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Abstract

Background.—Pathologist and computational assessments have been used to evaluate
immunohistochemistry (IHC) in epidemiologic studies. We compared Definiens Tissue Studio®
to pathologist scores for 17 markers measured in breast tumor tissue microarrays (TMASs) [AR,
CD20, CD4, CD8, CD163, EPRS, ER, FASN, H3K27, IGF1R, IR, Ki67, phospho-mTOR, PR,
PTEN, RXR, and VDR].

Methods.—5 914 Nurses’ Health Study participants, diagnosed 1976-2006 (NHS) and 1989-
2006 (NHS-I1), were included. IHC was conducted by the Dana-Farber/Harvard Cancer Center
Specialized Histopathology Laboratory. The percent of cells staining positive was assessed by
breast pathologists. Definiens output was used to calculate a weighted average of percent of
cells staining positive across TMA cores for each marker. Correlations between pathologist and
computational scores were evaluated with Spearman correlation coefficients. Receiver-operator
characteristic curves were constructed, using pathologist scores as comparison.

Results.—Spearman correlations between pathologist and Definiens assessments ranged from
weak (RXR, rho=-0.05; CD163, rho=0.10) to strong (Ki67, rho=0.79; pmTOR, rh0=0.77). The
area under the curve was >0.70 for all markers except RXR.

Conclusion.—Our data indicate that computational assessments exhibit variable correlations
with interpretations made by an expert pathologist, depending on the marker evaluated. This study
provides evidence supporting the use of computational platforms for IHC evaluation in large-scale
epidemiologic studies, with the caveat that pilot studies are necessary to investigate agreement
with expert assessments. In sum, computational platforms may provide greater efficiency and
facilitate high-throughput epidemiologic analyses.

Keywords
breast cancer; epidemiology; immunohistochemistry; computational pathology

1. Introduction

Immunohistochemistry (IHC) is frequently used to measure expression of putative
biomarkers in tumor tissue microarrays (TMASs) constructed from formalin-fixed paraffin-
embedded (FFPE) tissue samples. An expert pathologist’s interpretation of IHC assays has
generally been considered the gold standard in large-scale epidemiologic investigations.
Often these manually assigned scores are semi-quantitative, incorporating both intensity and
extent of immunoreactivity [1]. This approach is limited, however, in that it is expensive,
time-consuming, reliant on subjective scoring parameters, and potentially prone to bias [2].
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An alternative strategy is to utilize computational platforms which, in theory, provide a more
objective assessment of the extent and/or intensity of immunoreactivity [3]. Previous studies
have generally demonstrated good agreement between pathologist- and computationally-
generated scores for estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor (HER2) [4-8]. However, whether this agreement extends to
other biomarkers, including those exhibiting cytoplasmic staining and reactivity in stromal
cells, is not well understood. Understanding the extent to which automated platforms concur
with pathologist assessments can help in determining the appropriate analytic method to
evaluate immunoreactivity, particularly in analyses using archival FFPE tissues.

In this study, we evaluated the performance of the semi-automated Definiens TissueStudio®
platform compared to pathologist assessment of 17 markers measured in breast tumors
collected nationally over several decades [AR (androgen receptor), CD20, CD4, CD8, and
CD163, EPRS (glutamyl-prolyl-tRNA synthetase), ER (estrogen receptor), FASN (fatty acid
synthase), H3K27 (histone 3 lysine 27 trimethylation), IGF1R (insulin-like growth factor

1 receptor), IR (insulin receptor), Ki67 (marker of proliferation Ki-67), phospo-mTOR
(phosphorylated mammalian target of rapamycin), PR (progesterone receptor), PTEN
(phosphatase and tensin homolog), RXR (retinoic acid receptor), and VDR (vitamin D
receptor)].

2. Materials and Methods

2.1 Study population.

The TMAs included in this study contain tissue from 5 914 participants of the Nurses’
Health Study (NHS) and Nurses’ Health Study 1l (NHS-11) who were diagnosed with /in
Situ or invasive breast carcinomas between 1976-2006 (NHS) and 1989-2006 (NHS-II).
Eligibility criteria and procurement of tumor tissue have previously been described in detail
[9]. Briefly, tumor tissue was requested from pathology departments at hospitals treating
NHS/NHS-I1 participants who have no history of cancer other than non-melanoma skin
cancer prior to their breast cancer diagnosis. For each participant, three 0.6 mm tumor
tissue cores were selected as representative of the tumor and placed into TMAs. This study
protocol was approved by the institutional review boards of the Brigham and Women’s
Hospital and Harvard T.H. Chan School of Public Health, and those of participating
registries as required. Informed consent was obtained from all NHS and NHS-I1 participants.

