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Abstract

BACKGROUND—While injuries experienced during hurricanes and other tropical cyclones have 

been relatively well- characterized through traditional surveillance, less is known about tropical 

cyclones’ impacts on non-injury morbidity, which can be triggered through pathways that include 

psychosocial stress or interruption in medical treatment.

METHODS—We investigated daily emergency Medicare hospitalizations (1999–2010) in 180 

United States counties, drawing on an existing cohort of high-population counties. We classified 

counties as exposed to tropical cyclones when storm-associated peak sustained winds were ≥ 

21 m/s at the county center; secondary analyses considered other wind thresholds and hazards. 

We matched storm-exposed days to unexposed days by county and seasonality. We estimated 
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change in tropical cyclone-associated hospitalizations over a storm period from 2 days before to 

7 days after the storm’s closest approach, compared to unexposed days, using generalized linear 

mixed-effect models.

RESULTS—For 1999–2010, 175 study counties had at least one tropical cyclone exposure. 

Cardiovascular hospitalizations decreased on the storm day, then increased following the storm, 

while respiratory hospitalizations were elevated throughout the storm period. Over the 10-day 

storm period, cardiovascular hospitalizations increased 3% (95% confidence interval [CI]: 2%, 

5%) and respiratory hospitalizations increased 16% (95% CI: 13%, 20%) compared to matched 

unexposed periods. Relative risks varied across tropical cyclone exposures, with strongest 

association for the most restrictive wind-based exposure metric.

CONCLUSIONS—In this study, tropical cyclone exposures were associated with a short-term 

increase in cardiorespiratory hospitalization risk among the elderly, based on a multi-year/multi-

site investigation of US Medicare beneficiaries ≥ 65 years.
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INTRODUCTION

Tropical cyclones pose an important threat to human health in the United States (US), and 

with climate change, their average intensities, rainfall rates, and storm surge inundation 

levels are projected to increase.1,2 While fatality and injury tolls from major US tropical 

cyclones are typically estimated via post-disaster surveillance,3,4 much less is known 

about non-injury morbidity risks, particularly compared to other climate-related disasters 

like heat waves.5 Tropical cyclones can, however, trigger or exacerbate illness through 

psychosocial stress, interruption in medical treatment, and post-storm exposures such as heat 

and mold.4,6,7

Some studies have examined the effects of individual tropical cyclones on hospitalizations 

and other emergency medical visits for cardiorespiratory disease,6 especially for Hurricanes 

Katrina8–10 and Sandy.11–13 However, it is unclear if the adverse risks observed for these 

storms persist across other tropical cyclones and locations. Single-event case studies form 

an important component of disaster research, as such studies engage with complexity in 

the event and resonate across disciplines and among non-scientists.14 However, disaster 

case studies have limitations, including in terms of external validity.14 Further, it can be 

difficult to aggregate or compare evidence across single-storm studies because of differences 

in study methodology, and in meta-analyses publication bias often results in overestimation 

of associations.15–17 Multi-year/multi-site studies can supplement case studies by providing: 

(1) a more precise and less biased estimate of the typical association between exposure 

and health risk;16–18 (2) evidence of consistency in health associations across multiple 

exposures;19 and (3) a clearer picture of heterogeneity—as well as factors that contribute to 

this heterogeneity—across associations observed for different events and at different sites.16
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The elderly are particularly vulnerable to health risks during extreme weather events,20 as 

many have functional limitations or other conditions that compromise their ability to stay 

safe during disasters.21 For 1963–2012, there were eight times as many hurricane-attributed 

indirect deaths among individuals ≥ 70 years compared to those who were younger.22 

In the US, the percentage of the population aged ≥ 65 years is expected to increase 

in the coming decades,20 and one-fifth of Americans aged ≥ 65 years live in counties 

prone to tropical cyclone exposure.23 Despite a growing interest in how natural disasters 

affect human health24 and recognition that the elderly are disproportionately affected,25 few 

studies specifically examine health risk among the elderly associated with tropical cyclones, 

especially through multi-event analysis rather than case studies.26

To address these research gaps, we examined the associations between tropical cyclone 

exposures and emergency hospital admissions for cardiovascular and respiratory diseases 

among Medicare beneficiaries for 180 high-population counties in the eastern US for 1999–

2010. To our knowledge, this is the largest-scale study to date, in terms of the number of 

tropical cyclone exposures investigated, to explore patterns in emergency hospitalizations 

among the elderly during tropical cyclones.

