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Abstract

J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration 

metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are 

performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, 

and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity 

in pediatric imaging research to study rapid maturational changes of neurotransmitter systems 

and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to 

understanding the widespread and rapid structural and functional changes that occur in the first 

years of life. The overarching goal of this review is to provide an introduction to edited MRS for 

neonates, including the current state-of-the-art in editing methods and editable metabolites, as well 

as to review the current literature applying edited MRS to the neonatal brain. Existing challenges 

and future opportunities, including the lack of age-specific reference data, are also discussed.
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Introduction

Throughout early childhood, the brain undergoes a wide range of developmental processes 

that define the emerging central nervous system [1]. The developing brain is significantly 

different from the adult brain, metabolically [2, 3], structurally [4, 5], and functionally [6, 

7]. Investigation of the immature brain is necessary to elucidate the course of biological 

and cognitive development and potentially offers new insight on the pathophysiology of 

neurodevelopmental and psychiatric disorders which begin to manifest during childhood 
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[8–10]. Perinatal brain injury and developmental brain abnormalities lead to lifelong 

neurological dysfunction which results in a substantial public health burden [11]. The 

high degree of plasticity in the developing brain supports the potential benefit of early 

intervention in these disorders [12]; however, due to a lack of mechanistic insight, the 

optimal timing and type of interventions is still not clear. Advances in pediatric magnetic 

resonance imaging (MRI) have allowed noninvasive studies of the developing anatomy [13, 

14] and function [15], while in vivo magnetic resonance spectroscopy (MRS) provides 

complementary neurochemistry information in the developing brain [16, 17].

In contrast to other metabolic imaging techniques such as position emission tomography 

(PET), MRS does not involve ionizing radiation and can acquire metabolic information 

during a routine structural MRI exam by directly detecting signals from endogenous 

metabolites. Proton MRS (1H-MRS) is widely used for noninvasive in vivo studies of brain 

metabolism. In developmental disorders [18–21], it can provide diagnostic information that 

is unique compared to the insight obtained from other MRI modalities and can also allow 

noninvasive monitoring of response to treatment [22]. Clinical pediatric MRS focuses on the 

strongest signals detectable from the more abundant metabolites, including but not limited 

to N-acetyl aspartate (NAA), creatine-containing compounds (Cr), choline-containing 

compounds (Cho), myo-inositol (mI), glutamine (Gln) and glutamate (Glu) (collectively 

as Glx), and, where it accumulates to detectable levels, lactate (Lac). Recent methodological 

advances have powered renewed interest in a number of less abundant but biologically 

important metabolites: γ-aminobutyric acid (GABA), N-acetyl aspartyl glutamate (NAAG), 

glutathione (GSH), ascorbate (Asc), aspartate (Asp), and Lac [23]. These metabolites 

are key biomarkers of neurotransmitter dysfunction [24, 25] and oxidative stress [26, 

27], vital processes relevant across a range of neurodevelopmental and neuropsychiatric 

disorders. Detection of these less concentrated metabolites, whose MRS signals are smaller 

and highly overlapped, is most precisely achieved by J-difference editing [28, 29] and 

remains challenging when using conventional single-voxel MRS. J-difference editing (either 

Mescher-Garwood (MEGA) [30] or band selective inversion with gradient dephasing 

(BASING) [31]) is easily incorporated into the common Point RESolved Spectroscopy 

(PRESS) sequence and has been widely utilized in cognitive and clinical neuroscience 

research in adults [8–10, 32–35].

Despite increasing popularity in the adult population, J-difference editing has still not had 

a substantial impact in neonatal MRS, due to limited access to acquisition and analysis 

methodology, long acquisition times, and vulnerability to motion artifacts. Therefore, 

developing an appropriate protocol for pediatric edited MRS is of great importance. The 

purpose of this review is fourfold: (1) to discuss the metabolites that can be studied with 

edited MRS; (2) to present the methods of edited MRS for the non-expert reader; (3) to 

review those studies that have applied J-difference editing MRS in the neonatal brain; and 

(4) to describe the potential promise of neonatal edited MRS and current roadblocks to 

greater use.
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Metabolite targets of edited MRS

The in vivo MR spectrum contains signals from metabolites with a range of concentrations. 

Here, we provide an overview of several low-concentration metabolites of particular 

biochemical interest in the developing brain, which can be measured by edited MRS. Table 1 

summarizes the approximate in vivo metabolite concentrations in adults and neonates.

GABA is the main inhibitory neurotransmitter in the mature mammalian central nervous 

system (CNS) [46]. Its hyperpolarizing, inhibitory effect is mediated by three types of 

GABA receptors: GABAA (ligand-gated chloride ionotropic receptors), GABAB (G-protein-

coupled receptors), and GABAC (ligand-gated chloride ionotropic receptors, with higher 

sensitivity and smaller currents following activation by GABA than GABAA receptors [47]). 

