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A B S T R A C T   

This research develops machine learning models equipped with interpretation modules for mortality risk pre
diction and stratification in cohorts of hospitalised coronavirus disease-2019 (COVID-19) patients with and 
without diabetes mellitus (DM). To this end, routinely collected clinical data from 156 COVID-19 patients with 
DM and 349 COVID-19 patients without DM were scrutinised. First, a random forest classifier forecasted in- 
hospital COVID-19 fatality utilising admission data for each cohort. For the DM cohort, the model predicted 
mortality risk with the accuracy of 82%, area under the receiver operating characteristic curve (AUC) of 80%, 
sensitivity of 80%, and specificity of 56%. For the non-DM cohort, the achieved accuracy, AUC, sensitivity, and 
specificity were 80%, 84%, 91%, and 56%, respectively. The models were then interpreted using SHapley Ad
ditive exPlanations (SHAP), which explained predictors’ global and local influences on model outputs. Finally, 
the k-means algorithm was applied to cluster patients on their SHAP values. The algorithm demarcated patients 
into three clusters. Average mortality rates within the generated clusters were 8%, 20%, and 76% for the DM 
cohort, 2.7%, 28%, and 41.9% for the non-DM cohort, providing a functional method of risk stratification.   

1. Introduction 

Diabetes mellitus (DM) was identified as a risk factor for coronavirus 
disease-2019 (COVID-19) shortly after the spread of the new disease 
[1–3]. Later, it was argued that DM comorbidity was a leading cause of 
death in people hospitalised for COVID-19 [4]. 

These realisations spurred efforts towards assessing COVID-19 mor
tality risk in people with DM. For example, Sourij et al. investigated the 
predictors of in-hospital COVID-19 mortality in patients with DM, fol
lowed by the development of a risk score for predicting fatal outcomes 
[5]. Furthermore, in another study, Ciardullo et al. reported that DM 
was independently associated with increased in-hospital COVID-19 
mortality using multivariable logistic regression to evaluate the effect of 
DM on COVID-19 mortality [6]. 

Due to these efforts, the COVID-19 susceptibility of DM patients and 
the need for more intensive surveillance in hospitalised COVID-19 pa
tients with DM have been well documented. However, additional 
research is underway to determine the cause of this vulnerability, which 

has remained a global healthcare challenge [7]. 
One strategy for elucidating the increased vulnerability of COVID-19 

patients with DM is to conduct observational studies on defined pop
ulations of COVID-19 patients with and without DM [8]. Such studies 
aim to identify distinctive characteristics of COVID-19 patients with DM, 
thereby advancing our understanding of their increased vulnerability. In 
this respect, several comparative risk assessment studies in COVID-19 
patients with and without DM have been conducted [8–10]. These 
studies effectively distinguished risk predictions and risk factors for 
COVID-19 patients with and without DM, primarily through standard 
statistical analysis. 

Machine learning (ML), as a complementary data analysis tool, 
possesses significant power in discriminating outcomes due to the 
capability to discover complex correlated interactions [11]. ML algo
rithms have demonstrated efficacy in COVID-19 risk assessment 
research [12–14]. For instance, Gao et al. developed an ensemble model 
to efficiently forecast deterioration and death for COVID-19 patients up 
to 20 days ahead of time [15]. This evidence supports further explora
tion of advanced ML techniques in observational studies of COVID-19 
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patients with and without DM. 
A concern with ML methods in healthcare applications is the black- 

box nature of these methods, in which the process of generating a spe
cific outcome is unclear [16]. In this context, incorporating interpreta
tion frameworks could further promote the adoption of an ML method 
designed to combat COVID-19. These frameworks increase analysis 
transparency and provide results beyond the domain of classical data 
analysis approaches, e.g., individualised explanations versus generic 
descriptions [17]. 

The use of SHapley Additive exPlanations (SHAP) is an elaborate 
approach in increasing the transparency of ML models. SHAP is a game- 
theoretic model agnostic technique that can interpret ML models’ out
puts by integrating optimal credit allocation with local explanations 
using the classical Shapley values from cooperative game theory [18]. 
The resulting SHAP values denote the deviation from the average pre
diction when conditioning on a particular feature, elucidating the in
fluence of individual attributes on the model’s outputs [18]. 

SHAP analysis transforms and scales the features. This conversion 
enables the formation of meaningful clusters based on explainable 
similarities. SHAP clustering, as an extension of the original SHAP 
analysis, partitions data points into groups based upon their SHAP 
values [19]. 

ML models equipped with SHAP have been considered in previous 
risk assessment research on DM patients [20] as well as COVID-19 pa
tients [21–23]. Specifically, after shortlisting eight out of 100 collated 
variables, Pan et al. developed SHAP-incorporated ML models for 
prognosis assessment of COVID-19 patients hospitalised in intensive 
care units [23]. 

