch1. The search is carried out either in the
reference genome or, optionally, in its variant-aware

version. Potential off-target locations are evaluated
with CRISPRoff, supplied with RNAfold v.2.2.5 (30).
Predicted off-targets are filtered to eliminate non-
spontaneous bindings (�GB > 0).

(7) Expression-based off-target screening. Gene expression
changes analyzed with DESeq2 are employed in
concert with off-target predictions to identify candidate
off-targets overlapping differentially expressed genes or
their promoter regions. The genomic coordinates of
DEGs and their promoter regions (by default, 1 kb
upstream of the transcription start site) are intersected
with the cleavage coordinates of the predicted off-
targets with BEDtools. The �GB, initially calculated
by CRISPRoff, is re-evaluated with RIsearch1 with
the same strategy described above for the variant-
based screening, to obtain a more precise evaluation
of the binding. An exception are potential cleavage
events inside an expressed gene or its promoter
that is localized on a hemizygous chromosome (e.g.
chrX and chrY in male human). If those events
are linked to a variant, they are already reported
in the output of module (3) and, hence, they are
removed from the list of potential expression-based
off-targets.
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(Optional) Variant-aware reference genome. The search and
evaluation of potential off-targets (modules 3, 6 and 7)
can be carried out on either the reference genome or on
a variant-aware version of it. The variant-aware reference
genome includes short genomic variants discovered from
RNA-seq with HaplotypeCaller (GATK) (39). This tool
performs local reassembly of haplotypes in regions that
differ from a given reference sequence. In contrast to
Mutect2, which tolerates differences in the ploidy profiles
of the detected somatic variants, HaplotypeCaller
assumes a fixed ploidy as it is designed to call germline
variants. The variant-aware genome is generated as follows:
(i) split reads are used to call short variants to the
reference with HaplotypeCaller (minimum phred-
scaled confidence for variant calling=20); (ii) results are
filtered with VariantFiltration (GATK) following the
GATK recommendations (as of 2019, firstly defined in (40))
to remove clusters of SNVs (window size=35, number
of SNVs to define a cluster=3) and any variant with
either phred-scaled probability of strand bias (FS) >
30 or variance confidence normalized by depth (QD) <
2. Additionally, variants with approximate read depth
(DP) <10 are removed. (iii) variants called between non-
edited samples and the reference genome are intersected
with the BCFtools v.1.9 (41) isec function keeping
only instances carrying identical alleles to produce a
solid set of variants to the reference, supported by all
samples. (iv) a variant-aware version of the reference
genome is generated with BCFtoolsconsensus, which
also provides a chain file to lift annotation coordinates.
The pipeline can be configured to take either the reference
(REF) or the alternative (ALT) allele in the presence
of heterozygous variants. Although this procedure only
provides the union of different haplotypes (non-reference
alleles), to our knowledge there is no tool that can insert
germline variants in a reference genome while preserving
the haplotypes assembled during variant calling. For the
test cases presented here, the pipeline was run twice, using in
turn the REF and the ALT allele for heterozygous variants.
By using the variant-aware genome it may be possible
to find potential off-targets that would remain hidden
in a reference-based analysis. However, the generation
of a variant-aware genome requires significant time and
resources, and it did not provide any relevant benefit in
the definition of major or critical candidate off-targets
concerning our test cases. Thus, the procedure is set as an
option in the pipeline.

Datasets

To test the pipeline, seven RNA-seq datasets were retrieved
from five public studies. Because one study employed two
gRNAs for a single knockout, there are a total number of
eight test cases of Cas9-gRNA activity (Table 1).

1-2: QPRT. Haslinger et al. generated QPRT-
homozygous knockout cells by means of two gRNAs
targeting different loci, which generated an insertion
(QPRT-INS395A) and a deletion (QPRT-DEL268T) at
the target sites in SH-SY5Y cells (7). RNA-seq data
produced via MACE (massive analysis of cDNA ends)
(42) was downloaded in 3 replicates for 3 experimental