GABA-mediated inhibition is one-half of the crucial excitation-inhibition balance required 

for healthy brain function. Interestingly, GABA initially acts as the primary excitatory 
neurotransmitter during early brain development, and GABAergic transmission emerges 

earlier in neurodevelopment than glutamatergic excitatory transmission [48]. The switch 

from excitation to inhibition occurs at the first postnatal week [49], with the maturation of 

the membrane Cl− gradient [50], as determined by cation-chloride cotransporters NKCC1 

(Na+-K+-Cl−Cl−) and KCC2 (K+-Cl−) [46]. GABA neurotransmission is involved in many 

aspects of brain development and brain function, including synaptogenesis and synapse 

stabilization [51], learning [10, 52], and synaptic plasticity [53–55]. Previous studies in 

animals [56] and human pediatric populations [57–59] have demonstrated that GABA 

levels increase with age in the developing brain, which is not linear (much more rapid 

in the neonatal period)—concentrations double in the neonatal period [39] over 10 weeks

—and then only approximate double over 10 years through childhood [58]. Dysfunction 

in GABAergic regulation (resulting from the insufficient production and/or increased 

utilization and break-down of GABA) has been implicated in various neurodevelopmental 

disorders, including autism spectrum disorder (ASD) [8, 9, 60].

Glutathione and ascorbate (Asc, also known as vitamin C) are the two most abundant 

antioxidants in the CNS [61]. They mitigate oxidative stress by donating electrons to 

various enzymatic and non-enzymatic reactions, thereby neutralizing the reactive oxygen 

species that are by-products of metabolism [62]. In brain tissue, they have different 

compartmentalization: GSH predominates in glia, whereas Asc predominates in neurons 

[61]. In the first day after birth in rats, cortical levels of Asc are high, as the neuronal 

population is far larger than the immature glial population [63]. As cortex develops, 

including gliogenesis, cortical Asc levels gradually fall and GSH levels increase [64]. In 

accordance with this, levels of Asc are higher in fetal and neonatal brains than in the adult 

human brain [65]. However, the temporal trajectory of brain GSH levels is less clear and 

may differ as a function of species, gender, and region [66]: studies of GSH have either 

shown decreased GSH levels [64], increased levels [61, 67], or no change [68, 69] with 

maturation. In humans, GSH levels have been shown to decline after birth (or trends for 

a reduction with age in the first year of postnatal development) [60]. The decrease in 

GSH and increase in Asc might be associated with the switch from neuron proliferation to 

differentiation during this period. Antioxidant deficiency, leading to poorly maintained redox 

homeostasis and oxidative stress, is a particular concern in the neonatal brain [70] and may 
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be implicated as contributory factors in the pathophysiology of ASD [27] and schizophrenia 

[71].

Lactate is one of the major energy sources for the brain [72, 73]. It is synthesized from 

pyruvate, the major glycolytic product, by the enzyme lactate dehydrogenase [74] under 

anaerobic conditions. Its level depends on age [75], cell type [74], and physiological/

pathological conditions [76]. The brain has two major cell types, neurons and astrocytes. 

Astrocytes produce Lac. The extent to which neurons produce Lac by glycogenesis 

(especially in view of their lack of the 6-phosphofructo-2-kinase PFKFB3) is debated. It 

is likely that neurons can produce Lac (using alternative mechanisms for the regulation of 

glycolysis [77]), but also import Lac produced by astrocytes [78, 79]. Lactate acts as an 

important substrate for the developing brain [80]. For example, oligodendrocytes use Lac as 

a source of energy and lipid precursor during myelination [81]. It also acts as a signaling 

molecule, which is necessary for memory consolidation in learning tasks in animals [82–

84], regulation in the GABAergic system [85], neuronal plasticity [86, 87], and neuronal 

excitability [88]. Previous work has shown neonates to have higher Lac levels in several 

brain regions [75], which subsequently decreases with increasing neuronal maturity [89] 

and decreasing transport across the blood–brain barrier [90]. The pathological imbalance 

between Lac clearance and generation can lead to accumulation of Lac, in turn, resulting 

in cellular damage and dysfunction [91]. Likewise, Lac rises acutely after hypoxic-ischemic 

brain injury and is a reliable early biomarker [92] and prognostic indicator after neonatal 

hypoxic-ischemic encephalopathy [93] and pediatric cardiac arrest [94]. Of note, the Lac 

doublet at 1.3 ppm should not be confused with propylene glycol (a solvent present in 

anti-seizure and other medications) at 1.1 ppm or alanine at 1.5 ppm, both of which are 

doublet peaks that invert at TE ~ 144 ms [95, 96].