In this research, first, a model was created for each cohort utilising 
the random forest (RF) classifier to predict COVID-19 outcomes (death 
or survival) from admission characteristics. Following that, the outputs 
of the models were explained globally and locally using SHAP. The most 
predictive features for each cohort were then identified and rated based 
on the interpretation results. Finally, patients were clustered according 
to their SHAP values to form a risk stratification. The main contributions 
of the work encompass:  

• Developing ML models for in-hospital mortality risk assessment of 
DM and non-DM COVID-19 patients;  

• Incorporating an interpretation module into the developed models, 
explaining significant distinctions of the two cohorts;  

• Examining the capability of SHAP clustering for risk stratification of 
COVID-19 patients with and without DM. 

2. Material and methods 

Advanced machine learning techniques were employed for mortality 
risk prediction and stratification of hospitalised COVID-19 patients with 
and without DM. After cleaning and preprocessing the data, predictive 

features were determined for each cohort. Then, an RF classifier was 
assigned to predict admission outcomes for each cohort using the 
selected features. In the next step, SHAP explained classifiers’ outputs at 
a global and local level. Finally, a k-means algorithm studied generated 
SHAP values, resulting in the formation of clusters useful in risk 
assessment practice. For the analysis, we coded in Python (3.6.7); 
Pandas, NumPy and Sklearn, and shap 0.39.0 packages were also used. 
The dataset used and the details of how the methodologies were 
implemented are described in this section. The work was approved by 
the East-Midlands-Leicester South Research Ethics Committee (20/EM/ 
0145). 

2.1. Clinical data 

This research developed and evaluated models for mortality risk 
assessment using demographic, clinical, and laboratory data from 505 
participants with confirmed COVID-19. Of the 505 participants, 156 had 
DM (type 1: 13, type 2: 143). The patients were admitted at Sheffield 
Teaching Hospitals, Sheffield, UK, between February 29, 2020 and May 
01, 2020, coinciding with the first COVID-19 wave in the UK. A 
comprehensive description of the dataset alongside a detailed explana
tion of the data collection process can be found in Ref. [9]. In line with 
previous COVID-19 research on individuals with DM [9], in this study, 
patients with type 1 and type 2 DM were combined in one cohort (DM 
cohort) and those without diabetes in another cohort (non-DM cohort). 
Table 1 summarises admission outcomes for DM and non-DM cohorts. 

As this work assessed COVID-19 mortality, 15 individuals, who died 
due to causes other than COVID-19, were excluded from the remainder 
of the analysis. Based on the table, the COVID-19 death ratio was higher 
for the DM cohort (51/156) than in the non-DM cohort (77/349), 
correlating with existing evidence that people with DM are at an 
increased risk of COVID-19-related mortality [4]. 

Table 2 and Table 3 summarise the attributes collected at the point of 
hospital admission for both DM and non-DM cohorts. A comprehensive 
statistical analysis of the data presented in the table can be found in 
Ref. [9]. The current study leverages ML techniques to determine 
in-hospital COVID-19 mortality risk. 

The two categorical variables NLRL (neutrophils-lymphocytes ratio 
labelled) and APTTL (activated partial thromboplastin time labelled), 
shown in Table 3, were created and added to the feature set by binning 

Abbreviations 

ALT alanine transaminase 
ALPO4 alkaline phosphates 
APTT activated partial thromboplastin time 
APTTL activated partial thromboplastin time labelled 
AUC area under the receiver operating characteristic curve 
BMI body mass index 
CLD COPD chronic obstructive pulmonary disease 
COVID-19 coronavirus disease-2019 
CRP c-reactive protein 
DM diabetes mellitus 
eGFR estimated glomerular filtration rate 

Hb haemoglobin 
HF heart failure 
IHD ischemic heart disease 
K potassium 
ML machine learning 
Na sodium 
NLRL neutrophils-lymphocytes ratio labelled 
PBC positive blood culture 
PT prothrombin time 
RF random forest 
SHAP SHapley Additive exPlanations 
TIA transient ischemic attack 
WCC white cell count  

Table 1 
Summary of admission outcomes for DM (diabetes mellitus) and non-DM 
cohorts.  

Outcome of admission DM cohort Non-DM cohort 

COVID-19 mortality 51 77 
Non-COVID-19 mortality 3 12 
Survival from COVID-19 102 260  
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corresponding numerical variables. A previous study confirmed the as
sociation between these two characteristics and in-hospital COVID-19 
mortality in DM patients [9]. For generating the NLRL feature, NLR 
values less than eight were labelled as ‘low’, while those greater than 
eight were labelled as ‘high’. Similarly, for APTTL, APTT values less than 
24s were classified as ‘low’, while those greater than 24s were classified 
as ‘high’. 