Table 1. List of test cases and the respective gRNAs and PAMs

Test case Study gRNA PAM

QPRT-INS (7) GCAGCGGGCCAGCGTGTTGA GGG
QPRT-DEL (7) GCAGTTGAGTTGGGTAAATA TGG
GRIN2B-FW (8) GATGGCAATGCCATAGCCAG TGG
GRIN2B-REV (8) AGATTCTGGGTGGAAGCGCC AGG
APOE (9) CCTCGCCGCGGTACTGCACC AGG
PIK3CA-HET (10) ATGAATGATGCACATCATGG TGG
PIK3CA-HOMO (10) ATGAATGATGCACATCATGG TGG
OGFOD1 (11) GGCAGGACGCCGTTCAGTCA CGG

settings (QPRT-INS395A, QPRT-DEL268T and wild-
type empty control (eCtrl)). In the off-target assessment
included in the study, no predicted off-target with up to 4
mismatches is reported to overlap a gene downregulated
in knockout compared to eCtrl and not downregulated
between additionally sequenced wild-type cells and eCtrl.

3-4: GRIN2B. Bell et al. generated biallelic GRIN2B
knockouts with a two-gRNA Cas9-mediated double
nickase system, with two gRNAs (GRIN2B-FW and
GRIN2B-REV) and differentiated the cells in cortical
neurons (8). Of note, the usage of a double nickase system
is expected to importantly reduce, but not abolish, off-
target activity (43). RNA-seq data was downloaded in 4
replicates for both knockout and control cells.

5: APOE. APOE3 to APOE4 induced pluripotent stem
cells (iPSCs) were generated by Lin et al. (9) and RNA-seq
data was sequenced in 3 replicates for both edited and non-
edited cells. The study also presents an off-target analysis
based on exonic variants between edited APOE4 iPSCs
and parental APOE3 iPSC, which did not highlight any
variation possibly related to off-targets.

6-7: PIK3CA. Heterozygous and homozygous knockins
of PIK3CAH1047R in iPSCs were obtained by Madsen
et al. (10). RNA-seq data in 3 replicates was downloaded
for heterozygous (PIK3CA-HET), homozygous (PIK3CA-
HOMO), and wild-type iPSCs. The authors confirmed
the absence of unwanted edits at 17 off-target locations
predicted with http://crispr.mit.edu from the Zhang Lab or
Cas-OFFinder (44) by Sanger sequencing.

8: OGFOD1. The effect of Cas9-mediated homozygous
knockout of OGFOD1 in cardiomyocytes was investigated
by Stoehr et al. (11). The top 20 off-targets predicted by
CRISPOR (45) were sequenced, without finding mutations
attributable to off-target effects (11). RNA-seq data was
downloaded in four replicates for both knockout and wild-
type cells.

Data pre-processing

As part of the CRISPRroots pipeline, raw RNA-seq reads
were pre-processed by removing low quality 3′ ends (min
phred score = 30), adapters, dangling Ns, and reads shorter
than 90% of their original length after cleaning.

RESULTS

Assessment of CRISPR–Cas9 on-target editing activity

We applied the CRISPRroots pipeline (version 1.1) on
seven public RNA-seq datasets from both Cas9 knockout

http://crispr.mit.edu


e20 Nucleic Acids Research, 2022, Vol. 50, No. 4 PAGE 6 OF 12

Table 2. Properties of the RNA-seq datasets selected for testing the pipeline. The sequencing strategies, the approximate number of reads (or pairs of reads in
paired-end sequencing) before and after pre-processing, mapping to the human genome (hg38), and feature-assignment to a set of merged GENCODE (33)
and FANTOM-CAT (34) annotations are reported for each of the seven datasets

Dataset

Sequencing protocol,
read length

(nt)
Raw reads

min–max (M)
Pre-proc. reads
min–max (M)

Uniquely mapped
reads mean ± std

(M)

Mapped reads assigned
to a feature mean ± std

(M)

QPRT-INS (7) single, <69 5.5–10.5 4.5–8.2 5.2 ± 1.0 4.6 ± 0.9
QPRT-DEL (7) single, <69 6.0–8.2 4.5–6.4 4.7 ± 0.6 4.2 ± 0.6
GRIN2B-FW/REV (8) paired, 125 35.1–44.62 27.1–34.0 29.6 ± 2.3 26.4 ± 2.0
APOE (9) single, 50 12.4–14.5 9.4–12.3 8.5 ± 1.1 7.2 ± 0.8
PIK3CA-HET (10) single, 50 22.9–32.0 22.5–31.5 20.7 ± 2.5 18.8 ± 2.3
PIK3CA-HOMO (10) single, 50 23.1–32 22.7–31.5 21.7 ± 3.1 19.7 ± 2.8
OGFOD1 (11) paired, 50 55.6–83.3 47.4–71.8 51.9 ± 6.8 43.9 ± 5.8