METHODS

Tropical cyclone exposure classification

As storm-induced wind has historically been identified as a key force in storm-related 

destruction,27 we used storm-related peak sustained winds as our primary metric in 

classifying county-level tropical cyclone exposure. We avoided using Federal Emergency 

Management Agency disaster declarations to determine exposure, as they are subject 

to political and economic factors,28,29 and previous epidemiological research has found 

exposure assessment directly based on storm hazards is preferable.30 We first identified, 

from Atlantic-basin storms recorded in the National Hurricane Center’s revised Atlantic 

hurricane database (HURDAT2),31 all storms that crossed or neared the eastern US in 1999–

2010, identifying all that passed within 250 kilometers of at least one US county (top panel, 

Figure 1). For each storm in this subset, we then modeled ground-level peak sustained wind 

speed at each county’s population mean center using a double exponential wind speed model 

(middle panel, Figure 1).32,33 Based on these modeled wind speeds, we classified a study 

county as exposed if the storm brought peak sustained winds ≥ 21 m/s to the county center 

(bottom panel, Figure 1), which is the approximate threshold for strong gale-force winds 

on the Beaufort wind scale.34 This threshold represents local winds at which there can be 

damage to structures (especially roofs), power outages, and difficulty walking outside.35–37 

As a secondary analysis, we considered other wind thresholds (12, 15, and 18 m/s) to 

explore the influence of the exposure threshold choice on hospitalization risk estimates.

As a further secondary analysis, we considered exposure assessments based on other 

hazards, since tropical cyclones can pose threats to human health without strong winds.38 

We separately assessed county-level exposure based on rainfall, flooding, and tornadoes.39 

We calculated cumulative rainfall for 1 day before to 1 day after the storm’s closest 

approach to the county (eFigure 1) using precipitation data from the North American 

Land Data Assimilation System, phase 2 (NLDAS-2).40,41 We obtained data for flood 
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and tornado events from the National Oceanic and Atmospheric Administration (NOAA)’s 

Storm Events database.42,43 Finally, we also investigated distance of the county from the 

storm, used previously as an exposure metric for tropical cyclone studies.44 We considered 

four thresholds for rain- and distance-based metrics. Further details on this exposure 

assessment are provided in the eAppendix, with details on validation previously published.45

Study population

For 180 eastern US study counties (Figure 1 eFigure 2), we used aggregated daily county-

wide counts of emergency Medicare hospital admissions for cardiovascular and respiratory 

disease, using fee-for-service Medicare claims made within 1 January 1999–31 December 

2010 for beneficiaries ≥ 65 years residing in the county. All hospitalizations were recorded 

by county of residence. The original study population includes most high-population 

counties in the US, with data aggregated at the county level, and was used previously to 

examine health effects of other ambient environmental exposures, including air pollution46 

and heat.47 Given our focus on Atlantic-basin tropical cyclones, here we investigate only 

the 180 counties in the cohort in 34 states/districts in the eastern half of the US (Figure 

1, eFigure 2). In 2010, the study counties included over half the total population of 

these 34 eastern states (eTable 1). Compared to other counties in these states, the study 

counties tended to differ in race and ethnicity and had a slightly smaller percent of the 

population aged ≥ 65 years (eTable 2). Cause of disease was classified based on the 

International Classification of Diseases, Ninth Revision (ICD-9). Cardiovascular disease 

hospitalizations were based on the combined number of hospital admissions coded as 390–

459, including hospitalizations for heart failure (ICD-9 428), cerebrovascular disease (430–

438), heart rhythm disturbance (426–427), peripheral vascular disease (440–448), ischemic 

heart disease (410–414 and 429), and acute myocardial infarction (410). Respiratory disease 

hospitalizations were based on the combined number of hospitalizations with ICD-9 codes 

464–466, 480–487, and 490–493, including hospitalizations for respiratory tract infection 

(464–466, 480–487), chronic obstructive pulmonary disease (COPD, ICD-9, 490–492), and 

asthma (493).

