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Abstract

Background.—Pathologist and computational assessments have been used to evaluate 

immunohistochemistry (IHC) in epidemiologic studies. We compared Definiens Tissue Studio® 

to pathologist scores for 17 markers measured in breast tumor tissue microarrays (TMAs) [AR, 

CD20, CD4, CD8, CD163, EPRS, ER, FASN, H3K27, IGF1R, IR, Ki67, phospho-mTOR, PR, 

PTEN, RXR, and VDR].

Methods.—5 914 Nurses’ Health Study participants, diagnosed 1976–2006 (NHS) and 1989–

2006 (NHS-II), were included. IHC was conducted by the Dana-Farber/Harvard Cancer Center 

Specialized Histopathology Laboratory. The percent of cells staining positive was assessed by 

breast pathologists. Definiens output was used to calculate a weighted average of percent of 

cells staining positive across TMA cores for each marker. Correlations between pathologist and 

computational scores were evaluated with Spearman correlation coefficients. Receiver-operator 

characteristic curves were constructed, using pathologist scores as comparison.

Results.—Spearman correlations between pathologist and Definiens assessments ranged from 

weak (RXR, rho=−0.05; CD163, rho=0.10) to strong (Ki67, rho=0.79; pmTOR, rho=0.77). The 

area under the curve was >0.70 for all markers except RXR.

Conclusion.—Our data indicate that computational assessments exhibit variable correlations 

with interpretations made by an expert pathologist, depending on the marker evaluated. This study 

provides evidence supporting the use of computational platforms for IHC evaluation in large-scale 

epidemiologic studies, with the caveat that pilot studies are necessary to investigate agreement 

with expert assessments. In sum, computational platforms may provide greater efficiency and 

facilitate high-throughput epidemiologic analyses.
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1. Introduction

Immunohistochemistry (IHC) is frequently used to measure expression of putative 

biomarkers in tumor tissue microarrays (TMAs) constructed from formalin-fixed paraffin-

embedded (FFPE) tissue samples. An expert pathologist’s interpretation of IHC assays has 

generally been considered the gold standard in large-scale epidemiologic investigations. 

Often these manually assigned scores are semi-quantitative, incorporating both intensity and 

extent of immunoreactivity [1]. This approach is limited, however, in that it is expensive, 

time-consuming, reliant on subjective scoring parameters, and potentially prone to bias [2].
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An alternative strategy is to utilize computational platforms which, in theory, provide a more 

objective assessment of the extent and/or intensity of immunoreactivity [3]. Previous studies 

have generally demonstrated good agreement between pathologist- and computationally-

generated scores for estrogen receptor (ER), progesterone receptor (PR), and human 

epidermal growth factor receptor (HER2) [4–8]. However, whether this agreement extends to 

other biomarkers, including those exhibiting cytoplasmic staining and reactivity in stromal 

cells, is not well understood. Understanding the extent to which automated platforms concur 

with pathologist assessments can help in determining the appropriate analytic method to 

evaluate immunoreactivity, particularly in analyses using archival FFPE tissues.

In this study, we evaluated the performance of the semi-automated Definiens TissueStudio® 

platform compared to pathologist assessment of 17 markers measured in breast tumors 

collected nationally over several decades [AR (androgen receptor), CD20, CD4, CD8, and 

CD163, EPRS (glutamyl-prolyl-tRNA synthetase), ER (estrogen receptor), FASN (fatty acid 

synthase), H3K27 (histone 3 lysine 27 trimethylation), IGF1R (insulin-like growth factor 

1 receptor), IR (insulin receptor), Ki67 (marker of proliferation Ki-67), phospo-mTOR 

(phosphorylated mammalian target of rapamycin), PR (progesterone receptor), PTEN 

(phosphatase and tensin homolog), RXR (retinoic acid receptor), and VDR (vitamin D 

receptor)].

2. Materials and Methods

2.1 Study population.

The TMAs included in this study contain tissue from 5 914 participants of the Nurses’ 

Health Study (NHS) and Nurses’ Health Study II (NHS-II) who were diagnosed with in 
situ or invasive breast carcinomas between 1976–2006 (NHS) and 1989–2006 (NHS-II). 