(QPRT-INS, QPRT-DEL, GRIN2B-FW/REV, OGFOD1)
(7,8,11) and knockin (APOE, PIK3CA-HET, PIK3CA-
HOMO) (9,10) experiments. As mentioned above these
seven datasets constitute eight test cases, as two gRNAs
(FW and REV) were employed for the knockout of
GRIN2B in the GRIN2B-FW/REV dataset (Table 1). The
datasets are highly heterogeneous in terms of cell types,
library preparation, sequencing strategy, and sequencing
depth (Table 2). The amount of sequenced reads varies from
5.5–10.5 M in the MACE-sequenced samples (QPRT-INS
and QPRT-DEL datasets) to 12.4–83.3 M reads (or paired-
end reads) in other samples. The heterogeneity of these
datasets allows us to assess the stability of CRISPRroots
in the presence of input data with different properties.

Distinct strategies are applied on knockout and knockin
experiments to assess on-target editing activities, as
explained below. Depending on the settings employed
for editing, a successful knockout is indicated by a
significant loss or complete absence of the target gene
in the transcriptome and/or by the presence of loss of
function indels at the cleavage locus in aberrant transcripts.
We evaluate the knockout effectiveness by comparing the
expression level of the target gene in the edited and
non-edited cells, and by genotyping target locations on
the DNA from mapped RNA-seq reads. We find that
three of the four homozygous knockout datasets show a
significant downregulation of the respective target genes
(Figure 3A): QPRT-INS log2 fold-change (l2fc) = –3.27,
Benjamini-Hochberg adjusted Wald test P-value (P-adj)
= 7.8e-187; QPRT-DEL l2fc = –2.50, P-adj = 6.9e-132;
and OGFOD1 l2fc = –1.68, P-adj = 1.6e-52. In the dataset
GRIN2B-FW/REV the expression of the target gene is not
downregulated (l2fc = –0.02, P-adj = 0.979).

RNA-seq reads mapping at the target cleavage sites of
the two gRNAs employed for the knockout of GRIN2B
(FW and REV) reveal that the edited cells bear in-frame
deletions of variable length. These deletions generate ‘skips’
in the mapping of RNA-seq reads to the genome at the
target cleavage sites (Figure 3B). The presence of deletions
was also substantiated by Sanger sequencing in the original
publication (8), in which these deletions were characterized
as frame-shifting. For the QPRT-INS and QPRT-DEL
datasets, the status of the on-target edits cannot be assessed
from the mapped reads, as the applied MACE sequencing
protocol only sequences the 3′ ends of the RNA (7,42).
In the OGFOD1 dataset, all the reads fully overlapping
the edited locus have deletions of 4 nt, as previously

validated by Sanger sequencing in the related study
(11).

On-target edits in Cas9-directed knockin datasets are
inspected using mapped RNA-seq reads in edited and non-
edited lines. Silent mutations introduced to avoid successive
Cas9 cleavage are also assessed. Our screening shows that
in the APOE, PIK3CA-HET and PIK3CA-HOMO dataset
almost all reads (> 99%) at the editing loci map to the
wild-type allele in the non-edited cells (Figure 3B). In
the APOE edited lines the wild-type allele is substituted
with the designed one, and the latter is present in >
96% of the reads covering the edited positions in two
of the replicates and in > 88% in a third replicate. The
remaining mapped reads contain skips in correspondence
to the editing site. In replicate 3, which has the lowest
percentage of edited reads, there are 2 skip reads out of 17
total reads covering one edited site (chr19:44908684) and 2
out of 19 at the other (chr19:44908692) (Figure 3B). Reads
mapping to the three edits in PIK3CA-HET knockin carry
homozygous silent mutations at positions chr3:179234289
and chr3:179234292. The reads covering the third editing
site (A>G H1047R target edit at chr3:179234297) are
heterozygous in only one replicate, while a second replicate
exclusively possesses the reference nucleotide at this locus.
However, this is supported by only three reads. No read
mapping to the edited loci is found in a third replicate. The
homozygous editing at the same coordinates in PIK3CA-
HOMO is supported by the exclusive presence of the
designed nucleotides at all the edited locations in two of
the three replicates, while no read maps to these sites in a
third replicate. Of note, the read coverage at these genomic
coordinates is low in both wild-type and edited cells (six
reads in one replicate and two in the other for all three
editing sites). The expression levels of edited genes are also
evaluated, as significant downregulation of a gene targeted
for editing may signal the partial or complete loss of a
chromosome due to Cas9 cleavage. In the analyzed knockin
datasets the expression of the edited genes does not change
(Figure 3A): APOE l2fc = −0.03, P-adj = 1; PIK3CA-HET
l2fc = 0.11, P-adj = 1; PIK3CA-HOMO l2fc = −0.21, P-
adj = 0.46.