Statistical analysis

We aimed to estimate the overall county-wide change in the hospitalization rates during 

tropical cyclone exposure, compared to expected rates had the storm not occurred. While 

time series48 and case–crossover49 study designs can be considered to answer this research 

question, both could introduce bias if disasters pose extended impacts on county’s health 

with incorrect model specification of this extended period.50 We instead adapted a matched 

study design used previously for multi-event, multi-site studies of heat waves51 and 

wildfires,52 with disaster-exposed days matched to similar unexposed days within county.

Specifically, we compared emergency hospital admissions during tropical cyclone exposures 

to matched unexposed periods in other years in the same county and time of year, 

conducting a separate analysis for each storm exposure metric considered. We first identified 

any storm-exposed days under a given exposure metric. For each county-level storm 

exposure, we identified the date of exposure (“lag 0”) as the date the storm’s central 

track was closest to that county (eFigure 3). We matched each storm-exposed day to 10 
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unexposed days, randomly selected from candidate days that were: (1) in the same county; 

(2) in a different year; (3) within a 7-day window of the exposure’s day of year; (4) at 

least 8 days before or 3 days after any other storm day in the county, so that no days in 

the period from 2 days before to 7 days after the candidate day coincided with a different 

storm; and (5) outside 11–24 September 2001, to exclude potential impact from a severe 

man-made disaster. For each storm-exposed day and its 10 matched unexposed days, we 

pulled hospitalization data from 2 days before to seven days after the storm’s closest 

approach, including days prior to the storm to investigate for risks associated with pre-storm 

preparations and exposures.

Separately for each combination of exposure metric and disease outcome, we fit a 

generalized linear mixed-effect model to the matched multi-county data, including an 

unconstrained distributed lag function of storm exposure:53

Y t, c Poisson λt, c

log(λt, c) = log nt, c + α + αc + ∑l = − 2
7 βlxt + l, c + δ′at + κ′dt

αc Normal 0, σα2

(1)

where:

• Y t, c is the number of emergency hospital admissions for a certain cause in the 

study population on day t for county c;

• λt, c is the expected number of hospitalizations among the study population on 

day t for county c;

• nt, c is the total number of Medicare beneficiaries residing in county c on day t 

who were not already hospitalized, included as an offset;

• α is the model intercept;

• αc are random intercepts for each county;

• ∑l = − 2
7 βlxt + l

c  is an unconstrained distributed lag function53 of storm exposure 

variable x. βl is the coefficient estimating the association between TC exposure 

and hospital admission at lag l from day t, the day of the storm’s closest 

approach to study county c. xt + l, c is the indicator variable representing whether 

a given day at lag l from day t for county c is part of an exposed storm period or 

part of a matched unexposed period.

• at is a vector of categorical variables for year on day t, and δ is a vector of 

associated coefficients;

• dt is a vector of categorical variables for day of week on day t, and κ is a vector 

of associated coefficients.
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Based on estimated coefficients, we calculated both lag-specific and storm-period (two days 

before to seven days after the storm’s closest approach to the county) relative risks (RRs) 

compared to matched unexposed days or periods. We calculated the lag-specific RRs on 

each day in the storm period as exp β l . The storm-period RRs, which estimate how the 

sum of hospitalizations across the 10-day storm period changed from total hospitalizations 

in matched unexposed periods, were calculated as 1
10 ∑l = − 2

7 exp β l .54 We used the delta 

method54 to calculate the standard errors for the storm-period RRs.

There were a few very severe tropical cyclone exposures within our study population. To 

investigate if the main, multi-storm results were driven by these exposures, we estimated 

single-storm associations for the ten most severe exposures (based on storm-associated 

winds within the county) using separate models, and also estimated the average associations 

between hospitalizations and all other tropical cyclone exposures (i.e., excluding the ten 

most severe tropical cyclone exposures), using a mixed-effects model as in eq. 1. To ensure 

adequate statistical power in these sensitivity analyses, we limited them to study counties 

with >50,000 Medicare beneficiaries.