Eligibility criteria and procurement of tumor tissue have previously been described in detail 

[9]. Briefly, tumor tissue was requested from pathology departments at hospitals treating 

NHS/NHS-II participants who have no history of cancer other than non-melanoma skin 

cancer prior to their breast cancer diagnosis. For each participant, three 0.6 mm tumor 

tissue cores were selected as representative of the tumor and placed into TMAs. This study 

protocol was approved by the institutional review boards of the Brigham and Women’s 

Hospital and Harvard T.H. Chan School of Public Health, and those of participating 

registries as required. Informed consent was obtained from all NHS and NHS-II participants.

2.2 Selection of tissue markers and immunohistochemistry.

We selected those markers for which IHC had previously been completed and for which 

both pathologist and automated scores were available. We sought to utilize the large amount 

of IHC data collected in the NHS/NHS-II cohorts and therefore we included both clinically 

useful (e.g., ER, PR) and investigational markers in our analysis. HER2 was not included as 

automated data was not available.

For ER, PR, and AR, both pathologist and automated scores were generated for the majority 

of cases. For the remaining markers, a single TMA was manually scored for comparison 

to the Definiens data. For IR, H3K27, RXR, VDR, and Ki67, the manually scored TMA 
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contained 159 cases. For CD163, CD20, CD8, CD4, EPRS, FASN, IGF1R, pmTOR, and 

PTEN, the manually scored TMA contained 132 cases. The markers evaluated in this study 

are expressed by tumor cells, stromal cells, and/or inflammatory cells, and exhibit either 

nuclear or cytoplasmic localization (see Table 1 for the cell type and localization evaluated 

for each marker). Staining of most markers was evaluated in tumor cells only, although 

for CD4, CD8, and CD20, staining of stromal lymphocytes was examined. Additionally, 

EPRS and CD163 were assessed separately in tumor and stromal cells. We excluded 182 

cases that were missing pathologist or Definiens data for all of the 17 markers. Missing 

data could be attributed to core loss during sectioning or staining, staining artifacts that 

obscure the evaluation of a core, tissue folding within a core, or lack of tumor cells in a core 

following sectioning. For ER, PR, and AR, comparisons between pathologist evaluation and 

computational assessment were made on this final dataset containing 4 673 cases from NHS 

and 1 241 cases from NHS-II. For all other markers, comparisons were made for 159 cases 

(IR, H3K27, RXR, VDR, Ki67) or 132 cases (CD163, CD20, CD8, CD4, EPRS, FASN, 

IGF1R, pmTOR, PTEN), because only one TMA was evaluated by the pathologist for those 

markers.

IHC assays were performed on 5-μm sections using standard protocols and commercially 

sourced antibodies (Table 1). 3,3’-diaminobenzidine was used as the chromogen and all 

slides were counterstained with hematoxylin. Appropriate positive and negative controls 

were included in all IHC experiments. IHC protocols were carried out using a Dako 

Autostainer (Dako Corporation, Carpinteria, CA, USA) at the Dana-Farber/Harvard Cancer 

Center Specialized Histopathology Laboratory, Boston, MA, USA. ER, PR, AR, H3K27, 

RXR, and PTEN were stained in multiple batches; all other markers were stained in a single 

batch. Batch was included as a covariate in downstream analyses. TMAs were digitized at 

40x magnification using the Panoramic SCAN 150 whole slide scanner (3DHISTECH Ltd., 

Budapest, Hungary).

2.3 Pathologist review.

Immunoreactivity was manually assessed by expert breast pathologists (L.C.C. or G.M.B.) 

in the Department of Pathology at Beth Israel Deaconess Medical Center. For CD4, 

CD8, and CD20, each core was scored according to the percentage of the stromal 

region containing lymphocytes expressing the marker, using the categories of low (<10%), 

moderate (10–50%), and high (>50%). Ki67 was scored continuously as the percentage of 

positive cells. For the remaining markers, each core was scored according to the percentage 

of cells expressing the protein, using the categories of negative, low positive (1–10%), and 

positive (>10%). Cases were classified as negative or low if all evaluable cores were scored 

negative or low, low positive or moderate if at least one core was scored low positive or 

moderate (but none scored positive or high), and positive or high if at least one core was 

scored positive or high. We secondarily defined cases using the average of pathologist’s 

scores across a participant’s cores.