Identification of potential CRISPR–Cas9 off-target sites

Cas9 off-target activity at sites located within a gene or
any genomic feature that affect transcription, such as
promoters and enhancers, can produce sequence variations
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Figure 3. On-target Cas9-mediated edits in test datasets. (A) Transcript expression log2 fold change of genes targeted for Cas9-directed knockout or knockin
computed by comparing expression levels in edited and non-edited cells with DESeq2. Significance determined by the Benjamini-Hochberg adjusted Wald
test. (B) Fraction of reads mapping to edited nucleotides carrying the reference allele (REF), the alternative one (the intended edit) (ALT) or anything else
(variant/indel/skip) (OTHER) in the test datasets GRIN2B, APOE, and PIK3CA-HET. The genomic coordinates of the edit in the human genome (hg38)
are reported on the X-axis. Cell replicates are represented with different symbols. Note that only two of the three edited replicates of PIK3CA-HET have
reads overlapping the loci described.

that are conveyed to the transcriptome or alter gene
expression. To discover potential off-targets from RNA-
seq data, we propose a combination of two strategies: the
analysis of Cas9 binding sites linked to genomic variants,
and the identification of differentially expressed genes
harboring predicted off-target sequences. A well supported
variant discovered between edited and non-edited cells can
delineate off-target events and the corresponding sequence
changes introduced by the DNA repair process. Instead,
predicted off-targets linked to a differentially expressed
gene but without a well supported variant need to be
validated by additional DNA sequencing to account for

possible silenced alleles (that carry the variant) in an
homologous chromosome, whose sequence is unknown in
the RNA-seq. An exception for this are predicted off-targets
in hemizygous chromosomes (e.g. the Y chromosome; see
Methods). The gRNA-DNA interactions of potential off-
targets are evaluated in terms of complementarity and the
resulting binding free-energy �GB with a modified version
of the CRISPRoff (28) energy model (see Methods).
Given n as the maximum number of mismatches or
bulges in the seed, possible off-target interactions are
classified into five categories as follows: (i) critical: binding
with fully complementary gRNA−DNA seed and linked
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to a downregulated gene or a variant; (ii) major type
1: binding with fully complementary gRNA-DNA seed
and linked to an upregulated gene; (iii) major type
2: binding with ≤n mismatches or bulges in the seed
and linked to a variant or to a differentially expressed
gene; (iv) major type 3: predicted off-target with perfect
complementarity to the gRNA but overlapping a not
expressed gene or an intergenic region; (v) minor: any
other potential variant-based or expression-based off-
target. Possible off-target interactions that after the re-
evaluation of the binding energy with RIsearch1 (see
Methods) are energetically unfavourable (�GB > 0) or
that have more than n mismatches or bulges in the
seed are flagged. The RNA-DNA base pairs dG·rU
and dT·rG, whose contribution to the gRNA−DNA
binding energy is limited compared to that of canonical base
pairs, are regarded as matches in the binding pattern.

The off-target screening on the test datasets was carried
out by searching for either of the PAMs: NGG, NAG and
NGA. Up to n = 1 mismatches or bulges were tolerated
in the seed region (10 nucleotides from the PAM start
position (46)). For each dataset, the off-target analysis
was performed on a dedicated variant-aware genome in
which short variants to the reference discovered from the
RNA-seq data of the wild-type samples were introduced.
The procedure was repeated twice, by selecting either the
reference or the alternative allele in case of heterozygous
background mutations.