2.2. Data cleaning 

A data cleaning process was considered to exclude entries with a high 
missingness rate. A 50% inclusion criterion was determined, and thus 
individuals with a missingness rate of more than 50% in their features 
and features missing in more than 50% of individuals were excluded 
from the analysis. As a result, 13 patients, four with and nine without 
DM, and two features, ferritin and D-dimer, did not meet the inclusion 
criteria. Thus, with the 15 individuals who died from non-COVID-19 
causes, a total of 28 individuals were excluded. As a result, 40 fea
tures from 477 participants, 149 with and 328 without DM, were used in 
the subsequent analysis. 

2.3. Train test split 

After cleaning the dataset, a stratified random sampling approach 
was employed to perform a 70–30 train test split, considering the un
balanced distribution of classes. For each cohort, 70% of death cases 
plus 70% of survival cases were selected at random and allocated as the 
training set, and the remaining 30% of death and survival cases were 
allocated as the testing set. Table 4 summarises the train test split results 
for the DM and non-DM cohorts. All model training and hyperparameter 
tuning operations were carried out on training sets only, with testing sets 

remaining unseen for evaluation and model interpretation analysis. 

2.4. Data preprocessing 

2.4.1. Outliers treatment 
The first preprocessing step considered was dealing with outliers to 

prevent models from being significantly influenced by extreme values of 
numerical features. Therefore, the winsorisation technique was 
employed to limit extreme values of numerical features to the lower and 
upper boundaries of the 5th and 95th percentiles of the training set, 
respectively. 

Table 2 
Numerical baseline clinical characteristics of DM (diabetes mellitus) and non- 
DM cohorts before hospitalisation for COVID-19.  

Feature Mean standard deviation 

DM Non-DM 

Frailty score A 5.2 ± 1.8 4.2 ± 2.3 
Age (yrs) 71.8 ± 14.9 68.6 ± 18.1 
BMI (kg/m2) 29.2 ± 8.5 26.9 ± 7.1 
Hb (g/l) 122.1 ± 20.9 130.1 ± 21.5 
WCC (g/l) 9.2 ± 5.1 8.1 ± 4.5 
Neutrophils (109/l) 7.1 ± 4.6 6.2 ± 4.1 
Lymphocytes (109/l) 1.3 ± 1.9 1.2 ± 1.0 
Monocytes (109/l) 0.7 ± 0.4 0.6 ± 0.4 
Platelets (1/ml) 240.1 ± 106.6 224.8 ± 85.0 
Na (mmol/l) 135.2 ± 3.9 136.8 ± 4.6 
K (mmol/l) 3.8 ± 1.9 3.7 ± 1.5 
Urea (mmol/l) 11.6 ± 7.4 8.2 ± 5.9 
Creatinine (μmol/l) 188.4 ± 206.7 114.5 ± 114.5 
eGFR(1.73 ml.m2/min) 43.2 ± 23.6 27.3 ± 22.7 
Bilirubin (μmol/l) 9.7 ± 5.9 12.5 ± 15.9 
ALT (u/l) 27.1 ± 27.9 39.5 ± 121.6 
Total protein (g/l) 68.3 ± 6.4 68.1 ± 7.3 
ALPO4 (g/l) 101.8 ± 62.8 97.7 ± 111.5 
Albumin (g/l) 36.8 ± 4.6 38.7 ± 5.1 
CRP (mg/dl) 100.3 ± 99.6 82.2 ± 89.2 
Procalcitonin (μg/l) 0.7 ± 1.8 1.4 ± 7.7 
Ferritin (μg/l) 863.7 ± 1620 834.6 ± 1080 
PT(s) 13.5 ± 7.7 11.9 ± 2.3 
Fibrinogen (g/l) 5.7 ± 1.2 5.2 ± 1.4 
D-dimer (μg/l) 3281 ± 6029 4160 ± 8135 
APTT (S) 29.5 ± 14.5 25.9 ± 4.7 

F: Frailty measured by Rockwood score; mild (1–3), moderate (4–6), and severe 
(7–9). 
Note. BMI body mass index; Hb haemoglobin; WCC white cell count; Na sodium; 
K potassium; eGFR estimated glomerular filtration rate; ALT alanine trans
aminase; ALPO4 alkaline phosphates; CRP c-reactive protein; PT prothrombin 
time; APTT activated partial thromboplastin time. 

Table 3 
Categorical baseline clinical characteristics of DM (diabetes mellitus) and non- 
DM cohorts before hospitalisation for COVID-19.  