NAAG is the most abundant neuropeptide and the third most abundant neurotransmitter in 

the human CNS [97]. NAAG has a higher concentration in white matter than gray matter 

[45], As a peptide formed from NAA and Glu [98], NAAG modulates levels of both, as 

well as having activity as a neurotransmitter/neuromodulator in its own right. NAAG also 

acts to regulate GABA [99] and dopamine [100] release. In rats, NAAG levels increase after 

birth, reaching maximum concentration approximately between postnatal 7–14 days, and 

then decreases with maturity [101, 102], In human infants, brain NAAG levels increase with 

age [1, 103], NAAG is generally understudied by MRS, in part due to the methodological 

challenge of resolving it from its constituents NAA and Glu [36]. However, MR spectra in 

the pediatric brain have substantially narrower linewidth (e.g., full width half maximum 

(FWHM) of the NAA acetyl singlet) than adult spectra (as discussed below), making 

sufficient resolution of the acetyl singlets of NAA and NAAG at 2.0 ppm more easily 

achievable.

Aspartate is a non-essential amino acid, synthesized by transamination of oxaloacetate 

(OAA). L-Asp is the more abundant isomer in the mammalian brain, required for protein 

assembly as well as being a precursor to other amino-acids: methionine, threonine, 

isoleucine, and lysine. However, D-Asp is more abundant than L-Asp in the developing 

brain [104, 105] and can modulate glutamatergic neurotransmission and neuroendocrine 

function [106, 107]. In preclinical models, levels of Asp appear to be higher early in 
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development and then decrease with time [56, 108]. However, in the human brain (as 

indicated by postmortem samples of the putamen), Asp levels increase steeply within the 

first postnatal year and remain fairly constant throughout life [109]. The dysregulation 

of Asp metabolism and signaling in the brain impacts the pathophysiology of psychiatric 

disorders, such as schizophrenia [110, 111] and ASD [110].

There is a dynamic equilibrium in the brain among these metabolites, and the level of each 

(which is what MRS detects) reflects the balance of formation and catabolism. Changes 

in the level of one compound can have far-reaching effects on the reaction kinetics of 

the metabolic pathways that connect them. For example, in the brains of individuals 

with chronic alcoholism, down-regulated cystine/Glu exchange leads to decreased levels 

of cysteine (Cys), which in turn rate limit the production of glutathione, as well as increased 

excitatory activity due to higher synaptic Glu levels [112]. In general, as the metabolite 

with the highest concentration in the brain, Glu takes a central role in the biochemistry 

of many MRS-visible metabolites, as seen in Fig. 1. In both astrocytes and neurons, Glu 

is synthesized from the tricarboxylic acid cycle (TCA-cycle)-intermediate α-ketoglutarate 

[113]. Synaptic Glu released from neurons is largely taken up by astrocytes, where it is 

converted to glutamine (Gln, also MRS-visible) and transported back to be taken up by 

neurons and deaminated to reform Glu. GABA is also synthesized from Glu, and in addition 

to acting as a neurotransmitter, GABA can be transferred to succinic semialdehyde (SSA) 

(then succinate) and recycled into the TCA cycle [114, 115]. Glutathione is a tripeptide 

of Glu with Cys and glycine, which undergoes an oxidative dimerization to glutathione 

sidulfide (GSSG); both engage in free radical neutralization cascades with ascorbate 

to maintain cellular redox balance [116]. Acetyl-CoA is a second key hub compound, 

which has relatively low concentration and very high flux, replenishing the TCA cycle 

with new carbon elements. Acetyl-CoA is also used to synthesize NAA by acetylating 

aspartate (which is itself formed from the TCA-cycle intermediate OAA). NAAG is further 

synthesized from NAA and Glu and therefore indirectly modulates their levels.

Methodological summary of advanced MRS

Proton MRS (1H-MRS) is a noninvasive methodology for in vivo detection of endogenous 

metabolites in clinical [93] and basic neuroscience research [23]. The in vivo spectrum 

is a relaxation-weighted sum of all the proton signals that can be excited from a region 

of tissue. As shown in Fig. 2, the pediatric spectrum differs from the adult spectrum in 

two important ways. Firstly, the concentration of several prominent signals (e.g., NAA) is 

different at various stages of development (neonate, pediatrics, adult), reflecting maturation 

and reorganization. Secondly, the linewidth of signals in the pediatric brain is narrower, due 

to reduced myelination [117] and metal deposits[118], resulting in higher SNR and reduced 

spectral overlap.

Scalar coupling in MRS

One feature of MRS that is not commonly considered in MRI is the scalar (or J-) coupling. 