Our method identifies critical or major predicted off-
targets in all of seven test datasets used for testing (eight test
cases, Figure 4A), none of which is among those sequenced
in the related studies. In seven test cases, CRISPRroots
identified at least one potential off-target with up to four
total mismatches or bulges to the gRNA (Figure 4B).
The only exception is the dataset APOE, whose single
candidate off-target has a total of five mismatches and one
bulge in its binding pattern to the gRNA. Predicted off-
targets classified as critical and overlapping the promoter
or sequence of a downregulated gene are detected in
six of eight test cases (Figure 4A, B). Particularly many
critical predicted off-target sequences appear in PIK2CA-
HOMO, and 12 of those have high similarity of the gRNA
with repeatmasked sequences followed by an AGA non-
canonical PAM site (Supplementary Table S3). Three test
datasets have one predicted off-target sequence that is
fully complementary (with wobble base pairs counted as
matches) to the entire length of the applied gRNA. These
off-targets are intergenic in PIK3CA-HET (Figure 4B)
and PIK3CA-HOMO, or overlap a non-expressed gene
in QPRT-DEL (Supplementary Table S3). Potential off-
targets linked to variants discovered between edited and
non-edited lines are observed in four of eight test cases
(Figure 4A). Of these, the only critical one (no mismatch
in the seed) is a C>T variant found in the GRIN2B
dataset and related to the gRNA GRIN2B-REV. This
variant is located on chromosome 19 at position 44908822
in hg38, and it corresponds to a missense SNP in the
APOE gene (dbSNP (47): rs7412). The co-occurrence of T
at position 44908822 and 44908684 in chromosome 19 is
referred to as the APOE2 allele and it is associated with
reduced risk of Alzheimer’s disease, while the C variant at

chr19:44908822 makes a ‘neutral’ APOE (48). All samples
have a T at position chr19:44908684, thus the C>T variant
at chr19:44908,822 changes the APOE of the cortical
neurons in the GRIN2B dataset from neutral to protective.
This variant is found in all four GRIN2B loss of function
samples and in two of four controls (Supplementary Figure
S1). Although this variant is relevant in the study of
cortical neurons, the fact that it is also present in half of
the controls makes Cas9 off-target editing unlikely at this
position.

The only dataset with no predicted off-target linked to
differential expression is APOE, which has also the lowest
amount of DEGs and variants (DEGs n=18, variants
n = 1689), excluding the MACE-sequenced samples. Hence,
we checked for the possibility that our pipeline detects
possible off-targets in transcriptomic data just by chance
based on the size of the search space, i.e. if the number
of genomic variants or of binding sites within DEGs
correlates with the number of possible off-targets. We did
not find a correlation between the number of expression-
based potential off-targets (critical, major type 1, or major
type 2) and the number of binding sites in DEGs that were
identified by searching for the NGG PAM and its reverse
complement (Pearson’s r = 0.31, P-value = 0.450; Figure
4C). Also, the number of potential off-targets identified
from the variant-based screening is not correlated with the
total number of variants discovered between edited and
non-edited cells (Pearson’s r = 0.58, P-value = 0.132; Figure
4D).

Running time

The time required to execute the full CRISPRroots
pipeline (starting from raw reads) launched on a cluster
of standard Linux nodes (Intel® Xeon® CPU E5-2650,
60G RAM and 16 cores) varied from 6 to 8 h for test
cases with three replicates per condition (QPRT-INS/DEL,
APOE and PIK3CA-HET/HOM) to 15-20 h for test
cases with four replicates per condition (GRIN2B and
OGFOD1). Up to half of the computing time was
consumed by the somatic and germline variant calling.