Feature Category Frequency a 

DM Non-DM 

Sex Male 61 57 
Female 39 43 

Ethnicity b White 81 88 
Other 19 12 

Smoking status c Non-smoker 45 43 
(ex-)smoker 55 57 

IHD Yes 33 17 
No 67 83 

Stroke/TIA Yes 25 15 
No 75 85 

Haemodialysis Yes 12 2 
No 88 98 

Asthma Yes 10 11 
No 90 89 

COPD Yes 15 15 
No 85 85 

Hypertension Yes 62 60 
No 38 40 

HF Yes 28 12 
No 72 88 

CLD Yes 1 1 
No 99 99 

Malignant neoplasm Yes 14 22 
No 86 78 

Dementia Yes 16 15 
No 84 85 

PBC Yes 14 14 
No 86 86 

NLRL d High 36 30 
Low 64 70 

APTTL e High 25 35 
Low 75 65 

Note. IHD ischemic heart disease; TIA transient ischemic attack; COPD chronic 
obstructive pulmonary disease; HF heart failure; CLD chronic liver disease; PBC 
positive blood culture; NLRL neutrophils-lymphocytes ratio labelled; APTTL 
activated partial thromboplastin time labelled. 

a Percentage population within the category. 
b For simplicity, ethnicities other than the dominant white category were 

united as ‘other’. 
c Smoker and ex-smoker status were unified as ‘(ex-)smoker’. 
d ‘low’ for NLR<8, ‘high’ for NLR >8. 
e ‘low’ for APTT <24s, ‘high’ for APTT >24s. 

Table 4 
Summary characteristics of the training set and testing set of DM (diabetes 
mellitus) and non-DM cohorts.    

DM cohort Non-DM cohort 

Training set Dead 36 54 
Survived 68 175 
Total 104 229 

Testing set Dead 15 23 
Survived 30 76 
Total 45 99  
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2.4.2. Feature values transformation 
The following preprocessing step was converting feature values to a 

format suitable for analysis by ML algorithms. Hence, numerical features 
were standardised by subtracting the average of the training set from 
each feature value and then scaling to unit variance by dividing the 
result by the standard deviation of the training set. Additionally, cate
gorical variables were transformed to numeric values using the one-hot- 
encoding technique. One dummy variable was obtained from two cat
egories by dropping the first level. This curtailment may help avert the 
dummy variable trap by avoiding an unnecessary increase in the feature 
set size.1 

2.4.3. Missing values imputation 
After converting feature values, missing values were replaced with 

predictions from k-nearest neighbour imputation, an algorithm 
compatible with both continuous and categorical features [24] as pre
sented in the data used in this work. With five as the number of neigh
bours, for a given data point, the algorithm found the five most similar 
data points in the training set using non-missing values, and each 
missing value was filled with the average values of the five considered 
neighbours. 

2.4.4. Oversampling 
The final stage of preprocessing addressed two imbalance issues in 

the dataset. One imbalance condition was that, as shown in Table 4, in 
the training set of both cohorts, the number of survivors (68 for the DM 
cohort and 175 for the non-DM cohort) was considerably higher than the 
number of deaths (36 for the DM cohort and 54 for the non-DM cohort). 
This inequality may cause biased model learning towards the dominant 
class [25]. The other imbalance condition was that the training set of the 
non-DM cohort, at 229 entries, was considerably larger than that of the 
DM cohort, at 104 entries. This difference may result in models with 
performance commensurate with the size of training sets, making model 
comparisons less conclusive. Thus, the oversampling technique was 
deployed to address the concerns regarding imbalanced data. The 
oversampling increased the number of deaths and survivors in both 
training sets to 175, the maximum number of deaths and survivors in the 
original training sets (Table 4). Oversampling was performed using the 
SMOTE-NC algorithm, a well-suited technique for datasets with 
continuous and categorical features [26], such as the one used in this 
study. The testing sets were not oversampled; thereby, evaluation and 
interpretation analyses were conducted only on actual data. 

2.5. Feature selection 

A preliminary step in developing models for mortality risk assess
ment was to perform a feature selection on each cohort to reduce the 
input data size. Otherwise, the relatively large feature set size may cause 
the dimensionality curse during the model training process. For feature 
selection, we considered a voting system that could potentially provide 
further robustness compared to non-voting systems. To accomplish this, 
we wrapped the recursive feature elimination (RFE) technique around 
three different classifiers to create three voter systems. The three clas
sifiers used in each voter system were logistic regression, gradient 
boosting, and AdaBoost. These algorithms have demonstrated broad 
capability and have been applied in COVID-19 research [27,28]. 

In each voter system, features were ranked using feature coefficient 

metric for logistic regression and feature importance metric for gradient 
boosting and AdaBoost model, and RFE eliminated the variable that had 
the least contribution to predictions on the training set. This feature 
reduction cycle was repeated until RFE dropped half of the variables 
(commonly used configuration of the RFE function) in each voter system 
and shortlisted 20 out of the 40 features. The features shortlisted by at 
least two voters were finally considered for mortality risk assessments. 

To fine-tune the hyperparameters of the three classifiers, we used the 
random search approach. A search space for possible hyperparameter 
values was defined. Then, after experimenting with 20 different 
randomly selected combinations of values within the search space, the 
one that provided the highest five-fold cross-validation accuracy on the 
training set was chosen. The details of the search spaces considered and 
results of hyperparameter tunning are available in Appendix, Table A.1. 