This is a mechanism by which hydrogen nuclei that are attached to adjacent carbons 

within a molecule can exchange information, determining the appearance (specifically the 
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multiplicity) of signals in the MR spectrum. As an example, the molecular structure and 

MR spectrum of lactate are shown in Fig. 3A. The methyl signal at 1.3 ppm has a doublet 

character because the resonance frequency of the methyl spins is influenced by the spin-state 

(i.e., spin-up or spin-down, alpha or beta state) of the methine proton. If that adjacent spin 

is spin-up, as is the case in 50% of molecules, the resonant frequency is increased; if that 

adjacent spin is spin-down, as in the remaining 50%, the resonant frequency is decreased. 

This results in a splitting of the methyl signal into a 1:1 doublet. The signal from the 

methine proton is split into a 1:3:3:1 quartet because the spin-states of the methyl protons 

collectively are either: all spin-up (in 1/8 of molecules); two spin-up and one spin-down (in 

3/8); one spin-up and two spin-down (in 3/8); or all spin-down (in 1/8). Thus, the appearance 

of each multiplet in a coupled spin system has a multiplicity of n + 1, where n is the number 

of adjacent protons. The GABA molecule, for example, as shown in Fig. 3B, has three 

mutually coupled methylene CH2 groups. The terminal CH2s, each of which is only coupled 

to two adjacent protons, give rise to triplet-like signals in the spectrum. The central CH2 

which has four adjacent protons gives a more complex quintet-like signal.

Scalar coupling splits the MR signals from many low-concentration metabolites into 

complex multiplets, such that the dispersion of signals along the chemical shift axis is 

limited compared with the width of signals [29]. Furthermore, the resonances of GABA, 

glutathione, NAAG, and other lower-concentration metabolites with coupled spin systems 

remain overlapped with resonances from other more concentrated metabolites. J-difference 

editing can solve this overlap problem, using a targeted acquisition strategy to isolate 

resonances from a particular metabolite of interest. Frequency-selective radiofrequency (RF) 

pulses can be used to modulate the evolution of coupled spin systems during the echo time; 

a spectrum containing only those signals impacted by the editing pulses can be obtained by 

subtracting subexperiments acquired with, and without, editing pulses [28]. These “editing” 

pulses directly manipulate the evolution of scalar coupling during the experiment, allowing 

coupled signals to be separated on the basis of where in the spectrum their coupling partners 

lie. This approach is most commonly combined with single-voxel localization in MEGA-

PRESS (Mescher-Garwood Point Resolved Spectroscopy [30, 119]) or MEGA-sLASER 

(MEGA-semi-localization by adiabatic selective refocusing) [120, 121].

J-difference editing

J-difference editing of GABA and lactate is illustrated in Fig. 4. The GABA spectrum 

has signals at 1.9 ppm, 2.3 ppm, and 3.0 ppm; editing pulses are applied to the 1.9-ppm 

multiplet to modulate evolution of the 3-ppm multiplet and change the form of the signal 

as seen in panel A. Subtraction of “ON” and “OFF” subspectra acquired with and without 

editing pulses removes the large 3-ppm Cr signal (and any other signals that were not 

affected by the editing pulses) to reveal an edited GABA signal at 3 ppm (panel B). GABA 

signals are typically edited at a TE of ~ 68 ms, since this is the TE at which the outer peaks 

of the 3-ppm signal are inverted in the OFF spectrum. Similarly, the Lac spectrum (panel 

C) has signals at 1.3 ppm from the methyl (CH3) protons and at 4.1 ppm from the methine 

(CH) protons [122]. Edited detection of the methyl resonance can be achieved by applying 

editing pulses at 4.1 ppm [123]. At a TE of 140 ms, the methyl resonance is inverted in 

the “off” subspectrum and refocused in the “on” subspectrum (panel C). The appropriate 
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TE for optimal editing depends on the coupled spin systems that are being targeted; TEs 

from 68 to 140 ms are optimal for different metabolites. The optimal TE is determined by 

the multiplicity of the signal to be edited. To edit the triplet-like GABA signal at 3 ppm, in 

which the outer peaks are separated by ~ 14 Hz, a TE of ~ 68 ms is appropriate. Similarly, 

to edit the Lac doublet at 1.3 ppm, which has a ~ 14 Hz splitting, a TE of ~ 140 ms is 

appropriate. The duration of the scan for each GABA and Lac spectrum is 10 min 40 s for 

320 averages with TR = 2 s. In both cases, the resolution afforded by editing is not absolute: 

the GABA-edited spectrum also contains contributions from related metabolites such as 

homocarnosine [124] and macromolecular signals (often labeled GABA+); lactate-edited 

spectra also contain signals from beta-hydroxybutyrate (BHB) [125] and macromolecular 

signals at 1.2 and 1.4 ppm [126].

