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Synthetic correlated diffusion 
imaging hyperintensity delineates 
clinically significant prostate cancer
Alexander Wong1,3*, Hayden Gunraj1*, Vignesh Sivan1 & Masoom A. Haider2,4

Prostate cancer (PCa) is the second most common cancer in men worldwide and the most frequently 
diagnosed cancer among men in more developed countries. The prognosis of PCa is excellent if 
detected at an early stage, making early screening crucial for detection and treatment. In recent 
years, a new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) 
was introduced, and preliminary results show promise as a screening tool for PCa. In the largest study 
of its kind, we investigate the relationship between PCa presence and a new variant of CDI we term 
synthetic correlated diffusion imaging (CDIs ), as well as its performance for PCa delineation compared 
to current standard MRI techniques [T2-weighted (T2w) imaging, diffusion-weighted imaging (DWI), 
and dynamic contrast-enhanced (DCE) imaging] across a cohort of 200 patient cases. Statistical 
analyses reveal that hyperintensity in CDIs is a strong indicator of PCa presence and achieves strong 
delineation of clinically significant cancerous tissue compared to T2w, DWI, and DCE. These results 
suggest that CDIs hyperintensity may be a powerful biomarker for the presence of PCa, and may have 
a clinical impact as a diagnostic aid for improving PCa screening.

Prostate cancer (PCa) is the second most common form of cancer in men worldwide and the most frequently 
diagnosed cancer among men in more developed countries, with roughly 1.4 million new cases in 20201. While 
the overall 5-year survival rate for prostate cancer is very high, prognosis is poor for patients with distant 
metastases outside of the prostate2,3. As such, early diagnosis of PCa is critical for improving the treatment of 
patients with PCa. Clinical screening for PCa has traditionally involved the use of prostate-specific antigen 
(PSA) screening, with high PSA levels used as an indicator of PCa4. Unfortunately, studies have shown that 
PSA screening has led to a significant over-diagnosis of men suspected of PCa, resulting in over-treatment that 
carries significant risks5,6.

While diagnostic imaging has been increasingly prevalent for PCa screening and diagnosis, one can argue 
that there is currently no universally accepted method for screening and diagnosing prostate cancer via imaging. 
Transrectal ultrasound (TRUS) is routinely used to guide prostate biopsy; however, its use for PCa screening 
and diagnosis is limited due to the fact that PCa tumors are often isoechoic and thus cannot be delineated from 
surrounding tissue via TRUS. As a result, PCa screening and diagnosis using TRUS has low sensitivity and 
specificity7. PCa screening and diagnosis using positron emission tomography (PET) has also been explored, with 
several tracers showing promise for delineating cancerous and non-cancerous tissue in the prostate gland8–11. 
Unfortunately, the high cost of PET scanning makes it impractical as diagnostic tool early in the screening 
pathway.

Magnetic resonance imaging (MRI) has grown significantly in prevalence for the purpose of PCa screening, 
with wide acceptance of the standardized Prostate Imaging Reporting and Data System (PI-RADS)12. T2-weighted 
MRI (T2w) has been well-studied for PCa screening and diagnosis13–16, where potentially cancerous regions are 
characterized by signal hypointensity, and is considered the primary determining modality for the transition 
zone (TZ) in PI-RADS12,16. However, T2w signal hypointensity in the peripheral zone (PZ) of the prostate gland 
can also be associated with a number of non-cancerous abnormal conditions such as inflammation, fibrosis, 
and hemorrhage17,18, leading to false positives if T2w was the sole method used. To improve diagnostic accuracy 
when using MRI for PCa screening and diagnosis, two complementary MRI techniques have been leveraged for 
improved PCa screening alongside T2w: (1) diffusion-weighted imaging (DWI) with apparent diffusion coef-
ficient (ADC) calculated from DWI, and (2) dynamic contrast-enhanced (DCE) imaging17. These techniques, 
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when used together with T2w, form a multi-parametric MRI (mpMRI) strategy to overcome the shortcomings of 
each modality. However, the need to interpret several modalities can increase interpretation challenges, resulting 
in increased inter- and intra-observer variability.

Recently, a new MRI technique called correlated diffusion imaging (CDI)19 was proposed for improving PCa 
diagnosis. Preliminary studies demonstrated the potential of CDI for delineating between cancerous and non-
cancerous tissue19,20. However, the scope of these studies are limited in terms of patient cohort size and diversity 
(e.g., a patient cohort of 20 patient cases19). Furthermore, a number of limitations exist in CDI as first introduced 
with respect to signal-to-noise ratio (SNR) and acquisition time, as well as SI variability amongst inter-patient 
and intra-patient acquisitions.