2.2 Selection of tissue markers and immunohistochemistry.

We selected those markers for which IHC had previously been completed and for which
both pathologist and automated scores were available. We sought to utilize the large amount
of IHC data collected in the NHS/NHS-I1 cohorts and therefore we included both clinically
useful (e.g., ER, PR) and investigational markers in our analysis. HER2 was not included as
automated data was not available.

For ER, PR, and AR, both pathologist and automated scores were generated for the majority
of cases. For the remaining markers, a single TMA was manually scored for comparison
to the Definiens data. For IR, H3K27, RXR, VDR, and Ki67, the manually scored TMA
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contained 159 cases. For CD163, CD20, CD8, CD4, EPRS, FASN, IGF1R, pmTOR, and
PTEN, the manually scored TMA contained 132 cases. The markers evaluated in this study
are expressed by tumor cells, stromal cells, and/or inflammatory cells, and exhibit either
nuclear or cytoplasmic localization (see Table 1 for the cell type and localization evaluated
for each marker). Staining of most markers was evaluated in tumor cells only, although

for CD4, CD8, and CD20, staining of stromal lymphocytes was examined. Additionally,
EPRS and CD163 were assessed separately in tumor and stromal cells. We excluded 182
cases that were missing pathologist or Definiens data for all of the 17 markers. Missing

data could be attributed to core loss during sectioning or staining, staining artifacts that
obscure the evaluation of a core, tissue folding within a core, or lack of tumor cells in a core
following sectioning. For ER, PR, and AR, comparisons between pathologist evaluation and
computational assessment were made on this final dataset containing 4 673 cases from NHS
and 1 241 cases from NHS-I1. For all other markers, comparisons were made for 159 cases
(IR, H3K27, RXR, VDR, Ki67) or 132 cases (CD163, CD20, CD8, CD4, EPRS, FASN,
IGF1R, pmTOR, PTEN), because only one TMA was evaluated by the pathologist for those
markers.

IHC assays were performed on 5-um sections using standard protocols and commercially
sourced antibodies (Table 1). 3,3’-diaminobenzidine was used as the chromogen and all
slides were counterstained with hematoxylin. Appropriate positive and negative controls
were included in all IHC experiments. IHC protocols were carried out using a Dako
Autostainer (Dako Corporation, Carpinteria, CA, USA) at the Dana-Farber/Harvard Cancer
Center Specialized Histopathology Laboratory, Boston, MA, USA. ER, PR, AR, H3K27,
RXR, and PTEN were stained in multiple batches; all other markers were stained in a single
batch. Batch was included as a covariate in downstream analyses. TMAs were digitized at
40x magnification using the Panoramic SCAN 150 whole slide scanner (3DHISTECH Ltd.,
Budapest, Hungary).

2.3 Pathologist review.

Immunoreactivity was manually assessed by expert breast pathologists (L.C.C. or G.M.B.)
in the Department of Pathology at Beth Israel Deaconess Medical Center. For CD4,

CD8, and CD20, each core was scored according to the percentage of the stromal

region containing lymphocytes expressing the marker, using the categories of low (<10%),
moderate (10-50%), and high (>50%). Ki67 was scored continuously as the percentage of
positive cells. For the remaining markers, each core was scored according to the percentage
of cells expressing the protein, using the categories of negative, low positive (1-10%), and
positive (>10%). Cases were classified as negative or low if all evaluable cores were scored
negative or low, low positive or moderate if at least one core was scored low positive or
moderate (but none scored positive or high), and positive or high if at least one core was
scored positive or high. We secondarily defined cases using the average of pathologist’s
scores across a participant’s cores.