2.4 Semi-automated scoring.

Semi-automated scores were generated using the Definiens TissueStudio® (Definiens AG, 

Munich, Germany) computational pathology system. This software requires the user (Y.J.H. 
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and M.E.P.) to first create an algorithm for each stain. To create these algorithms, 12 random 

cores were chosen on one TMA for each stain, per the manufacturer’s instructions. Regions 

of interest were annotated and used to train Definiens to recognize nuclei, tumor and stromal 

regions, and to optimize the stain detection threshold. The stain-specific algorithms are then 

applied to the raw TMA images to quantify staining, without further manual annotation of 

individual tissue cores. The representative training TMAs were included in the study set.

For each marker, the number of cells or nuclei staining positive were summed across 

a participant’s cores and divided by the sum of the total number of cells/nuclei present 

across each participant’s cores. This quantity was then multiplied by 100 to generate a 

weighted average percent positive for each participant. We excluded participants with <100 

cells/nuclei across evaluable cores.

Weighted average percent positive = (# positive cells, core 1 + # positive cells, core 2, + # 

positive cells, core 3) / (total # cells, core 1 + total # cells, core 2 + total # cells, core 3) * 

100

2.5 Statistical analysis.

For each marker, we calculated Spearman’s rank-order correlation coefficients between 

the continuous percent positive obtained from Definiens and both case-level pathologist 

definitions (ordinal and average pathologist assessments). In addition, we calculated 

Spearman’s correlation coefficients between the Definiens percent positive and pathologist 

score for each core. For the Definiens data, we calculated intraclass correlation coefficients 

across cores. For the pathologist data, Fleiss’ kappa coefficients were calculated for 

all markers except Ki67, for which the intraclass correlation coefficient was computed. 

Raw percent agreement and Cohen’s kappa coefficients were calculated to evaluate 

agreement between the pathologist and Definiens assessments at the core and case level, 

by categorizing the Definiens percent positive using the same cutpoints as the pathologist 

interpretation.

To assess the sensitivity and specificity of the Definiens-derived percent positive, we 

generated receiver-operator characteristic (ROC) curves using the pathologist assessment 

for each marker as the gold standard. Pathologist assessments were collapsed into positive 

and negative cases, where positive included low positive and positive, or moderate and high, 

according to the marker analyzed.

3. Results

Representative images of all immunohistochemical markers by pathologist-assigned 

category are shown in Figure 1. Mean age at diagnosis and selected tumor characteristics 

for participants in both cohorts are shown in Table 2. In both cohorts, most participants 

were diagnosed with stage I and II, node negative tumors. Roughly half of participants were 

diagnosed with moderately differentiated tumors.

Spearman correlations between pathologist and Definiens assessments are shown in Table 

3, and ranged from weak (RXR, rho=−0.05; CD163 in stroma, rho=0.10) to strong (Ki67, 
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rho=0.79; pmTOR, rho=0.77). Correlations were ≥0.55 for 10 of the 17 markers analyzed 

(PR, IR, Ki67, CD163 (tumor), CD20, CD8, EPRS (tumor), IGF1R, pmTOR, and PTEN). 

There were no appreciable differences in the strength of the correlations when we used the 

average case definition (average of pathologist’s scores across cores) versus the categorical 

case definition (cases classified as negative/low positive/positive or low/moderate/high). We 

observed modest correlations for both ER (rho=0.43, categorical; rho=0.46, average) and PR 

(rho=0.66, categorical; rho=0.70, average). In general, we found that the mean Definiens 

percent positive was highest among cases classified by the pathologist as positive, and 

lowest among those classified as negative (Table 3). One notable exception is RXR, for 

which the mean percent positive was 93%, independent of the pathologist’s classification. 

Agreement across cores was generally good: for pathologist scores, Fleiss’ kappa ranged 

from 0.64 (EPRS in stroma) to 0.83 (H3K27), while for Definiens percent positive, 

intraclass correlation coefficients ranged from 0.48 (CD20) to 0.87 (AR).