Advanced editing

J-difference-edited experiments usually proceed at a rate of one region-of-interest and one 

metabolite-of-interest per experiment. Double editing with (DEW) MEGA-PRESS allows 

two MEGA-PRESS experiments to be carried out simultaneously, provided that the four 

relevant signals (the two target signals to which editing pulses are applied, and the two 

detected signals) can be resolved from one another [127]. DEW has been applied to 

measurements of glutathione and ascorbate, as an antioxidant profile [127], and GSH and 

lactate [128].

Hadamard-encoded editing allows simultaneous editing of two or more signals and only 

requires frequency separation of the editing target signals. HERMES (Hadamard Encoding 

and Reconstruction of MEGA-edited Spectroscopy) uses a four- (or more-) step editing 

scheme that amounts to performing more than one MEGA-PRESS experiment at the same 

time. This editing scheme ensures that the different target signals are treated independently 

and different edited spectra can be extracted from the dataset by different Hadamard 

combinations. HERMES has been used to separate the aspartate signals of NAA, NAAG 

and Asp [129, 130], GABA and glutathione [131, 132], and GABA, GSH, and ethanol 

[133]. HERCULES (Hadamard Editing Resolves Chemicals Using Linear-combination 

Estimation of Spectra) (Fig. 5) can separate up to eight edited metabolites [134], using a 

combination of multi-step editing schemes and multi-spectrum linear combination modeling. 

These advanced acquisition schemes address a key limitation of edited MRS, the need 

for a longer scan time to obtain resolved resonances from several metabolites within a 

single MR exam. Despite the potential drawback of sensitivity to motion and instabilities, 

their development paves the way towards a more widespread application of edited MRS in 

the clinical environment. Table 2 lists available MRS methods and summarizes the major 

advantages and disadvantages.

Single-voxel vs. MRSI

The most common sequence for edited MRS, MEGA-PRESS [30], adds frequency-selective 

editing pulses to a single-voxel PRESS localization sequence [119]. Magnetic resonance 

spectroscopic imaging (MRSI) combines spatial encoding gradients with a spectroscopic 

read-out in order to acquire data in multiple brain regions simultaneously and yield spatial 

maps of metabolite levels [23]. Given the challenges of accurate subtraction (see discussion 
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of subtraction artifacts in [139–141]), single-voxel methods benefit from post-processing 

frequency and phase alignment, which is not typically possible for MRSI. Thus, the “MRSI 

vs. single-voxel” comparison largely weighs “more data” against “greater robustness to 

motion.” This, as well as long acquisition times and complex processing, limits the clinical 

application of MRSI, particularly in pediatric populations [138].

Field strength

Currently, MRS is largely performed at three main field strengths: 1.5 T, 3 T, and 7 T. 

Clinically, 1.5 T has been the “workhorse” field strength, but 3 T is increasingly being 

used, particularly in academic medical centers with MR research programs. In research, 3 

T is the “workhorse” field strength, and 7 T is an emerging discipline. For MRS, the field 

strength has two main impacts: the primary motivation for higher field strength, increased 

SNR; and a secondary benefit that multiplet splittings, which remain constant in terms of 

Hz, are increasingly spread along the ppm axis, leading to improved resolution of signals. 

In edited MRS, there are two additional impacts with increasing field strength: the rate of 

T2 relaxation increases (mitigating some of the SNR gains for edited experiments acquired 

at medium/long TE) and the effective selectivity (in ppm) of editing pulses increases. 

Thus, the duration of an editing pulse with the same degree of selectivity scales inversely 

with field strength. This, combined with optimal editing TEs (as discussed above), limits 

the effectiveness of GABA editing at 1.5 T. Improved selectivity of editing that comes 

with higher field strengths is desirable for specificity but also reduces the robustness of 

experiments to scanner instability and patient motion (a particular concern for neonatal 

MRS).

Applications of edited MRS in neonates

Literature review methods

Primary search terms applied to PubMed on June 23, 2021, were “edited MRS neonates” (7 

results), “edited MRS baby brain” (3 results), and “edited MRS newborn brain” (5 results). 

Additional searches were made based on known methods (such as “GABA MRS neonates” 

(27 results), “GSH MRS neonates” (3 results), “Lactate MRS neonates” (134 results)) and 

known authors (such as “Kreis, MRS, neonates” (4 results), “Cady, MRS, neonates” (15 

results), “Basu, MRS, neonates” (4 results) choice based on the prior search results). These 

search results were filtered to remove the following: (1) all references that do not use edited 

MRS; (2) all studies of non-human subjects; (3) all studies not carried out in vivo; (4) all 

studies of organs other than the brain; and (5) all studies of adult subjects. Table 3 shows an 

overview of published edited MRS studies in the neonatal brains.