The contribution of this study are twofolds. First, this study represents the largest study of its kind for explor-
ing the relationship between PCa presence and CDI signal hyperintensity across a cohort of 200 patient cases. 
Second, we introduce an extended variant of CDI we term synthetic correlated diffusion imaging (CDIs ), which 
leverages a hybrid of native and synthetic diffusion signal acquisitions and signal calibration for greater consist-
ency in dynamic range across machines and protocols. We compare the performance of CDIs for PCa delineation 
to current standard MRI techniques (T2w imaging, DWI, and DCE imaging). This study aims to provide insights 
on the potential clinical impact of CDIs as a diagnostic aid for improving PCa screening.

Results
In this study, we investigated the efficacy of CDIs from two different perspectives. First, we studied the rela-
tionship between CDIs SI and the presence of PCa, both clinically significant PCa (csPCa) tissue and clinically 
insignificant PCa (insPCa) tissue. Consistent with the contemporary concept of csPCa versus insPCa21, csPCa 
tissue is defined as tissue with a Gleason score greater than or equal to 7 (Gleason Grade Groups 2-5 according 
to the International Society of Urological Pathology) while insPCa tissue is defined as tissue with a Gleason score 
less than 7 (Gleason Grade Group 1). Second, we studied the performance of CDIs in delineating csPCa tissue 
and insPCa tissue from healthy tissue.

Relationship between CDIs SI and the presence of PCa.  Figure 1 shows the histogram analysis con-
ducted to study the distribution of CDIs SI, T2w SI, DWI-derived ADC values, and DCE-derived Ktrans (volume 
transfer constant) values for healthy tissue, csPCa tissue, and insPCa tissue. A number of observations can be 
made from this histogram analysis. First, CDIs SI hyperintensity is clearly exhibited in the presence of csPCa, 
with the clinical significance of PCa (from healthy tissue to csPCa tissue) progressively increasing with the CDIs 
SI. This observation means that not only can CDIs SI hyperintensity be a good indicator for the presence of 
PCa, but can also be a good risk assessment and treatment planning tool for quantitatively assessing the degree 
of disease severity. Second, it can be observed that there is noticeably lower overlap between the CDIs SI dis-
tributions of csPCa tissue and insPCa tissue when compared to that of T2w SI, DWI-derived ADC values, and 
DCE-derived Ktrans values. More specifically, the T2w SI distributions of healthy tissue, csPCa tissue, and insPCa 
tissue all have considerable overlap, while the value distributions of insPCa tissue and csPCa tissue have greater 
overlap for both Ktrans and ADC values. This observation means that CDIs can potentially be a good clinical 
decision support tool for clinicians when compared to the current standard MRI techniques in determining the 
course of action for a patient, be it watchful waiting, active surveillance, or immediate treatment.

Delineation between PCa tissue and healthy tissue based on quantitative analysis.  Figure 2 
shows the ROC curves for studying the performance of CDIs SI, CDIst  (tuned CDIs ) SI, T2w SI, DWI-derived 
ADC values, and DCE-derived Ktrans values for delineating csPCa tissue and insPCa tissue from healthy tissue. 
Differences in area under the curve (AUC) between modalities were assessed for statistical significance using the 
formulation proposed by Hanley and McNeil22, with the results of these tests given in Supplementary Table 1.

A number of observations can be made from this ROC analysis. First, it can be observed that CDIs SI and 
CDIst  SI achieve noticeably higher AUC for delineating between csPCa tissue and healthy tissue when compared 
to the current standard MRI techniques, with DWI-derived ADC values achieving the next highest AUC (lower 
by ∼ 0.0308 when compared to CDIs SI, p < 0.0001 ). T2w and DCE-derived Ktrans values achieve significantly 
lower AUC compared to the other techniques (lower by as much as ∼ 0.2037 when compared to CDIs SI, 
p < 0.0001 ). When comparing CDIs SI and CDIst  SI, it can be seen that CDIst  SI achieves ∼ 0.0022 higher AUC 
( p = 0.0207 ) when compared to CDIs SI, thus illustrating the efficacy of CDIs coefficient optimization where 
applicable.