Raw percent agreement between pathologist’s scores and dichotomized Definiens percent 

positive ranged from moderate (Ki67, 58.6%) to perfect (CD163, 100%). Kappa statistics 

were more modest, ranging from no agreement (IGF1R, kappa=0.07, 95% CI −0.02, 0.17) 

to moderate (CD20, kappa=0.71, 95% CI 0.54, 0.89) (Table 4). Kappa values ≥0.35 were 

observed for 6 of the 17 markers (ER, PR, CD20, CD8, FASN, pmTOR); kappa could not 

be computed for 6 markers (IR, H3K27, RXR, CD163 (tumor and stroma), EPRS (tumor)) 

because all tumors were classified as positive using the Definiens percent positive data at 

the cutpoints employed by the pathologists to assign positivity. We observed similar results 

when we categorized the continuous Definiens percent positive for each core, finding that 

that agreement between pathologist and Definiens assessments ranged from no agreement to 

moderate (Supplementary Table 1). At the core level, correlations were similar in magnitude 

across cores for all markers and the strength of the correlations was similar to that observed 

at the case-level.

The overlap between pathologist classifications and Definiens percent positive varied by 

marker (Figure 2). For some markers (ER, AR, IR, H3K27, RXR, CD163 in stroma), there 

was substantial overlap of Definiens percent positive across pathologist-assigned categories. 

For others (Ki67, CD8, CD20, FASN, IGF1R, pmTOR, PTEN), there was very little to no 

overlap. To evaluate the predictive ability of the Definiens percent positive, using the binary 

pathologist assessment as the gold standard, we constructed ROC curves for each marker 

(Figure 3). The best performing markers were VDR, Ki67, CD20, CD8, FASN, IGF1R, 

pmTOR, and PTEN (area under the curve (AUC) >0.9), while the worst performing was 

RXR (AUC=0.541). For the remaining markers, the AUC was >0.7.

The correlation matrix for all markers, assessed by the pathologist (top) or Definiens 

(bottom) is shown in Supplementary Table 2; in general, the markers we included were 

weakly correlated, with stronger correlations observed between ER and PR (rho=0.66), 

EPRS in tumor and stroma (rho=0.64), and CD20, CD8, and CD4 (rho=0.46–0.59).
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4. Discussion

We observed moderate to strong correlations between Definiens and pathologist assessments 

of immunoreactivity for most of the markers we analyzed. Kappa statistics between 

pathologist’s scores and categorized Definiens percent positive ranged from no agreement 

to moderate agreement, but for some markers, all tumors were categorized as positive using 

the Definiens data, indicating that cutpoints for computationally derived data may require 

marker-specific optimization.

For the clinically used breast tumor biomarkers, ER, PR, HER2, and Ki67, several studies 

have examined correlations between automated systems and pathologist interpretations of 

immunoreactivity. Camp et al. identified strong correlations between pathologist evaluations 

of ER status and AQUA algorithms in 340 lymph node positive breast tumors (r=0.884), 

and showed that the automated analysis had slightly better reproducibility (automated, 

r=0.824; pathologist, r=0.732) [4]. Other groups have found similarly strong correlations 

for ER and PR using automated algorithms designed with MatLab (ER, rho=0.74; PR, 

rho=0.62) [5], Ariol (Leica Biosystems) (ER, rho=0.89; PR, rho=0.88) [10], and QuPath 

(Queen’s University Belfast) (ER, rho=0.892; PR, rho=0.887) [11]. Strong agreement 

between pathologist and automated evaluations of ER and PR obtained with QCA, Ariol, 

TMALab II (Aperio), and TMAx (Beecher Instruments) software (ER, kappa 0.75–0.91; PR, 

kappa 0.65–0.91) [6,7,10,12] has also been demonstrated.

Kappa statistics to compare agreement between the HER2 HercepTest score and analysis 

using the Ariol, TMALabII, and TMAx systems ranged from 0.53 (TMALabII) to 0.72 

(Ariol/TMAx) [10,12]. For Ki67, moderate to strong associations have been observed 

across multiple computational platforms (ImageJ, kappa=0.57; Ariol, kappa=0.64; Slidepath 

Tissue IA, kappa=0.70; Ventana Virtuoso, intraclass correlation coefficient=0.974; QuPath, 

rho=0.729) [11,13–16].