2.6. Mortality risk assessment 

Mortality risk assessments in this work consisted of three main parts; 
developing a mortality risk prediction model for each cohort, equipping 
the developed mortality risk prediction models with a model agnostic 
framework, and developing a mortality risk stratification model for each 
cohort based on model interpretation outcomes. 

2.6.1. Mortality risk prediction 
After selecting predictive features for each cohort, a model was 

created to predict in-hospital COVID-19 mortality. An RF classifier was 
used to predict admission outcomes from selected features. This classi
fication technique has been demonstrated to be effective in different 
fields, including COVID-19 risk assessment [29]. Hyperparameter tun
ing was performed with a similar approach explained in subsection 2.5 
(for classifiers in the voting feature selection systems). The results are 
presented in Appendix, Table A.1. 

2.6.2. Model interpretation 
Following the development of mortality risk prediction models, an 

extensive SHAP analysis was performed. Models’ predictions on unseen 
testing data were initially interpreted globally, i.e., by explaining the 
aggregate effects of selected features on forming predictions across the 
entire training set. Afterwards, a local interpretation analysis was con
ducted on a subset of selected individuals, elaborating the contribution 
of predictors in forming a specific prediction for each individual. This 
investigation increases the transparency of the analysis and enables 
localisation and comparison of the predictors’ effects on forecasts for 
each instance. 

2.6.3. Mortality risk stratification 
Model interpretation analysis was followed by risk stratification in

vestigations. To this end, first, each patient was represented with a 
vector containing SHAP values corresponding to the selected features. 
Then, the k-means algorithm was employed to divide patients of the test 
data into clusters based on their SHAP value vectors, a demarcation with 
potential utility in risk stratification practice. The k-means algorithm 
has been used in previous COVID-19 research [30,31]. The algorithm 
partitions samples into groups of equal variance by minimising the 
inertia criterion. For selecting the number of clusters, values of 1–9 were 
examined, and the one delivering the elbow point based on inertia cri
terion across the entire training set was decided [32]. 

3. Results 

This section presents results related to mortality risk prediction and 
stratification analysis. 

3.1. Feature selection 

From feature selection analysis, the predictors selected for the DM 

1 Since in this paper logistic regression and tree-based models were used, 
standardisation of numerical variables was not required. Also, since categorical 
variables in this work all had two values, they could be used in binary form 
instead of one-hot-encoded form. However, the reasoning behind including 
standardisation and one-hot-encoding was to establish an ML framework with 
applicability to other modelling algorithms and to scenarios where categorical 
variables that take more than two values. 
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cohort were frailty score, age, Hb (haemoglobin), platelets, Na (sodium), 
creatinine, eGFR (estimated glomerular filtration rate), ALPO4 (alkaline 
phosphates), CRP (c-reactive protein), fibrinogen, sex, PT (prothrombin 
time), WCC (white cell count), neutrophils, lymphocytes, monocytes, ALT 
(alanine transaminase), smoking status, asthma, HF (heart failure), NLRL, 
APTTL. On the other hand, the predictors selected for the non-DM cohort 
consisted of frailty score, age, Hb, platelets, Na, creatinine, eGFR, ALPO4, 
CRP, fibrinogen, sex, PT, BMI (body mass index), monocytes, K (potas
sium), bilirubin, total protein, albumin, procalcitonin, PBC (positive blood 
culture). 

3.2. Mortality risk prediction 

The developed RF classifiers to predict COVID-19 mortality were 
evaluated by measuring the prediction performance on the unseen 
testing sets. Four metrics were considered for evaluation analysis; ac
curacy, area under the receiver operating characteristic curve (AUC), 
sensitivity, and specificity. These metrics have been broadly used in 
classification tasks. Also, these metrics have evidence supporting their 
applications in healthcare research [33,34]. Table 5 summarises eval
uation results for mortality risk prediction models. As shown in the 
table, both models resulted in values of at least 80% for three of the four 
evaluation metrics (accuracy, AUC, and sensitivity). 

3.3. Global interpretation 

The variable importance plots in Fig. 1list the most significant fea
tures for each model in descending order, according to their collective 
SHAP values. The length of each bar indicates the mean of absolute 
SHAP values for the relevant feature(s) across the entire testing set. For 
legibility and brevity, considering a maximum display of 10, the first 
nine most influential predictors alongside the aggregated impact of 
remaining predictors are displayed. 

Based on the plots, frailty score, age, and CRP (c-reactive protein) were 
among the nine most predictive variables for both models. NLRL was the 
most predictive variable for the DM model, and frailty score and Na 
ranked second and third, respectively. On the other hand, albumin, age, 
and eGFR (estimated glomerular filtration rate) were the first three most 
predictive variables for the non-DM model. 

Frailty score was the second most important variable for the DM 
model and the fourth for the non-DM model. Therefore, this measure of 
underlying health status was more influential for the DM model than the 
non-DM model. Additionally, albumin was a critical variable for the non- 
DM cohort while not a predictive factor for the DM cohort. Further 
research may elicit this inconsistency also observed in previous work 
[9]. 