2.4 Semi-automated scoring.

Semi-automated scores were generated using the Definiens TissueStudio® (Definiens AG,
Munich, Germany) computational pathology system. This software requires the user (Y.J.H.
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and M.E.P.) to first create an algorithm for each stain. To create these algorithms, 12 random
cores were chosen on one TMA for each stain, per the manufacturer’s instructions. Regions
of interest were annotated and used to train Definiens to recognize nuclei, tumor and stromal
regions, and to optimize the stain detection threshold. The stain-specific algorithms are then
applied to the raw TMA images to quantify staining, without further manual annotation of
individual tissue cores. The representative training TMAS were included in the study set.

For each marker, the number of cells or nuclei staining positive were summed across

a participant’s cores and divided by the sum of the total number of cells/nuclei present
across each participant’s cores. This quantity was then multiplied by 100 to generate a
weighted average percent positive for each participant. We excluded participants with <100
cells/nuclei across evaluable cores.

Weighted average percent positive = (# positive cells, core 1 + # positive cells, core 2, + #
positive cells, core 3) / (total # cells, core 1 + total # cells, core 2 + total # cells, core 3) *
100

2.5 Statistical analysis.

For each marker, we calculated Spearman’s rank-order correlation coefficients between
the continuous percent positive obtained from Definiens and both case-level pathologist
definitions (ordinal and average pathologist assessments). In addition, we calculated
Spearman’s correlation coefficients between the Definiens percent positive and pathologist
score for each core. For the Definiens data, we calculated intraclass correlation coefficients
across cores. For the pathologist data, Fleiss’ kappa coefficients were calculated for

all markers except Ki67, for which the intraclass correlation coefficient was computed.
Raw percent agreement and Cohen’s kappa coefficients were calculated to evaluate
agreement between the pathologist and Definiens assessments at the core and case level,
by categorizing the Definiens percent positive using the same cutpoints as the pathologist
interpretation.

To assess the sensitivity and specificity of the Definiens-derived percent positive, we
generated receiver-operator characteristic (ROC) curves using the pathologist assessment
for each marker as the gold standard. Pathologist assessments were collapsed into positive
and negative cases, where positive included low positive and positive, or moderate and high,
according to the marker analyzed.

3. Results

Representative images of all immunohistochemical markers by pathologist-assigned
category are shown in Figure 1. Mean age at diagnosis and selected tumor characteristics
for participants in both cohorts are shown in Table 2. In both cohorts, most participants
were diagnosed with stage | and 1, node negative tumors. Roughly half of participants were
diagnosed with moderately differentiated tumors.

Spearman correlations between pathologist and Definiens assessments are shown in Table
3, and ranged from weak (RXR, rho=-0.05; CD163 in stroma, rho=0.10) to strong (Ki67,
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rho=0.79; pmTOR, rho=0.77). Correlations were =20.55 for 10 of the 17 markers analyzed
(PR, IR, Ki67, CD163 (tumor), CD20, CD8, EPRS (tumor), IGF1R, pmTOR, and PTEN).
There were no appreciable differences in the strength of the correlations when we used the
average case definition (average of pathologist’s scores across cores) versus the categorical
case definition (cases classified as negative/low positive/positive or low/moderate/high). We
observed modest correlations for both ER (rho=0.43, categorical; rho=0.46, average) and PR
(rho=0.66, categorical; rho=0.70, average). In general, we found that the mean Definiens
percent positive was highest among cases classified by the pathologist as positive, and
lowest among those classified as negative (Table 3). One notable exception is RXR, for
which the mean percent positive was 93%, independent of the pathologist’s classification.
Agreement across cores was generally good: for pathologist scores, Fleiss’ kappa ranged
from 0.64 (EPRS in stroma) to 0.83 (H3K27), while for Definiens percent positive,
intraclass correlation coefficients ranged from 0.48 (CD20) to 0.87 (AR).

Raw percent agreement between pathologist’s scores and dichotomized Definiens percent
positive ranged from moderate (Ki67, 58.6%) to perfect (CD163, 100%). Kappa statistics
were more modest, ranging from no agreement (IGF1R, kappa=0.07, 95% CI -0.02, 0.17)
to moderate (CD20, kappa=0.71, 95% CI 0.54, 0.89) (Table 4). Kappa values =0.35 were
observed for 6 of the 17 markers (ER, PR, CD20, CD8, FASN, pmTOR); kappa could not
be computed for 6 markers (IR, H3K27, RXR, CD163 (tumor and stroma), EPRS (tumor))
because all tumors were classified as positive using the Definiens percent positive data at
the cutpoints employed by the pathologists to assign positivity. We observed similar results
when we categorized the continuous Definiens percent positive for each core, finding that
that agreement between pathologist and Definiens assessments ranged from no agreement to
moderate (Supplementary Table 1). At the core level, correlations were similar in magnitude
across cores for all markers and the strength of the correlations was similar to that observed
at the case-level.