In our data, we observed modest correlations for ER (rho=0.43) and stronger correlations 

for PR (rho=0.66) and Ki67 (rho=0.79), which is broadly in line with the studies 

previously discussed. When we dichotomized the continuous Definiens data using the same 

cutpoints as the pathologist’s interpretations, we found generally weaker agreement with 

the pathologist’s score (ER, kappa=0.36; PR, kappa=0.38; Ki67, kappa=0.23), which differs 

from the previously discussed studies that observed generally stronger agreement. One 

potential reason may be due to differences in the level of automation of the software used. 

Definiens, for example, requires user input to train the software to automatically segregate 

tumor and stromal regions. Following application of the training algorithm, no further input 

from the user is required to define regions of interest (e.g., tumor cells) for analysis. Other 

systems require manual annotation of regions of interest for all tumors, which could avoid 

potentially problematic situations such as tissue folding or nonspecific staining.

Few studies have compared assessment methods for markers beyond ER, PR, HER2, and 

Ki67 in breast cancer. Bolton et al. compared pathologist scoring of ERβ (intensity and 

percent staining) and aromatase (intensity only) to the percent staining and intensity values 

obtained with Ariol, TMALab II, and TMAx in 440 invasive breast tumors. Agreement with 
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pathologist scores was excellent across automated systems for ERβ (kappa 0.80–0.86), but 

less strong for aromatase (TMALabII/TMAx, kappa 0.65–0.67; Ariol, kappa=0.41) [12]. 

Howat et al. compared pathologist scoring of epidermal growth factor receptor (EGFR) and 

cytokeratins 5/6 (CK5/6) to that obtained using the Ariol system in 8 267 breast cancers 

collected through the Breast Cancer Association Consortium. Both markers were manually 

scored continuously based on the percent of positive cells as weak, intermediate, and strong 

staining intensities. Moderate agreement was observed between pathologist and automated 

assessments for both markers (EGFR, kappa=0.44; CK5/6, kappa=0.49) [10].

Comparisons specifically using Definiens software have been performed in prostate and 

esophageal cancers, but to our knowledge, not in breast cancer. Braun et al. compared 

pathologist scoring of ERG, SLC45A3, and TMPRSS2 in 630 prostate cancer cases to 

automated assessments obtained from Definiens TissueStudio, finding strong correlations 

between the two methods (ERG, rho=0.94; SLC45A3, rho=0.92; TMPRSS2, rho=0.90) 

[17]. In 153 esophageal adenocarcinomas, Feuchtinger et al. compared pathologist scoring 

of EGFR, pEGFR, β-catenin, E-cadherin, and HER2 to scores obtained from Definiens 

Developer XD2 software, and observed strong correlations for all markers (EGFR, r=0.79; 

pEGFR, r=0.89; β-catenin, r=0.71; E-cadherin, r=0.68; HER2, r=0.74) [18].

Apart from ER, PR, and Ki67, the markers we investigated have not been previously 

examined in this capacity. However, our results are broadly in line with previous 

studies[10,12,17,18], in that we observed moderate to strong correlations for many of the 

markers we analyzed, including those with nuclear and cytoplasmic staining patterns in 

tumor, stromal, and inflammatory cells.

We also calculated the AUC for each marker, using the binary positive/negative pathologist 

score as the gold standard. In general, the Definiens-derived percent positive was able 

to discriminate cases as well as the pathologist score for most markers, with AUC >0.8. 

Previous studies have indicated near-perfect discrimination for ER, PR, and HER2 across 

the Aperio, Ariol, TMAx, and QuPath systems (ER, AUC 0.96–1.00; PR, AUC 0.93–0.99; 

HER2, AUC 0.93–0.97) and very strong discrimination for Ki67 using the QuPath system 

(AUC 0.88) [10–12]. Performance using the nuclear algorithm developed in MatLab was 

lower, however (ER, AUC=0.85; PR, AUC=0.74) [5].

In our group, Definiens algorithm development is iterative, and algorithms may be refined 

several times before final release of data for analysis. Recently, we have begun incorporating 

pathologist data into algorithm development to improve the quality of the data. However, the 

biomarker data used in this study have been collected over many years and for the markers 

we evaluated, pathologist data were not used in algorithm development. Our results therefore 

speak to the need for fine-tuning of algorithms to better match pathologist evaluations. 

More specific machine learning approaches, in conjunction with pathologist input, are likely 

required to reduce the chance of misclassification in epidemiologic studies.