We conducted sensitivity analyses to ensure primary results were robust to choices in the 

study design and statistical model. First, when selecting candidate unexposed days for 

matching, we considered more rigorous exclusion criteria, expanding to exclude any day 

within 2 weeks of another storm exposure in the county. Second, we investigated alternative 

statistical models, to look for potential issues from assumptions in the main statistical 

model. Specifically, we investigated for problematic overdispersion, limitations in the 

assumption that random county-level intercepts were normally distributed, and indications 

that long-term patterns in outcomes differed by county. Finally, to further examine potential 

unmeasured confounding from long-term temporal trends, we conducted a negative exposure 

control analysis, in which the storm periods were replaced by days 2 weeks before the storm. 

Further details on these sensitivity analyses are in the eAppendix.

RESULTS

For 1999–2010, 74 Atlantic-basin tropical cyclones made landfall or passed near the eastern 

US and so were considered further in our exposure assessment (Figure 1, top panel). 

Of the 180 counties considered, 175 had at least one storm exposure under at least one 

exposure metric, although exposure frequency and number of exposed counties varied 

by metric (Table 1). For all exposure classifications considered, our analysis included ≥ 

100 storm exposures, and analyses were based in all cases on several thousand observed 

hospitalizations during storm-exposed and matched unexposed periods (Table 1).

For tropical cyclone wind exposures ≥ 21 m/s, we identified 123 exposures in 54 study 

counties, with local winds from strong gale– to hurricane-force (Table 1, eFigure 4). 

Across these exposures, cardiovascular hospitalizations were 6% lower (RR: 0.94, 95% 

CI: 0.89–0.98) on the day of a storm’s closest approach compared to matched unexposed 

days among Medicare beneficiaries in the study counties (Figure 2, top left panel, lag 0). 

Storm-day decreases were particularly notable for cerebrovascular disease (RR: 0.86, 95% 
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CI, 0.77–0.96) and peripheral vascular disease (RR: 0.79, 95% CI, 0.59–1.04), whereas 

other specific cardiovascular causes demonstrated less change on the day of the storm (Table 

2). Following the storm, cardiovascular hospitalization risks were elevated compared to 

matched unexposed days, with highest risks 2–3 days post-storm (RRs: 1.12 [95% CI, 1.07–

1.16] at lag 2 and 1.08 [95% CI, 1.04–1.13] at lag 3; Figure 2, top left panel). Over the full 

storm period considered, risks for cardiovascular disease admissions were slightly higher 

(RR: 1.03, 95% CI: 1.02–1.05) compared with matched unexposed periods (Figure 3), with 

highest increases for heart failure (RR: 1.08, 95% CI: 1.04–1.11) (Table 2). Under other 

wind thresholds considered, cardiovascular hospitalization risks were also elevated across 

the storm period, with a similar temporal pattern, although associations were dampened for 

lower-threshold classifications (Figure 3, eFigure 5).

For tropical cyclone wind exposures ≥ 21 m/s, respiratory disease hospitalizations were 

14% higher (RR: 1.14, 95% CI: 1.06–1.24) on the day of the storm’s closest approach and 

remained elevated for several days after the storm, with highest risks on the 2 days after 

the storm (RR of 1.39 [95% CI, 1.29–1.49] at lag 1 and 1.26 [95% CI, 1.17–1.36] at lag 2; 

Figure 2, top right panel). Further, for respiratory hospitalizations there was some evidence 

of elevated risk the 2 days before the storm (Figure 2). Across the storm period, respiratory 

hospitalization risk steadily increased with higher wind thresholds (Figure 3), with a 16% 

(RR: 1.16, 95% CI: 1.13–1.20; Figure 3) increase compared to matched unexposed periods 

under the threshold of ≥ 21 m/s. Storm-associated risks were particularly high for chronic 

obstructive pulmonary disease (COPD) and asthma, which were 31% (RR: 1.31, 95% 

CI, 1.23–1.39) and 20% (RR: 1.20, 95% CI, 1.07–1.34) higher across the storm period, 

respectively, compared with matched unexposed periods (Table 2).