DISCUSSION

Selecting gRNAs with high on-target effectiveness and low
off-target potential is the main objective in the design
of Cas9-mediated genome engineering. Following the
editing, intended on-target modifications and a restricted
number of predicted off-targets are usually validated
by DNA sequencing. Given the designed gRNA and
a reference genome, off-target predictions are identified
and scored by computational tools based on the gRNA
sequence similarity and/or other binding properties in
relation to DNA sites flanked by valid PAMs. Within
this process, the information present in eventual RNA-
seq data associated with the experiments remains unused.
Previous attempts in exploiting RNA-seq to discover off-
targets are rather incomplete, as they employed exclusively
either variant discovery (9) or expression changes (7). The
latter strategy was additionally limited by the parameters
employed for off-target prediction, which allowed up
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Figure 4. Predicted Cas9 off-target criticalities discovered in test datasets. (A) Number of predicted off-targets identified in each dataset split by degree of
severity (critical or major) and by discovery method (variant or expression-based screening). Major predicted off-targets related to the expression-based
screening are divided in type 1 (T1), type 2 (T2) and type 3 (T3). All major predicted off-targets related to variants are of type 2. (B) For each dataset the
most favourable (lowest �GB) predicted off-target is reported (preference is given to the critical ones with canonical NGG PAM and not overlapping repeat-
masked regions). The gRNA-DNA binding pattern is represented with the following symbols: |, canonical base pair; W, wobble base pair; M, mismatch.
The portion of the gRNA-DNA interaction with lowest resulting binding energy �GB is highlighted in yellow, i.e. the region comprising the segment of
the DNA target involved in the most energetically favourable binding interaction with the gRNA. Information on the associated downregulated gene(s) is
provided (right). Log2 FC, log2 fold change; P-adj, Benjamini-Hochberg adjusted Wald test P-value. (C) Correlation between the number of Cas9 binding
sites in the differentially expressed genes and the number of potential off-targets discovered by the expression-based CRISPRroots analysis. Major type 3
off-targets are excluded because they overlap non-expressed genes or intergenic regions. (D) Correlation between the number of short variants discovered
from the RNA-seq in Cas9-edited vs controls cells and the number of variant-based potential off-targets.

to four mismatches and did not account for wobble
base-pairs.

Here, we introduced a comprehensive method,
CRISPRroots, to analyse on- and off-targets from
RNA-seq data. CRISPRroots allows to (i) verify on-
target edits intended to affect the transcriptome, (ii) detect
off-target events directly visible in RNA-seq reads and (iii)
prioritize other potential off-target events based on the
evidence provided by gene expression changes.

CRISPRroots incorporates knowledge of called
variants into a relaxed calculation of gRNA−DNA binding
energies to increase off-target sensitivity. The related gRNA
binding site might not be found in the RIsearch2 search
that is provided to CRISPRoff, for instance because of
the presence of a bulge or because of the limit of up to six
mismatch/wobble base pairs. Thus, we evaluate possible
off-targets related to genomic variants with RIsearch1,
that also allows for bulges and any number of mismatches.
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Furthermore, CRISPRroots allows to search for off-
targets either in the reference genome or, optionally, in a
variant-aware genome in which short variants discovered
from RNA-seq are introduced in the reference. Despite the
chance of finding off-targets overlapping germline variants
discovered in the transcriptome is undoubtedly limited,
their potential occurrence remains a major safety concern
in gene therapies.
CRISPRroots prioritizes potential off-targets that

affect the transcriptome whereas predicted off-targets
without expression- or variant-based support are
downgraded. Despite the limitations that come from using
RNA-seq for off-target ranking, the prioritized potential
off-targets in CRISPRroots are the most interesting
ones due to the evidence of related consequences on the
transcriptome. Both the potential off-targets related to
variants in the transcriptome and those on DEGs are more
likely to have direct functional consequences, while those in
a non-transcribed region may not result in concrete issues.
A limitation of the software is that it cannot distinguish
between DEGs altered by the activity of off-targets and
those altered by the effects of the intended on-target
edit. A downstream analysis with, e.g., the STRING (49)
database of protein-protein interactions could provide the
information necessary to filter potential off-targets related
to DEGs functionally linked to the on-target. However,
we believe this practice to be hazardous, in particular
for potential off-targets with high gRNA affinity, and in
contradiction to the primary goal of the software to select
potential off-targets for validation prioritization.
CRISPRroots identified in all of seven test datasets

potential off-target criticalities that were not addressed
by the original studies. No difference was found in the
total critical or major candidate off-targets after running
CRISPRroots using either the reference or the alternative
allele in heterozygous mutations. Potential off-targets were
hidden in previous investigations because of the limited
search ability of the chosen off-target prediction tools that
did not account for at least one of the following elements:
(i) dG·rU and dT·rG wobble base pairs, that are disguised
as mismatches in similarity-based off-target searches; (ii)
alternative (non-canonical) PAM sites such as NAG and
NGA; (iii) high number of mismatches tolerated in gRNA-
DNA binding, which is often limited in the off-target
searches to 3 or 4. Additionally, some of the potential
off-targets highlighted by our method were not selected
for validation despite being detected as possible off-targets
because of the non-identical sorting of the predictions, ruled
by scores differing between off-target prediction tools. The
analysis performed byCRISPRroots includes wobble base
pairs and up to an arbitrary number of mismatches in a
user-defined seed region and adjacent to both canonical
and non-canonical PAMs. The scoring system we define is
also optimized, as it is based on evidence provided by the
sequencing data (variations in the sequence or expression
level of genes) which is not accounted for by other off-
target predictors. The underlying binding energy model
employed in CRISPRroots has high off-target prediction
performance (28) and is applicable to any genome.
CRISPRroots evaluates gRNA binding energies and