Lactate-edited MRS

The first publication of edited MRS in the neonatal brain [135] applied lactate-edited 3D 

MRSI [142] to assess the effect of pentobarbital sedation in metabolites of healthy preterm 

infants. This study showed that Lac level in the basal ganglia (BG) was significantly lower 

in the fourteen neonates with pentobarbital sedation compared to the twenty-nine neonates 

scanned without sedation. Given that other metabolite ratios did not differ between groups, 

the authors suggested that pentobarbital-related down-regulation of glycolysis accounted for 
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the results. The acquisition protocol imaged an 8 × 8 × 8 array of 1 cm3 voxel, lasting 18 

min. A review of neonatal MRS from the same group also showed three Lac-edited example 

spectra [17]. These spectra establish the feasibility of the method and illustrate Lac levels 

increasing with the severity of the hypoxic injury.

A later conference abstract [136] applied the BASING technique to determine lactate levels 

in the neonatal brain and to illustrate the benefits of editing for improved visualization and 

quantification of the Lac resonance. The Lac doublet at 1.3 ppm was masked by strong 

lipid signals in unedited short-TE (35 ms) spectra, and absent from unedited long-TE (144 

ms) spectra, likely due to spatial heterogeneity in coupling evolution [143]. Despite the 

benefits of editing, most clinical MRS in neonates has applied unedited methods to quantify 

Lac, often with TEs of 144 ms [144] or 288 ms [76]. While elevated Lac is a hallmark of 

perinatal hypoxia, Lac is present at quantifiable levels in healthy neonates [135], with levels 

decreasing into infancy and childhood [75].

GABA-edited MRS

A majority of studies applying edited MRS in the neonatal brain have used the MEGA-

PRESS sequence to detect GABA. In a study examining GABA levels and resting-state 

functional connectivity associated with preterm birth, Kwon et al. [137] observed lower 

GABA levels in preterm infants than term infants (scanned at mean median postmenstrual 

age (PMA) 42.6w and 42.5w, respectively). The cohort was recruited from 2010 to 2013 

making this the earliest example of GABA-edited MRS in neonates and included 18 preterm 

and 21 term neonates. The study focused on a 2 × 3 × 3 cm3 region in the right frontal lobe, 

acquiring up to 20 min of data per subject in a protocol with 8 acquisition blocks (TR = 1.5 

s). Relationships between GABA levels and resting-state functional connectivity were also 

notably different in the two groups.

Tanifuji et al. [40] reported the first longitudinal study of GABA levels in twenty preterm 

infants (median postmenstrual age (PMA) at birth 30 weeks), acquiring data at two time 

points: 37–46 postmenstrual weeks and 64–73 postmenstrual weeks. Although significant 

increases in NAA, Glu-Gln, and Cr and decreases in mI were observed, there was no 

significant change in GABA between the time points. The study acquired 7 min of data from 

a 2.5 × 2.5 × 2.5 cm3 voxel in the right BG.

Tomiyasu et al. [57] reported lower levels of GABA in neonates than children, continuing 

the theme of increasing GABA levels through early development. The study compared 

GABA levels in cerebellar and BG regions, in 38 neonates (preterm: 23–36w, studied at a 

PMA of 35–41w; term: 37–41w, studied at a PMA of 38–43w) and 12 school-age children 

(mean 10.2 years; range 6–16 years). Data were acquired for 3 min per voxel, with voxels 

ranging from 4 to 9 cm3 in infants and 13 to 37 cm3 in children. This study raises the 

concern of appropriate signal quantification, especially in the context of changing levels and 

relaxation rates of the potential reference signals across development.

Basu et al. [39] also assessed GABA levels in a larger cohort of preterm infants. A negative 

correlation was seen between GABA levels with gestational age (GA), while a positive 

correlation was seen with postnatal age. Among the preterm infants, those born before 
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28 weeks were shown to have significantly higher GABA levels at TEA than those born 

after. GABA levels were also higher in male infants, compared to females; groups were 

well-matched in GA at birth and birth weight. The study focused on a 2.0 × 1.5 × 1.5 cm3 

voxel in the right frontal lobe, acquiring data for 8 min.

Most recently, Yanez Lopez et al. [41] applied HERMES to simultaneously edit GABA and 

glutathione in 18 healthy neonates, scanned between 39 and 47 weeks PMA. Measurements 

were made in regions of the anterior cingulate cortex (3.1 × 2.5 × 2.0 cm3) and 

left thalamus (2.5 × 2.5 × 2.5 cm3), acquiring data for 10 min. Regional differences 

were observed in GABA+ and Glu levels, but not GSH levels. The manuscript focuses 

substantially on methodological considerations, including the importance of incorporating 

tissue segmentation and correction and optimized fitting for GABA+ quantification.