When we examined exposure metrics based on rain, flooding, tornadoes, and distance of 

the county from the storm, for cardiovascular hospitalizations we found some evidence of a 

decrease on the day of the storm for most metrics and an increase two days after the storm 

(Figure 2, eFigure 5), but little evidence of an overall change across the 10-day storm period 

compared to matched unexposed periods (Figure 3). For respiratory hospitalizations, there 

was some evidence of increases on the storm day and immediately following the storm, as 

well as an increase across the storm period, although the size of the associations was in 

all cases smaller than when storm exposure was defined based on storm-associated peak 

sustained winds of ≥ 21 m/s at the county center (Figures 2, 3, eFigure 6).

We separately estimated the risks associated with the ten most severe tropical cyclone 

wind exposures in study counties with >50,000 Medicare beneficiaries (eFigure 2). These 

represent all exposures in these higher-population counties in which the local peak sustained 

winds exceeded hurricane-force (eFigure 4). For these severe single-storm exposures, risk 

for respiratory hospitalization was consistently elevated across the storm periods (eTable 3, 

“Storm-period estimates”). At the most extreme, we estimated a RR of 1.75 (95% CI, 1.45–

2.10) for respiratory Medicare hospitalizations in Broward County, FL, during Hurricane 

Wilma in 2005, which translated to approximately 43 (95% CI, 31–53) excess respiratory 

hospitalizations. Storm-period associations for cardiovascular hospitalizations, conversely, 

varied across these severe exposures, as did associations on the single day of the storm’s 

closest approach for both respiratory and cardiovascular hospitalizations (eTable 3).
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To investigate whether the overall associations observed for tropical cyclone wind exposures 

(Figures 2 and 3) were driven by these ten most severe events, we compared the estimated 

RRs of cardiovascular and respiratory hospitalizations in counties with >50,000 Medicare 

beneficiaries when estimated both with and without these ten events. For both cardiovascular 

and respiratory hospitalizations, estimated storm-related increases almost halved when 

excluding these exposures. Cardiovascular hospitalizations were estimated to increase 1.4% 

across the storm period when all storm exposures were considered versus 0.8% when 

excluding the ten most severe events, while respiratory hospitalizations were estimated to 

increase 13.5% across the storm period when all storm exposures were considered versus 

8.4% when excluding the ten most severe exposures (eFigure 7).

We conducted a number of sensitivity analyses of our main results and found they were 

robust to study design and statistical modeling choices (eAppendix), including selection 

criteria for matched unexposed days (eFigure 8) and adjustment for overdispersion, long-

term trends, and county-level differences (eFigure 9). Dispersion diagnostics confirmed 

evidence of only minor overdispersion (eTable 4).55 Finally, we investigated the potential for 

unmeasured confounding from long-term temporal trends using a negative control analysis 

(eFigure 10). RR estimates for negative control exposure were near 1, and only one of 

twenty had a 95% confidence interval that excluded 1, as expected for a Type I error rate 

of 5%. We therefore found nothing that suggests that our main results were biased by 

confounding from long-term trends.

DISCUSSION

This study identified a consistent pattern, across dozens of tropical cyclone exposures, of 

increased risk for cardiorespiratory hospitalizations during and immediately after storms, 

adding to a growing understanding of the associations between climate-related exposures 

and the health of older adults.20 Study counties were all urban, so associations may differ in 

rural counties.

The biological mechanisms by which tropical cyclones may increase cardiorespiratory 

disease risk are not established, but some hypotheses are plausible. First, they can induce 

acute psychological stress, which in turn may trigger both respiratory56 and cardiovascular 

events.57 Takatsubo cardiomyopathy is especially likely to be triggered by acute emotional 

stress58 and can lead to heart failure and arrhythmia. Furthermore, tropical cyclone-related 

hazards can damage infrastructure like transportation and electricity, disrupting medical 

treatment or hampering medication adherence,6 a particular concern among the elderly, as 

many have multiple chronic conditions. For example, in a rapid assessment of health status 

among older adults after Hurricane Charley in Florida, 28% of households reported that at 

least one older adult was impeded from receiving routine or follow-up care for a pre-existing 

condition in the two weeks after hurricane.59 This disruption could play some role in the 

health impacts observed in this study, but could also cause health impacts beyond the period 

considered here, which ends one week after each storm.