Fig. 2 provides SHAP value plots as an alternative global interpre
tation schematic for mortality prediction models. These bee swarm plots 

express predictors’ positive/negative associations with the target vari
able, in addition to their importance rank. Each point on the graphs 
corresponds to a sample from the testing set. The position on the x-axis 
indicates whether a particular feature value is associated with a higher 
or lower mortality prediction. The colours represent the relative values 
of variables. For numerical features, blue and red denote low and high 
values, respectively, while for encoded categorical features, these col
ours indicate 0 and 1, respectively. With similar explanations given for 
Fig. 1, with a maximum display of 10, the first nine most influential 
predictors individually along with the remaining features together are 
shown. 

The DM model’s nine distinct features were all positively associated 
with mortality risk prediction, i.e., higher feature values were associated 
with positive SHAP values, while lower feature values were associated 
with negative SHAP values. On the other hand, for the non-DM model, 
age, frailty score, and CRP were positively associated with mortality risk 
prediction, whereas albumin, eGFR, and K were negatively associated 
with mortality risk prediction. 

3.4. Local interpretation 

After presenting the results of the global interpretation analysis, this 
subsection presents examples of the outcomes of the local interpretation 
analysis. To this end, the results concerning a random death and survival 
case from each cohort are selected to present. 

The waterfall plots in Fig. 3 display the local interpretation results for 
a randomly selected individual with death outcome example in each 
cohort. These plots show features’ contributions to generating a specific 
prediction for a given instance. The size and direction of each arrow 
indicate the effect of a particular feature to shift the output from a base 
prediction (average prediction on the training set) towards a final pre
diction [18]. According to the figure, the mortality prediction models 
predicted a probability of death greater than 50% for both cases (DM: 
50.2%, non-DM: 62.5%) and thus classified them in the death category. 

Based on Fig. 3A, NLRL was the most adverse feature for the DM 
instance, with frailty score, age, and PT being second to fourth, respec
tively. In contrast, in terms of protective impact, variable Na was ranked 
first, smoking status second, fibrinogen third, neutrophils fourth, and WCC 
(white cell count) fifth. In comparison, according to Fig. 3B, the leading 
five predictors of death in the non-DM case were age, low albumin, cre
atine, eGFR, and frailty score, whereas CRP, procalcitonin, bilirubin, and K 
were the main features decreasing the prediction of death in this case. 

Fig. 4 illustrates the local interpretation results for two randomly 
selected instances with a survival outcome (one from each cohort). 
According to the plots, the mortality prediction models classified both 
cases in the survival category, predicting a mortality chance of less than 
50% for both cases (DM: 27.6%, non-DM: 13.8%). The most protective 
features for the DM case were NLRL, frailty score, age, APTTL, and Na, 
whreas WCC and smoking status were the most adverse features for this 
instance. On the other hand, the primary protective variables for the 
non-DM case were age, albumin, eGFR, CRP, creatine, ALPO4, and K, 
whereas the primary adverse variables for this case were frailty score and 
bilirubin. 

3.5. Mortality risk stratification 

In this subsection, the results of the mortality risk stratification 
analysis are presented and discussed. Fig. 5 presents the results of the 
elbow method analysis. According to the figure, three clusters were 
decided for both cohorts as it was an elbow point in both cases. 

Table 6 shows the results of SHAP clustering, including the ratio of 

Table 5 
The evaluation result of the mortality prediction models for DM (diabetes mel
litus) and non-DM cohort.  

Evaluation metric DM model Non-DM model 

Accuracy (%) 82 80 
AUC (%) 80 84 
Sensitivity (%) 80 91 
Specificity (%) 55 56 

Note. AUC area under the receiver operating characteristics curve. 
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the cohorts population distributed among the clusters and the death rate 
within each cluster. The clustering technique has allocated patients of 
both cohorts into three categories with relatively low, moderate, and 
high mortality rates (clusters 1, 2, and 3, respectively). 

4. Discussion 

In general, clinical studies have demonstrated an association be
tween most selected features in this research (presented in subsection 
3.1) and COVID-19 complications [35]. More specifically, smoking sta
tus, asthma, and HF were among features selected for the DM cohort, 
underlining the established increased risk of these preexisting factors for 
COVID-19 patients with DM [36]. Moreover, it is noteworthy that the 
selection of NLRL and APTTL for the DM cohort was consistent with 
findings of previous work [9]. Such congruence with the literature 

implies the effectiveness of the feature selection analysis in laying a 
reliable foundation for the ensuing ML-based mortality risk assessments. 

The evaluation results of the mortality risk prediction models (pre
sented in subsection 3.2) emphasise the overall effectiveness of the 
analysis in predicting mortality risk for both cohorts. Moreover, the 
models’ performance was comparable, enabling fair intercohort analo
gies. This comparable performance may imply that the oversampling 
process has effectively addressed the concerns regarding data group 
imbalances. 