Strengths of our study include the use of tissues from a population-based, prospective cohort 

study and the evaluation of multiple antibodies exhibiting different staining patterns. Use 

of data collected within a population-based cohort allowed us to leverage real-world data 
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collected across different pathology departments, with varying tissue processing protocols, 

making our results more generalizable to a wider group of researchers. In our study, 

we compared a semi-automated computational platform to pathologist assessments. Up 

to 12 cores per stain were used for algorithm training. Given the variability inherent 

in tumor tissue, this represents a potential limitation of the software as algorithms may 

have misclassified regions due to insufficient training data. Because the Definiens platform 

does not require manual annotation of regions by a trained reviewer following the initial 

development of each stain’s algorithm, it is also possible that benign tissue, non-tumor cells, 

or inappropriate regions (e.g., folded tissue, spurious staining) could have been included in 

the quantitative percent positive. This potential misclassification is a limitation and could 

have negatively affected the correlation and agreement with the pathologist’s assessment. 

Pathologist scores were used as the gold standard in this analysis. Because the two 

study pathologists evaluated different markers, we were unable to compare scores between 

pathologists, and thus could not assess measurement error in the pathologist reports. Another 

potential limitation is the small sample size for markers other than ER, PR, and AR, which 

may affect the reliability of the results.

5. Conclusion

In our study, we compared pathologist to computational assessments across a wide 

variety of immunohistochemical markers, including those with nuclear and cytoplasmic 

staining and those staining tumor and stromal cell types. Our data indicate that, for some 

markers, the Definiens semi-automated digital image analysis system can provide results 

comparable to those obtained by an expert pathologist. The strength of the correlation 

varied widely across markers, however. Pilot studies to examine the agreement between 

pathologist and computational assessments are therefore critical, as agreement may be 

dependent on the marker type, cellular compartment, or other parameters. Such pilot studies 

may allow for fine-tuning of algorithms, which may be necessary to improve agreement 

with pathologist’s evaluations prior to wider study implementation. Computational image 

analysis is a promising approach for the evaluation of immunohistochemical data in 

large-scale epidemiologic research. Computational evaluations for IHC can provide greater 

efficiency for epidemiologic studies, allowing increases in the scope of assessments that may 

not be feasible using manual review.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Computational methods to assess immunohistochemistry are often used in 

epidemiology

• We compared Definiens output to pathologist scores for 17 markers in breast 

cancer

• Correlations ranged from weak (RXR, rho = −0.05) to strong (Ki67, rho = 

0.79)

• Area under the curve > 0.70 was observed for all markers except RXR

• Pilot studies are key; computational methods can aid high-throughput 

analyses
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Figure 1. Representative images of immunohistochemical stains.
Representative images of each marker by pathologist-assigned category are shown.
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Figure 2. Definiens percent positive by pathologist-assigned category.
The distribution of Definiens percent positive by pathologist-assigned category. The overlap 

between between pathologist-assigned category and Definiens percent positive varied by 

marker, with some exhibiting substantial overlap (ER, AR, IR, H3K27, RXR, CD163 

in stroma) and others exhibiting little or no overlap (Ki67, CD8, CD20, FASN, IGF1R, 

pmTOR, PTEN). ER, PR, AR, IR, H3K27, VDR, RXR, CD163-tumor, EPRS, FASN, 

IGF1R, pmTOR, PTEN: Left panel, negative; middle panel, low positive (1–10%); right 

panel, positive (>10%). CD163-stroma: Left panel, low positive (1–10%); right panel, 

positive (>10%). No cases were manually scored as negative. Ki67: Left panel, low 

proliferation (≤14%); right panel, high proliferation (>14%). CD20, CD8, CD4: Left panel, 

low (<10%); middle panel, moderate (10–50%); right panel, high (>50%).
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Figure 3. Receiver-operator characteristic curves.
The binary pathologist assessment (any positive versus negative, high/moderate versus 

low, or >14% (the cutpoint for Ki67) was used as the gold standard. No ROC curve was 

generated for CD163 in stroma because no cases were assigned negative by the pathologist. 

The best performing markers were VDR, Ki67, CD20, CD8, FASN, IGF1R, pmTOR, and 

PTEN (area under the curve (AUC) > 0.9), while the worst performing was RXR (AUC = 

0.541). For the remaining markers, the AUC was above 0.7.
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