Tropical cyclones can also elevate exposures to environmental hazards, including heat from 

non-functioning air conditioning7 and air pollution due to debris movement and use of 
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generators.60,61 Bioaerosols can also present an immediate threat. While new mold growth 

would be too delayed to explain risk observed in this study, mold can be an immediate risk 

as well; for example, one study observed that mold levels doubled the day after Hurricane 

Ike in Hamilton County, OH, as damage and winds increased exposure to pre-existing mold 

in the environment.62

Previous smaller-scale studies have also found evidence of tropical cyclone-associated 

increases in cardiorespiratory outcomes.8,10,12,63 For example, in the 2 weeks following 

Hurricane Sandy’s landfall, New Jersey hospitals in highly impacted areas had 22% more 

visits for myocardial infarctions and 7% more visits for stroke compared to previous 

years.12 Similarly, in the 2 weeks after Hurricane Iniki, several medical facilities in Kauai, 

HI, observed increases in visits for asthma and cardiovascular disease.63 Notably, in this 

study we found higher storm-associated risks for respiratory than cardiovascular Medicare 

hospitalizations, with increases particularly high for COPD and asthma (Table 2). Many 

home medical devices are used for respiratory support, especially oxygen therapy,64 and 

those relying on this equipment are particularly vulnerable to loss of power.64

We observed a lagging pattern in risks of cardiorespiratory hospitalizations across storm 

exposure periods, with highest increases on days following the storm. For cardiovascular 

hospitalizations, on the day of the storm’s closest approach we observed an appreciable 

decrease in risk. Similar storm-day decreases, followed by increases in following days, 

have been found in previous, smaller-scale studies of tropical cyclone exposure and overall 

hospital use.13,65–67 This storm-day decrease may represent a delay in seeking treatment, 

rather than a true reduction in health risk, as suggested by the increased risk following 

storms. Such a delay may be caused by infrastructure damage preventing patients from 

travelling to hospitals or calling emergency services68, as well as limited 911 service when 

a mandatory evacuation order has been issued.69 For respiratory hospitalizations we also 

found highest risk following the storm; however, risk also increased on the storm day, which 

may be linked to the need for electronic medical equipment among those with chronic 

respiratory conditions.64 During the 2003 blackout, for example, respiratory hospitalizations 

among all New York City residents were increased compared with similar days in different 

years, whereas no changes were observed for cardiovascular hospitalizations.70

Under wind-based exposure definitions, we also found that respiratory hospitalizations 

were appreciably increased in the 2 days prior to a storm’s closest approach (Figure 2 

and eFigure 6). This finding suggests the potential for storm-associated respiratory risk 

among the elderly during pre-storm preparations and evacuation. Tropical cyclones are large 

weather systems, for which winds and rainfall can precede the storm day. Prior to the storm, 

strong winds may elevate ambient concentrations of environmental exposures like pollen, 

which has been associated with increased risk of respiratory outcomes.71 Further, pre-storm 

preparations (e.g., boarding up windows) may create physical triggers for health outcomes, 

and pre-storm evacuation can bring its own health risks. For example, one study investigated 

all Medicare-eligible residents of nursing homes in counties where at least one nursing home 

was evacuated for Hurricane Katrina and found overall hospitalization rates in 30-day period 

beginning 4 days prior to landfall increased more than 2% (9.87% vs. 7.21% and 7.53%) 

compared with previous years.10
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We found that tropical cyclones varied in their cardiorespiratory risks (eTable 3), with 

some evidence suggesting this variation may be explained in part by the severity of wind. 

When we removed the ten most severe tropical cyclone wind exposures from analysis, 

elevated risk for both respiratory and cardiovascular disease hospitalizations were much 

smaller compared with estimates when all tropical cyclone exposures were considered 