The overlap between pathologist classifications and Definiens percent positive varied by
marker (Figure 2). For some markers (ER, AR, IR, H3K27, RXR, CD163 in stroma), there
was substantial overlap of Definiens percent positive across pathologist-assigned categories.
For others (Ki67, CD8, CD20, FASN, IGF1R, pmTOR, PTEN), there was very little to no
overlap. To evaluate the predictive ability of the Definiens percent positive, using the binary
pathologist assessment as the gold standard, we constructed ROC curves for each marker
(Figure 3). The best performing markers were VDR, Ki67, CD20, CD8, FASN, IGF1R,
pmTOR, and PTEN (area under the curve (AUC) >0.9), while the worst performing was
RXR (AUC=0.541). For the remaining markers, the AUC was >0.7.

The correlation matrix for all markers, assessed by the pathologist (top) or Definiens
(bottom) is shown in Supplementary Table 2; in general, the markers we included were
weakly correlated, with stronger correlations observed between ER and PR (rho=0.66),
EPRS in tumor and stroma (rho=0.64), and CD20, CD8, and CD4 (rh0=0.46-0.59).
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4. Discussion

We observed moderate to strong correlations between Definiens and pathologist assessments
of immunoreactivity for most of the markers we analyzed. Kappa statistics between
pathologist’s scores and categorized Definiens percent positive ranged from no agreement
to moderate agreement, but for some markers, all tumors were categorized as positive using
the Definiens data, indicating that cutpoints for computationally derived data may require
marker-specific optimization.

For the clinically used breast tumor biomarkers, ER, PR, HER2, and Ki67, several studies
have examined correlations between automated systems and pathologist interpretations of
immunoreactivity. Camp et al. identified strong correlations between pathologist evaluations
of ER status and AQUA algorithms in 340 lymph node positive breast tumors (r=0.884),
and showed that the automated analysis had slightly better reproducibility (automated,
r=0.824; pathologist, r=0.732) [4]. Other groups have found similarly strong correlations
for ER and PR using automated algorithms designed with MatLab (ER, rho=0.74; PR,
rho=0.62) [5], Ariol (Leica Biosystems) (ER, rho=0.89; PR, rh0o=0.88) [10], and QuPath
(Queen’s University Belfast) (ER, rh0=0.892; PR, rh0=0.887) [11]. Strong agreement
between pathologist and automated evaluations of ER and PR obtained with QCA, Ariol,
TMALab Il (Aperio), and TMAX (Beecher Instruments) software (ER, kappa 0.75-0.91; PR,
kappa 0.65-0.91) [6,7,10,12] has also been demonstrated.

Kappa statistics to compare agreement between the HER2 HercepTest score and analysis
using the Ariol, TMALabll, and TMAX systems ranged from 0.53 (TMALabll) to 0.72
(Ariol/TMAX) [10,12]. For Ki67, moderate to strong associations have been observed
across multiple computational platforms (ImageJ, kappa=0.57; Ariol, kappa=0.64; Slidepath
Tissue 1A, kappa=0.70; Ventana Virtuoso, intraclass correlation coefficient=0.974; QuPath,
rho=0.729) [11,13-16].

In our data, we observed modest correlations for ER (rho=0.43) and stronger correlations
for PR (rho=0.66) and Ki67 (rho=0.79), which is broadly in line with the studies
previously discussed. When we dichotomized the continuous Definiens data using the same
cutpoints as the pathologist’s interpretations, we found generally weaker agreement with
the pathologist’s score (ER, kappa=0.36; PR, kappa=0.38; Ki67, kappa=0.23), which differs
from the previously discussed studies that observed generally stronger agreement. One
potential reason may be due to differences in the level of automation of the software used.
Definiens, for example, requires user input to train the software to automatically segregate
tumor and stromal regions. Following application of the training algorithm, no further input
from the user is required to define regions of interest (e.g., tumor cells) for analysis. Other
systems require manual annotation of regions of interest for all tumors, which could avoid
potentially problematic situations such as tissue folding or nonspecific staining.