As illustrated in Fig. 2A, overall, contributions of high NLRLs to 
increased mortality risk predictions were more than contributions of low 
NLRLs to decreased mortality risk predictions in the DM cohort. 
Conversely, low frailty scores contributed more to lower mortality risk 
predictions than high frailty scores did for higher mortality risk pre
dictions. Similarly, among other high-impact variables for the DM 

Fig. 1. Feature importance plots for (A) DM (diabetes mellitus) cohort (B) non-DM cohort. The plots indicate a rank order for variables upon collective absolute 
SHAP values of the testing set. 
Note. NLRL neutrophils-lymphocytes ratio labelled; Na sodium; WCC white cell count; APTTL activated partial thromboplastin time labelled; CRP c-reactive protein; 
eGFR estimated glomerular filtration rate; K potassium; ALPO4 alkaline phosphates. 

Fig. 2. SHAP values plots of the testing set for (A) DM (diabetes mellitus) cohort (B) non-DM cohort. Each point signifies a patient in the testing set. The horizontal 
locations reflect the effect of features on the model’s outputs for a particular individual. Colours indicate whether the variable is high (red) or low (blue) for a 
particular observation; for encoded categorical variables, blue and red denote 0 and 1, respectively. 
Note. NLRL neutrophils-lymphocytes ratio labelled; Na sodium; WCC white cell count; APTTL activated partial thromboplastin time labelled; CRP c-reactive protein; 
eGFR estimated glomerular filtration rate; K potassium; ALPO4 alkaline phosphates. 
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Fig. 3. Local interpretation waterfall plots for an individual who died due to COVID-19 in the testing set of (A) DM (diabetes mellitus) cohort (B) non-DM cohort. The 
bottom of the plots starts at a base expectation under training data (E[f(x)]). Then, each row shows the contribution of its relevant feature to increase (red) or 
decrease (blue) the expectation value. The final model prediction value is indicated by f(x) in the end. 
Note. NLRL neutrophils-lymphocytes ratio labelled; Na sodium; WCC white cell count; PT prothrombin time; CRP c-reactive protein; eGFR estimated glomerular 
filtration rate; K potassium. 

Fig. 4. Local interpretation waterfall plot for an individual who survived COVID-19 in the testing set of (A) DM (diabetes mellitus) cohort (B) non-DM cohort. The 
bottom of the plots starts at a base expectation under training data (E[f(x)]). Then, each row shows the contribution of its relevant feature to increase (red) or 
decrease (blue) the expectation value. The final model prediction value is indicated by f(x) in the end. 
Note. NLRL neutrophils-lymphocytes ratio labelled; Na sodium; WCC white cell count; APTTL activated partial thromboplastin time labelled; PT prothrombin time; 
eGFR estimated glomerular filtration rate; CRP c-reactive protein; ALPO4 alkaline phosphates; K potassium. 

Fig. 5. Elbow method graph to determine the optimal number of clusters for SHAP clustering on (A) DM (diabetes mellitus) cohort (B) non-DM cohort.  
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cohort, Na, WCC, smoking status, and neutrophils contributed more to 
increased mortality risk predictions overall, whereas age, APTTL and 
CRP contributed more to decreased mortality risk predictions. Likewise, 
it can be implied from Fig. 2B that creatine had a greater adverse than 
protective impact in the DM cohort, while age and procalcitonin had a 
greater protective than adverse impact overall. However, the differences 
between the protective and adverse contributions were inconclusive for 
other high-impact predictors of the non-DM cohort. Such analysis could 
help compare protective versus adverse impact of features. For instance, 
since high NLRL showed a stronger adverse impact compared to the 
protective impact from low NLRL in the DM cohort, it could be inferred 
that this feature was overall a stronger adverse risk factor rather than a 
protective factor in this cohort. 

Of note, older ages were associated with increased mortality risk 
predictions in both cohorts (positive SHAP values in Fig. 2), but this 
effect was more marked in the DM cohort. One possible explanation 
could be that the chance of having co-existing features that increased 
mortality predictions occurred more often in older DM cases than non- 
DM cases. 

Overall, local interpretation results (presented in subsection 3.4) 
show how explaining the model’s output for an individual can differ 
from explaining the model’s output globally across the cohort. This 
evidence stresses the advantages of individualised risk explanations over 
generic risk descriptions. 

The SHAP clustering outcomes (presented in subsection 3.5) are in 
line with real-world risk stratification requirements, namely for appli
cations in triage systems, where the aim is to allocate patients into 
predefined categories with different risk grades [37]. This evidence 
supports the potential capability of SHAP clustering in practical 
COVID-19 mortality risk stratification. 