(eFigure 7). Further, associations were clearest when exposure was measured based on storm 

winds ≥ 21 m/s, rather than on lower wind thresholds or other storm hazards (Figures 2 

and 3). A heightened risk from the most intense tropical cyclone wind exposures—where 

the storm brought local peak sustained winds of hurricane-force (eTable 3)—might be 

related to increased infrastructure damage with stronger winds27 and associated increases in 

psychological stress, need for post-storm clean-up, and problems adhering to typical medical 

care.6 For example, physical exertion during clean-up may trigger cardiovascular events,6,22 

and a storm that causes more damage would require more extensive clean-up work in the 

community. Studies on exposures from post-storm clean-up and reconstruction, including 

of personal property, have found that tropical cyclones can not only exacerbate pre-existing 

respiratory disease, but also cause new onset of respiratory disease or symptoms.72,73 While 

our study population includes people who are homebound and unable to assist in post-storm 

clean-up, some in our study population would likely have a role in cleaning up damage 

to their own homes or volunteering in clean-up efforts in their community and so may be 

exposed through this route.

Individual-level exposure misclassification is possible for some study subjects because 

exposure is assigned based on a county-level estimate. This exposure assessment could 

result from spatial heterogeneity in the storm’s physical hazards, especially for hazards 

that tend to be localized within a county, like storm-associated tornadoes. By contrast, 

other hazards vary more slowly across space, like wind and rain. Individual exposure 

misclassification could also result from differences in residential building characteristics 

and evacuation choices across individuals in the county. However, while these mechanisms 

could create individual-level exposure misclassification when considering direct exposure 

to the physical hazards of a storm, much of the cardiorespiratory health risk of tropical 

cyclone exposure might follow through indirect pathways, including pathways that do not 

require personal exposure to the initial physical hazard. For example, severe winds in 

a person’s wider community may cause a power outage at the person’s home, even if 

the storm-associated winds are lower at the home, because power relies on the stability 

of a large-scale grid. Similarly, while evacuation can avoid personal exposure to the 

physical hazards of a storm, it introduces a secondary pathway of health risk, including 

through psychological stress. These factors add nuance when considering the likelihood and 

implications of individual-level exposure misclassification to tropical cyclone hazards based 

on use of county-level exposure assessment.

Tropical cyclones are multi-hazard events, and a county affected by one exposure (e.g., 

severe wind) might also be exposed to others (e.g., flooding, extreme precipitation). In this 

study, we analyzed exposure based on each hazard separately. We found the strongest signal

—and evidence of increasing risk with increasing severity—for the wind-based exposure 

assessment. Future research could explore co-exposure to multiple hazards of the storm, 

Yan et al. Page 10

Epidemiology. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to help clarify causal pathways and evidence of synergy in effects when a county is 

concurrently exposed to multiple storm hazards.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the steps taken in exposure assessment for the primary analysis in this 

study. The 34 eastern US states/districts shown here are: Alabama, Arkansas, Connecticut, 

Delaware, the District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, 

Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, 

New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, 

Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, West Virginia, and 

Wisconsin. County population mean centers are based on the 2010 US Census. Storm 

tracks are based on the National Hurricane Center’s revised Atlantic hurricane database 

(HURDAT2).
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Figure 2: 
Estimates of lag-specific relative risks of cardiovascular (left) and respiratory (right) 

hospitalizations on days during storm periods compared to matched unexposed days, for 

all storms and across all exposed counties, for each of the five exposure metrics considered 

(labeled on right). Circles show point estimates and horizontal lines show 95% confidence 

intervals. The gray vertical line shows as a reference a relative risk of 1 (i.e., no observed 

association between tropical cyclone exposure and hospitalization risk). Shading divides the 

lag period among pre-storm days (lightest shade), the day of the storm’s closest approach 

(darkest shade), and post-storm days (intermediate shade).
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Figure 3: 
Estimates of relative risks of hospitalization for the full storm period considered (2 days 

before to 7 days after the storm’s closest approach to the county) compared with matched 

non-storm periods, for all storms and across all exposed counties. Color is used to represent 

different exposure metrics (peak sustained winds; cumulative rainfall; flood events; tornado 

events; and distance from the county center to the storm track). For continuous metrics 

(peak sustained winds, rainfall, distance to storm track), the threshold used to classify 

exposure for each estimate is noted on the x-axis. Point estimates are shown with circles 

for cardiovascular disease and triangles for respiratory disease. Horizontal lines show 95% 

confidence intervals. The gray vertical line shows as a reference a relative risk of 1 (i.e., no 

observed association between tropical cyclone exposure and hospitalization risk).
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