Acquisition time and voxel size

As mentioned above and summarized in Table 3, edited data have been acquired at a broad 

range of SNR levels, as can be inferred from the acquisition time and voxel size. At the 

lower end, Tomiyasu et al. made GABA + measurements down to 3.7 cm3 voxels acquired 

for 3 min. Comparing to a common benchmark for adult studies of 27 cm3 acquired for 10 

min [140], this acquisition has over 90% lower SNR. Infant brains are smaller than adult 

brains, forcing authors to choose between diminished anatomical specificity and reduced 

SNR. Further consideration of the challenges of neonatal MRS is given below.

Quantification and tissue correction

Quantification of MRS signals relies upon an internal reference signal, most commonly the 

Cr singlet or the unsuppressed water signal (either with or without relaxation correction). 

However, it should be noted that Cr levels change dramatically during the first 2 years 

of life, making this a poor reference, in particular, in studies on early development [1]. 

Of the seven studies included in Table 3, the majority report both water-referenced and 

Cr-referenced levels of the edited metabolite signals. The degree of tissue and relaxation 

correction applied in water-referenced studies varies, as it does in the adult literature. Tissue 

correction is very important, especially given uncertainties about voxel composition due to 

the partial volume effect.

Influence of sedation

Clinical imaging of neonates is occasionally performed under sedation. Research studies 

have so far been reported both using sedated and non-sedated subjects, but the effect of 

sedation on edited metabolite signals has not been systematically characterized.

Challenges and opportunities for neonatal J-edited MRS

J-difference-edited MRS is the recommended approach [145] for detecting low-

concentration metabolites with overlapped spectra in the adult brain. However, in order to 

advance the application of this technique in pediatrics, several challenges must be addressed, 

starting with SNR. At birth, the newborn brain is about 1/4 the volume of a mature adult. 

Although it is possible to scale voxel size to approximately 1/4 that of an adult, SNR 
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scales directly with volume, so this approach would reduce SNR by approximately 75%. 

Furthermore, while this can theoretically be counteracted by increasing the number of signal 

averages (NSA), a 16-fold increase in scan time is not practical.

Notably, the infant brain does offer several distinct advantages, which collectively mitigate 

some of these challenges, enhancing SNR as well as chemical resolution. First, transverse 

relaxation is substantially longer in infants, which increases SNR and results in narrower 

linewidth. Second, as noted earlier, the newborn brain has very little iron and a low myelin 

content, leading to better B0 homogeneity and again narrower linewidth. Both of these 

are favorable for editing and underscore the need for optimized sequences for infants that 

capitalize on these advantages.

A second key challenge is motion, which is particularly important for motion-sensitive 

methods like edited MRS [139]. Infants and young children move, and, even when imaged 

during natural sleep or with extensive training prior to scanning [146], may display 

occasionally twitches let alone awaken (or abort) in the middle of (long) sequences. 

Thus, the availability of prospective motion correction, as has been developed and now 

increasingly used in structural imaging [147], would greatly enhance the feasibility and 

rigor of edited MRS in pediatric populations. Excitingly, these techniques have been applied 

to single-voxel MRS and MRSI [133, 148] though not yet widely available as product 

sequences or works-in-progress (WIPs).

Thirdly, even in the event that high-quality data can be acquired in the pediatric brain, there 

is an important lack of age-appropriate reference data, e.g., metabolite relaxation times, 

MR-visible tissue water content, and macromolecular background spectra. The consensus 

for MRS quantification within the MRS research community is that these correction factors 

are required for modeling and quantification [149], and adult reference values are not 

appropriate. As one example of the limited reference data, Table 4 summarizes the prior 

literature [76, 150–153] on neonatal metabolite relaxation times, acquired with a range 

of techniques, field strengths, brain regions, etc., and highlights its limited scope. Due to 

significant tissue water content changes that occur during early brain development [154], the 

longitudinal relaxation times (T1) undergo rapid maturation [155] and differ substantially 

between children and adults (and even between children). Similarly, due to an increase 

in myelination [156], reduction of free water content, and increased white-matter volume, 

transverse relaxation times (T2) also substantially change during development [155]. The 

scarcity of reports indicates that one important future effort will be to establish age-

dependent models for each of the necessary correction factors and/or to develop advanced 

measurement techniques that include relaxometry without increasing acquisition times [157, 

158].

As we consider future applications, it is important to recognize that 1 in 54 children in 

the USA will be diagnosed with ASD [159], 1 in 150 with epilepsy [160], and 1 in 10 

with attention deficit hyperactivity disorder (ADHD) [161]. These and many other disorders 

are thought to have their genesis in infancy, with small molecules such as glutamine 

and GABA playing a central role. In addition, numerous therapeutic trials of neonatal 

neuroprotectants are underway (HELIX (Hypothermia for Encephalopathy in Low- and 
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Middle-Income Countries), High-Dose Erythropoietin for Asphyxia and Encephalopathy 

(HEAL), Erythropoietin and Darbepoetin in Neonatal Encephalopathy Trial (EDEN) and 

Erythropoietin Monotherapy for Brain Regeneration After Neonatal Encephalopathy in 

Low- and Middle-Income Countries (EMBRACE)) [162–164], where changes in small 

molecules have the potential to inform dosing decisions and individual treatment response. 