Table 7 summarises some statistical characteristics of features within 

the three formed clusters for each cohort to explore patterns apart from 
the frequency and mortality rate presented in Table 6. For conciseness, 
only the three most predictive variables, according to Fig. 1, are inves
tigated for each cohort. Based on the table, one noteworthy intercluster 
pattern for the DM cohort was that all patients in Cluster 3 had a high 
NLRL. Another marked pattern was that patients in Cluster 1 had a 
considerably lower average frailty score than patients in Clusters 2 and 3. 
On the other hand, for the non-DM cohort, a significant pattern was that 
the average albumin for patients in Cluster 3 was considerably higher 
than that in Clusters 2 and 1. Also, the average age in Cluster 1 was 
considerably lower than that in Clusters 2 and 3. Finally, there was a 
decrease in the average eGFR from Clusters 1 towards 3. 

5. Summary and conclusion 

Fatality risk assessments were conducted in parallel for cohorts of 
COVID-19 patients with and without DM. First, using the RF algorithm, a 
model was developed for each cohort to predict in-hospital death due to 
COVID-19 from admission data. The evaluation results showed that the 
generated mortality prediction models provided comparable perfor
mances. The models were then interpreted globally and locally through 
SHAP. The global interpretations delineated distinct characteristics of 
each cohort, such as their features relative importance and positive/ 
negative association with the predicted probability of death. Finally, the 
k-means algorithm was implemented on the SHAP values to generate 
clusters pertaining to risk stratification practice. Clustering on SHAP 
values formed three clusters with relatively low, moderate, and high 
mortality rates, highlighting the potential functionality of SHAP clus
tering for COVID-19 risk stratification. 

Overall, these ML algorithms offered additional results beyond that 
provided by standard statistical approaches, such as the rate and order of 
the most important predictors, global and local interpretation of out
comes, and risk stratification based on interpretation analysis. In 
conclusion, this article contributes to bridging the gap between 
advanced ML techniques and routinely collected clinical data in a crit
ical field of medicine. The research findings encourage further exploi
tation of ML models framed with interpretation analysis in observational 
studies of COVID-19 patients with and without DM. These advanced 
data analysis tools, underused previously in this field, have been shown 
to facilitate knowledge discovery and inferences. Consequently, imple
menting similar methodologies on recent COVID-19 datasets is recom
mended for future work. 
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Table 6 
The results of clustering patients on their SHAP values for DM (diabetes mellitus) 
and non-DM cohorts.   

DM cohort Non-DM cohort 

Frequencya (%) Mortality rate (%) Frequencya (%) Mortality rate (%) 

Cluster 1 26.6 8 36.4 2.7 
Cluster 2 44.4 20 32.3 28.1 
Cluster 3 28.8 76 31.3 41.9  

a The percentage of the cohort placed in each cluster. 

Table 7 
Characteristics of the three most predictive features of DM (diabetes mellitus) 
and non-DM cohort sin the three clusters created on SHAP values.    

Cluster 1 Cluster 2 Cluster 3 

DM cohort High NLRL ratio 16% 0% 100% 
Average frailty score 3.4 6.1 5.8 
Average Na 134.2 134.9 135.9 

Non-DM cohort Average albumin 40.7 41.7 34.9 
Age (year) 51.7 79.1 82.4 
eGFR 79.5 60.9 51.9 

Note. Note. NLRL neutrophils-lymphocytes ratio labelled; Na sodium; eGFR 
estimated glomerular filtration rate. 
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Appendix  

Table A.1 
Summary results of the randomised hyperparameter tunning for the voter and final mortality prediction models  

Model Hyperparameter Search space Selected hyperparameter 

DM cohort Non-DM cohort 

LR regularisation strength {0, .01, 0.02, …,1} 0.02 0.04 
class weight {0, 1, …,10} 3 5 
maximum number of iterations {1000, 2000, …,10000} 40000 6000 

GB learning rates {0.01, 0.02, …,1} 0.03 0.06 
number of boosting stages {20, 40, …,200} 50 160 
minimum number of samples required to split an internal node {2, 4, …,8} 6 4 
minimum number of samples required to be at a leaf node {2, 4, …,8} 4 4 
maximum depth of the individual estimators {1, 2, …,10} 5 4 

AB maximum number of estimators at which boosting is terminated {10, 20, …,100} 50 70 
learning rates {0.01, 0.02, …,1} 0.04 0.06 

RF number of trees {50, 100, …,500} 200 400 
maximum depth of the tree {1, 2, …,10} 4 6 
minimum number of samples required to split an internal node, {2, 4, …,8} 6 6 
minimum number of samples required to be at a leaf node {2, 4, …,8} 4 4 
maximum number of leaf nodes {2, 4, …,8} 6 8 
minimum impurity decrease {0, 0.01} 0 0 
cost complexity pruning factor {0.01, 0.02, …,0.10} 0.06 0.04 
minimum weighted fraction of the sum total of weights {0.01, 0.02, …0.05} 0.03 0.04  
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