transcriptome changes in RNA-seq data to drastically

shorten the list of potential Cas9-gRNA off-target events,
making their validation more feasible and impactful.
In our test cases, the number of critical off-targets
overlapping genes or promoters predicted by CRISPRoff
has mean(±std) of 24.25(±15.31), while after the careful
re-evaluation of the CRISPRoff results and the inclusion
of gene expression change evidence in CRISPRroots
the critical potential off-targets are reduced to 3.9(±5.91)
(Supplementary Table S4). The filters based on binding
patterns and energies also allow to better classify, or rule
out, an important number of unfavourable interactions
at potential off-target sites related to sequence variants
discovered between edited and non-edited cells. Counting
potential off-targets with up to 6 mismatches or bulges in
the binding to the gRNA and linked to a sequence variant
without including binding energy consideration leads to
a mean(±std) of 15.75(±17.37) sites, while the additional
binding analysis of CRISPRroots allows to highlight the
1.25(±1.50) most suitable events (Supplementary Table S4).
Due to the lack of experimentally supported true positive
off-targets, we cannot evaluate the false positive rate of our
high-scoring candidates. Therefore we emphasize that the
putative off-targets should be treated as ranked candidates
for experimental validation.

An alternative strategy for off-target control was
proposed by Haslinger et al. (7). Their study provides
RNA-seq data for both a non-targeting empty control
vector eCtrl and the wild-type line, and genes differentially
expressed between eCtrl and wild-type are excluded from
the expression-based off-target analysis presented in the
study. The CRISPRroots method currently supports
only comparisons between two conditions, edited and
wild-type. Thus, only the eCtrl RNA-seq was used in our
analysis as non-edited data. The filtering step proposed by
Haslinger et al. is attractive, but requires the additional
sequencing of non-targeting controls, which is not a
common practice. Also, while some potential off-targets
could be reasonably excluded based on this criterion, others
are not as straightforward. For instance, in QPRT-DEL
we detect a potential off-target overlapping the gene
RPH3A, downregulated in the edited cells compared to
controls. The gene was also reported to be downregulated
in wild-type compared to eCtrl in the original study, but
to a lower extent (l2fc = −0.95, P-adj=3.2e-4 in wild-type
versus eCtrl; l2fc = −1.31, P-adj = 1.8e-6 QPRT-DEL
knockout vs eCtrl). Excluding this potential off-target
would be incautious, as the change related to QPRT-DEL
knockout versus eCtrl is stronger and more significant
than that recorded in the wild-type versus eCtrl. Genes
harboring predicted off-targets and presenting an increase
of expression were also not investigated by Haslinger
et al. Although we agree that upregulation is a less likely
off-target outcome, other types of mRNA misregulation
rather than knockdown cannot be excluded (50). In
CRISPRroots predicted off-targets related to upregulated
genes are classified as major rather than critical, but not
eliminated.

In regard to the on-target editing events, we did not
observe any evident inconsistency to the reported knockout
and knockin events. This is to a certain extent expected,
given that all of the edited sites were verified by sequencing
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in the original studies. For mapping reads originating from
the knockin sequence, partial matches to the reference
genome are tolerated with the default parameter settings
of STAR. In case of knockins of exogenous genes, it
is necessary to introduce the knockin sequence in the
reference genome before running the pipeline. Even though
Cas9 edits are commonly verified by Sanger sequencing
in genome engineering experiments, the validation of such
edits in RNA-seq is of relevance as it provides the expression
levels of the edited alleles. This procedure also excludes
possible errors, e.g. in the labeling or sequencing of samples.

In conclusion, we demonstrate our method to be very
useful, as it allows for the identification of possible off-
target criticalities that were not investigated in published
datasets. The method is included in the first comprehensive
pipeline for the analysis of RNA-seq data from CRISPR-
Cas9 editing experiments, CRISPRroots. The pipeline can
also be applied in studies involving other RNA-directed
endonucleases by adjusting the configuration parameters.
We believe that this tool will help saving time and resources
in the analysis of genome engineered data, facilitating the
advancement in this field.
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