Second, it can be observed that CDIs SI and CDIst  SI achieve significantly greater delineation between csPCa 
and insPCa tissue when compared to current standard MRI techniques, with DWI-derived ADC values, T2w, and 
DCE-derived Ktrans values achieving ∼ 0.0612 ( p < 0.0001 ), ∼ 0.2017 ( p < 0.0001 ), and ∼ 0.1344 ( p < 0.0001 ) 
lower AUC when compared to CDIs SI, respectively. Here, the difference in delineation performance between 
csPCa and insPCa tissue for CDIs SI and CDIst  SI is not significant ( p = 0.8449).

Third, it can be observed that CDIs SI and CDIst  SI achieve noticeably higher AUC for delineating between 
csPCa tissue and other tissue when compared to the current standard MRI techniques, with DWI-derived ADC 
values achieving the next highest AUC (lower by ∼ 0.0314 when compared to CDIs SI, p < 0.0001 ). T2w and 
DCE-derived Ktrans values achieve significantly lower AUC compared to the other techniques (lower by as much 
as ∼ 0.2032 when compared to CDIs SI, p < 0.0001 ). When comparing CDIs SI and CDIst  SI, it can be seen that 
CDIst  SI achieves ∼ 0.0021 higher AUC ( p = 0.0251 ) when compared to CDIs SI, thus again illustrating the 
efficacy of CDIs coefficient optimization where applicable.

Fourth, it can be observed that CDIs SI and CDIst  SI achieve noticeably higher AUC for delineating between 
PCa tissue (both csPCa and insPCa) and healthy tissue when compared to the current standard MRI techniques, 
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with DWI-derived ADC values achieving the next highest AUC (lower by ∼ 0.0151 when compared to CDIs 
SI, p < 0.0001 ). T2w and DCE-derived Ktrans values achieve significantly lower AUC compared to the other 
techniques (lower by as much as ∼ 0.1510 when compared to CDIs SI, p < 0.0001 ). When comparing CDIs SI 
and CDIst  SI, it can be seen that CDIst  SI achieves ∼ 0.0063 higher AUC ( p < 0.0001 ) when compared to CDIs 
SI, thus again illustrating the efficacy of CDIs coefficient optimization where applicable.

Clinical interpretation.  Figure  3a, b shows the T2w and overlays of DWI-derived ADC, DCE-derived 
K
trans , and CDIs for two patient cases with csPCa in the PZ. In Fig. 3a, it can be observed that T2w shows no 

contrast between csPCa tissue and healthy tissue, while Ktrans exhibits strong contrast for a smaller portion 
within the csPCa tumor. ADC shows good contrast between the csPCa tumor and some of the surrounding 
healthy tissue, but exhibits ADC values similar to the tumor in different small regions within the TZ, including 
an adjacent region above the tumor which is indistinguishable from the tumor itself. CDIs shows strong contrast 
for the entire csPCa tumor from the rest of the healthy tissue.

In Fig. 3b, it can be observed that T2w shows poor contrast between csPCa tissue and healthy tissue, while 
K
trans exhibits poor contrast between the csPCa tumor and healthy tissue. ADC shows good contrast between 

the csPCa tumor and surrounding healthy tissue, but exhibits ADC values similar to the tumor in another small 
region within the PZ that was not identified as PCa tissue. CDIs shows strong contrast for the entire csPCa tumor 
from the rest of the healthy tissue.

Figure 3c, d shows the T2w and overlays of DWI-derived ADC, DCE-derived Ktrans , and CDIs for two patient 
cases with csPCa in the TZ. In Fig. 3c, it can be observed that T2w shows no contrast between csPCa tissue and 
healthy tissue. Ktrans exhibits mild contrast in a small region within the csPCa tumor, but strong contrast in a 
healthy tissue region that is not associated with csPCa. ADC shows strong contrast for the csPCa tumor from 
surrounding tissue, but exhibits ADC values similar to other regions within the PZ that were not identified as 
PCa tissue via histopathology validation. CDIs shows strong contrast for the entire csPCa tumor from the rest 

Figure 1.   Histogram analysis of CDIs SI, T2w SI, DWI-derived ADC values, and DCE-derived Ktrans values for 
healthy tissue, insPCa tissue, and csPCa tissue.
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of the healthy tissue. In Fig. 3d, it can be observed that T2w shows no contrast between csPCa tissue and healthy 
tissue, while Ktrans , ADC, CDIs all exhibit strong contrast between csPCa tissue and healthy tissue.