Thus, the widespread availability of reliable and accurate methods for edited MRS in the 

neonatal population could have a major impact in neonatal disorders and pave the way for 

personalized approaches to early diagnosis and management. Furthermore, utilizing edited 

MRS methodologies within the design of large-scale neurodevelopmental studies, such as 

the recently announced Healthy Brain and Cognitive Development (HBCD) study [165, 

166], would allow characterization of normal trajectories and improve our understanding 

of the complex interactions between genes and environment on the biochemical aspects of 

brain development from birth through the first decade of life.

Conclusion

Edited MRS is a powerful and valuable methodology to detect low-concentration 

metabolites reflecting various critical physiological processes, such as neurotransmitters 

GABA and Glu, antioxidants glutathione and ascorbate, and the product of anaerobic 

glycolysis lactate. Edited MRS offers considerable potential to augment pediatric MRI 

for detecting low-concentration metabolites related to developmental abnormalities. To 

enhance the feasibility and rigor of this approach in pediatrics and, ultimately, its utility 

to inform neurodevelopment, there needs to be investment from the MRS community ideally 

in partnership with pediatric neuroradiologists and developmental neuroscientists, leading 

to new optimized sequences with prospective motion correction and the availability of 

age-appropriate reference data.
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Fig. 1. 
Pathways relating the editable metabolites in the human brain. Abbreviations: TCA, 

tricarboxylic acid cycle; SSA, succinic semialdehyde; Asp, aspartate; Asc, ascorbate; 

GABA, γ-aminobutyric acid; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartylglutamate
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Fig. 2. 
Age-related change of the proton MRS brain spectra at 3 T. Infant (GA at birth, 36w; 

scanned at 38 weeks 6 days; volume = 24 × 40 × 24mm3 in bilateral thalamus, TE = 35 ms, 

average = 64), child (4-year-old, volume = 17 × 40 × 17mm3 in bilateral thalamus, TE = 35 

ms, average = 32), adult (24-year-old, volume = 30 × 30 × 30mm3 in posterior cingulate, 

TE = 35 ms, average =64) short-TE PRESS spectra with TR = 2 s are shown, respectively. 

Spectra are normalized to the Cr signal amplitude. tCho, NAA, and Lac levels can be seen to 

change with age, as does the linewidth
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Fig. 3. 
J-coupling. J-couplings of lactate (A) and GABA (B) are superimposed on the molecular 

structures as gray arrows. These result in the multiplet splittings seen in the simulated MR 

spectra below
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Fig. 4. 
J-difference editing of GABA and lactate. GABA-edited spectra in simulation (A) and in 

vivo (B). The shaded region marks the edited GABA signal at 3 ppm. Lac-edited spectra 

in simulation (C) and in vivo (D). The shaded region marks the edited Lac signal at 1.3 

ppm. Simulation sequence parameter: GABA: TE = 80 ms, field strength = 3 T; Lac: TE = 

140 ms, field strength = 3 T. In vivo sequence parameter: GABA: TR = 2 s, TE = 80 ms, 

field strength = 3 T, averages = 320, acquisition bandwidth = 2000 Hz, acquisition time: 10 
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min 40 s; Lac: TR = 2 s, TE = 140 ms, field strength = 3 T, averages = 320, acquisition 

bandwidth = 2000 Hz, acquisition time: 10 min 40 s
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Fig. 5. 
HERCULES-edited spectra in infant and child at 3 T. Infant (GA at birth, 36w; scanned 

at 38 weeks 6 days; volume = 17 × 40 × 17mm3 in bilateral thalamus, TE = 80 ms. 

Average = 56), child (4-year-old, volume = 24 × 40 × 24mm3 in bilateral thalamus, TE 

= 80 ms, average = 56) HERCULES spectra with TR = 2 s are shown, respectively. 

Spectra are normalized to the Cr signal amplitude. Y-scaling of difference spectra is 

increased by a factor of 4. Abbreviations: tCr, total creatine; tCho, total choline; mI, 

myo-inositol; Glx, glutamate + glutamine; tNAA, total N-acetyl aspartate; Lac, lactate; MM, 
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macromolecule; GABA, γ-aminobutyric acid; Asc, ascorbate; PE, phosphorylethanolamine; 

GSH, glutathione; Asp, aspartate; NAAG, N-acetylaspartylglutamate
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