Few studies have compared assessment methods for markers beyond ER, PR, HER2, and
Ki67 in breast cancer. Bolton et al. compared pathologist scoring of ERp (intensity and
percent staining) and aromatase (intensity only) to the percent staining and intensity values
obtained with Ariol, TMALab Il, and TMAX in 440 invasive breast tumors. Agreement with
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pathologist scores was excellent across automated systems for ERP (kappa 0.80-0.86), but
less strong for aromatase (TMALabll/TMAX, kappa 0.65-0.67; Ariol, kappa=0.41) [12].
Howat et al. compared pathologist scoring of epidermal growth factor receptor (EGFR) and
cytokeratins 5/6 (CK5/6) to that obtained using the Ariol system in 8 267 breast cancers
collected through the Breast Cancer Association Consortium. Both markers were manually
scored continuously based on the percent of positive cells as weak, intermediate, and strong
staining intensities. Moderate agreement was observed between pathologist and automated
assessments for both markers (EGFR, kappa=0.44; CK5/6, kappa=0.49) [10].

Comparisons specifically using Definiens software have been performed in prostate and
esophageal cancers, but to our knowledge, not in breast cancer. Braun et al. compared
pathologist scoring of ERG, SLC45A3, and TMPRSS2 in 630 prostate cancer cases to
automated assessments obtained from Definiens TissueStudio, finding strong correlations
between the two methods (ERG, rh0=0.94; SLC45A3, rh0=0.92; TMPRSS2, rh0o=0.90)
[17]. In 153 esophageal adenocarcinomas, Feuchtinger et al. compared pathologist scoring
of EGFR, pEGFR, p-catenin, E-cadherin, and HER2 to scores obtained from Definiens
Developer XD2 software, and observed strong correlations for all markers (EGFR, r=0.79;
PEGFR, r=0.89; p-catenin, r=0.71; E-cadherin, r=0.68; HER2, r=0.74) [18].

Apart from ER, PR, and Ki67, the markers we investigated have not been previously
examined in this capacity. However, our results are broadly in line with previous
studies[10,12,17,18], in that we observed moderate to strong correlations for many of the
markers we analyzed, including those with nuclear and cytoplasmic staining patterns in
tumor, stromal, and inflammatory cells.

We also calculated the AUC for each marker, using the binary positive/negative pathologist
score as the gold standard. In general, the Definiens-derived percent positive was able

to discriminate cases as well as the pathologist score for most markers, with AUC >0.8.
Previous studies have indicated near-perfect discrimination for ER, PR, and HER2 across
the Aperio, Ariol, TMAX, and QuPath systems (ER, AUC 0.96-1.00; PR, AUC 0.93-0.99;
HER2, AUC 0.93-0.97) and very strong discrimination for Ki67 using the QuPath system
(AUC 0.88) [10-12]. Performance using the nuclear algorithm developed in MatLab was
lower, however (ER, AUC=0.85; PR, AUC=0.74) [5].

In our group, Definiens algorithm development is iterative, and algorithms may be refined
several times before final release of data for analysis. Recently, we have begun incorporating
pathologist data into algorithm development to improve the quality of the data. However, the
biomarker data used in this study have been collected over many years and for the markers
we evaluated, pathologist data were not used in algorithm development. Our results therefore
speak to the need for fine-tuning of algorithms to better match pathologist evaluations.

More specific machine learning approaches, in conjunction with pathologist input, are likely
required to reduce the chance of misclassification in epidemiologic studies.

Strengths of our study include the use of tissues from a population-based, prospective cohort
study and the evaluation of multiple antibodies exhibiting different staining patterns. Use
of data collected within a population-based cohort allowed us to leverage real-world data
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collected across different pathology departments, with varying tissue processing protocols,
making our results more generalizable to a wider group of researchers. In our study,

we compared a semi-automated computational platform to pathologist assessments. Up

to 12 cores per stain were used for algorithm training. Given the variability inherent

in tumor tissue, this represents a potential limitation of the software as algorithms may

have misclassified regions due to insufficient training data. Because the Definiens platform
does not require manual annotation of regions by a trained reviewer following the initial
development of each stain’s algorithm, it is also possible that benign tissue, non-tumor cells,
or inappropriate regions (e.g., folded tissue, spurious staining) could have been included in
the quantitative percent positive. This potential misclassification is a limitation and could
have negatively affected the correlation and agreement with the pathologist’s assessment.
Pathologist scores were used as the gold standard in this analysis. Because the two

study pathologists evaluated different markers, we were unable to compare scores between
pathologists, and thus could not assess measurement error in the pathologist reports. Another
potential limitation is the small sample size for markers other than ER, PR, and AR, which
may affect the reliability of the results.