Figure 3e shows the T2w and overlays of DWI-derived ADC, DCE-derived Ktrans , and CDIs for a patient with 
csPCa in the PZ and insPCa in the TZ. It can be observed that T2w shows no contrast between the csPCa tumor 
and healthy tissue, and poor contrast between the insPCa tumor and healthy tissue. Ktrans exhibits no contrast 
between the csPCa tumor and healthy tissue, and strong contrast for a small portion of the insPCa tumor. ADC 
shows strong contrast between the csPCa tumor and surrounding healthy tissue and good contrast between the 
insPCa tumor and surrounding healthy tissue. However, ADC exhibits similar values for both the csPCa and 
insPCa tumors, as well as ADC values similar to the tumors in small regions within the TZ that were not identi-
fied as PCa tissue. CDIs show the strongest contrast between the csPCa tumor and healthy tissue amongst the 
techniques, and shows good contrast between the insPCa tumor and healthy tissue. Furthermore,CDIs provides 
greater contrast between the csPCa tumor and insPCa tumor than ADC.

Figure 3f shows the T2w and overlays of DWI-derived ADC, DCE-derived Ktrans , and CDIs for a patient 
with csPCa in the anterior stroma (AS) and insPCa in the PZ. It can be observed that T2w shows poor contrast 
between the csPCa tumor and healthy tissue, with T2w SI of the csPCa tumor being similar to healthy tissue 
in the TZ. T2w also shows good contrast between the insPCa tumor and healthy tissue, although T2w SI of the 

Figure 2.   ROC curves for studying the performance of CDIs SI, CDIst  SI, T2w SI, DWI-derived ADC values, 
and DCE-derived Ktrans values for delineating csPCa tissue and insPCa tissue from healthy tissue.
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Figure 3.   T2w images with overlays of lesion boundaries, DWI-derived ADC, DCE-derived Ktrans , and CDIs 
for six patient cases. (a, b) Two patients with csPCa in the PZ. (c, d) Two patients with csPCa in the TZ. (e) A 
patient with csPCa in the PZ and insPCa in the TZ. (f) A patient with csPCa in the AS and insPCa in the PZ.
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insPCa tumor is similar to healthy tissue in the TZ. Furthermore, the T2w SI of the csPCa tumor is very similar 
to that of the insPCa tumor. Ktrans exhibits no contrast between the csPCa tumor and healthy tissue and no con-
trast between the insPCa tumor and healthy tissue. Furthermore, Ktrans exhibits contrast in healthy tissue in the 
TZ that is not identified as PCa. ADC shows poor contrast between the csPCa tumor and surrounding healthy 
tissue and good contrast between the insPCa tumor and surrounding healthy tissue. CDIs show the strongest 
contrast between the csPCa tumor and healthy tissue amongst the techniques, and shows good contrast between 
the insPCa tumor and healthy tissue. Furthermore, CDIs provides greater contrast between the csPCa tumor 
and insPCa tumor than ADC.

Discussion
In this study, we hypothesised that there is a strong relationship between SI of CDIs and the presence of PCa, 
and the experimental results support this hypothesis. Results across a cohort of 200 patient cases with histo-
pathology validation showed that hyperintensity in CDIs provides a strong indicator of the presence of csPCa. 
Furthermore, CDIs achieves strong delineation of clinically significant cancerous tissue and healthy tissue (AUC 
exceeding 0.918 and 0.916 for CDIst  and CDIs , respectively), which is noticeably higher than current standard 
techniques for prostate screening such as T2w, DWI, and DCE. In general, CDIs also shows fewer false positive 
regions compared to the other techniques. These results suggest that the use of CDIs may have a clinical impact 
as a diagnostic aid for improving PCa screening.

To improve diagnostic accuracy when using MRI for PCa screening and diagnosis, DWI is often used along-
side T2w, with DWI being the primary determining modality for the PZ in PI-RADS12. In DWI, pairs of opposing 
magnetic field gradient pulses are applied in the imaging sequence to obtain sensitivity to the Brownian motion 
of water molecules in tissues23,24. Therefore, given the presumed higher cellular density of cancerous tissue 
compared to non-cancerous tissue, potentially cancerous regions would exhibit markedly reduced ADC12,24 due 
to restricted diffusion. Despite its considerable promise25–29, the use of DWI for PCa screening and diagnosis 
remains a challenge due to considerable ADC variability depending on the strength, duration, and timing of the 
applied diffusion gradient pulses used in the DWI pulse sequences, thus necessitating tuning of these parameters. 
This is further complicated by significant overlap in ADC between stromal benign prostatic hyperplasia (BPH), 
anterior fibromuscular stroma (AFMS), central zone (CZ) tissue, and PCa30,31.