5. Conclusion

In our study, we compared pathologist to computational assessments across a wide

variety of immunohistochemical markers, including those with nuclear and cytoplasmic
staining and those staining tumor and stromal cell types. Our data indicate that, for some
markers, the Definiens semi-automated digital image analysis system can provide results
comparable to those obtained by an expert pathologist. The strength of the correlation
varied widely across markers, however. Pilot studies to examine the agreement between
pathologist and computational assessments are therefore critical, as agreement may be
dependent on the marker type, cellular compartment, or other parameters. Such pilot studies
may allow for fine-tuning of algorithms, which may be necessary to improve agreement
with pathologist’s evaluations prior to wider study implementation. Computational image
analysis is a promising approach for the evaluation of immunohistochemical data in
large-scale epidemiologic research. Computational evaluations for IHC can provide greater
efficiency for epidemiologic studies, allowing increases in the scope of assessments that may
not be feasible using manual review.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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EPRS glutamyl-prolyl-tRNA synthetase
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IGF1R insulin-like growth factor 1 receptor
IHC immunohistochemistry

IR insulin receptor

Ki67 marker of proliferation Ki-67
mTOR mammalian target of rapamycin
NHS Nurses’ Health Study

PR progesterone receptor

PTEN phosphatase and tensin homolog
ROC receiver operator characteristic
RXR retinoic acid receptor

TMA tissue microarray

VDR vitamin D receptor
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Highlights
. Computational methods to assess immunohistochemistry are often used in
epidemiology
. We compared Definiens output to pathologist scores for 17 markers in breast
cancer

. Correlations ranged from weak (RXR, rho = -0.05) to strong (Ki67, rho =

0.79)
. Avrea under the curve > 0.70 was observed for all markers except RXR
. Pilot studies are key; computational methods can aid high-throughput
analyses
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Figure 1. Representative images of immunohistochemical stains.

Representative images of each marker by pathologist-assigned category are shown.
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—YDR RIR (Y __CD163 tumor
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FASN GELR pmTOR FTEN

Figure 2. Definiens percent positive by pathologist-assigned category.
The distribution of Definiens percent positive by pathologist-assigned category. The overlap

between between pathologist-assigned category and Definiens percent positive varied by
marker, with some exhibiting substantial overlap (ER, AR, IR, H3K27, RXR, CD163

in stroma) and others exhibiting little or no overlap (Ki67, CD8, CD20, FASN, IGF1R,
pmTOR, PTEN). ER, PR, AR, IR, H3K27, VDR, RXR, CD163-tumor, EPRS, FASN,
IGF1R, pmTOR, PTEN: Left panel, negative; middle panel, low positive (1-10%); right
panel, positive (>10%). CD163-stroma: Left panel, low positive (1-10%); right panel,
positive (>10%). No cases were manually scored as negative. Ki67: Left panel, low
proliferation (£14%); right panel, high proliferation (>14%). CD20, CD8, CD4: Left panel,
low (<10%); middle panel, moderate (10-50%); right panel, high (>50%).
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Figure 3. Receiver-operator characteristic curves.
The binary pathologist assessment (any positive versus negative, high/moderate versus

(D163 Temor, AUC-H. 781

FASN, AUC-0.920

CD20, AXC-0.963

IR, A0 932

(D8, AIC0.907

PTOR, ALXC-0.95%

(D4, AUC-0. 807

PIEN, MICQ, 000

low, or >14% (the cutpoint for Ki67) was used as the gold standard. No ROC curve was
generated for CD163 in stroma because no cases were assigned negative by the pathologist.
The best performing markers were VDR, Ki67, CD20, CD8, FASN, IGF1R, pmTOR, and
PTEN (area under the curve (AUC) > 0.9), while the worst performing was RXR (AUC =
0.541). For the remaining markers, the AUC was above 0.7.
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