Another well-established modality leveraged to improve diagnostic accuracy when using MRI for PCa 
screening and diagnosis is DCE imaging32. Here, a contrast agent (low molecular-weight gadolinium chelate) is 
injected intravenously, and T1-weighted MRI (T1w) is acquired before, during, and after the injection. Given the 
increased permeability of the tumor vessels, potentially cancerous regions would exhibit a high volume transfer 
constant between blood plasma and the extravascular extra-cellular space (denoted by Ktrans ). The use of DCE 
for PCa screening and diagnosis remains a challenge due to sensitivity to patient motion, lack of specificity32, 
and additional acquisition complexities such as cost and process overhead due to the use of an agent. As such, 
DWI, T2w, and DCE are frequently used together in the form of mpMRI to overcome the shortcomings of each 
modality; however, the need to interpret multiple modalities also increases the difficulty in interpretation, lead-
ing to increased inter- and intra-observer variability.

To address the aforementioned shortcomings of DWI and ADC maps for PCa screening and diagnosis, a 
new diffusion MRI modality was recently introduced in the form of CDI19. In CDI, a series of pulse sequences 
with different gradient pulse strengths and timings are used to probe water molecules with different degree of 
Brownian motion in the tissues within a local volume. Signal mixing is then performed on the signal acquisi-
tions captured using these pulse sequences to determine the joint correlation of the acquisitions within a local 
volume. As such, CDI leverages the distribution of water molecules with different degrees of Brownian motion 
in the tissues within the local volume to delineate between cancerous tissue (indicated by signal hyperintensity 
due to a wider spread in the distribution of water molecules with varying degrees of Brownian motion within 
a local volume) and non-cancerous tissue (indicated by lower relative intensity due to a tighter distribution of 
water molecules with a similar degree of Brownian motion within a local volume). While preliminary studies 
have shown that CDI holds considerable promise of achieving greater signal delineation between cancerous and 
non-cancerous tissue when used as a standalone diagnostic imaging method19 and when used in combination 
with T2w and DWI20, these studies are rather limited in scope as the patient study sizes and patient diversity 
was relatively small. Furthermore, CDI as it was originally investigated has several limitations associated with 
acquisition time and SNR-associated restrictions, and variability in SI amongst inter-patient and intra-patient 
acquisitions. As such, a comprehensive study with a significantly larger patient size as well as extensions to CDI 
to address the aforementioned limitations is highly desired to achieve a thorough investigation and evaluation 
on the relationship between signal hyperintensity in CDI and presence of PCa, which was the basis of this study.

In conclusion, our results in this study support the hypothesis that the use of CDIs can be an effective tool 
for PCa screening and diagnosis, although additional studies are needed before adoption for routine clinical use. 
Furthermore, given the promising results, we aim to investigate the relationship of CDIs SI and the presence of 
other forms of cancer such as breast cancer, gastric cancer, and glioblastoma.

Methods
Imaging protocol.  To study the relationship between CDIs SI and PCa, a cohort of 200 patient cases with 
histopathology validation acquired at Radboud University Medical Centre (Radboudumc) in the Prostate MRI 
Reference Center in Nijmegen, The Netherlands33 were used in this study. Notably, findings with a PI-RADS 
score of 1 or 2 were not biopsied and were considered clinically insignificant. Table 1 summarizes the demo-
graphic, MR scanner, and clinical significance variables of the patient cohort used in this study. The patients 
in this cohort ranged in age from 37-78 years, with a median age of 64 years. All acquisitions were performed 
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using a Siemens MAGNETOM Trio 3.0T machine or a Siemens MAGNETOM Skyra 3.0T machine, and were 
reviewed by or performed under the supervision of an expert radiologist with over 20 years of experience inter-
preting prostate MRI33.

A single-shot echo-planar sequence was used for axial DWI acquisitions, with TR ranging from 2500 to 
3300 ms with a median of 2700 ms and TE ranging from 63 to 81 ms with a median of 63 ms. The in-plane 
resolution of the acquisitions was 2 mm with slice thickness ranging from 3 to 4.5 mm with a median of 3 mm. 
The display field of view (DFOV) ranged from 16.8× 25.6 to 24.0× 25.6 cm2 with a median of 16.8× 25.6 cm2 , 
and images were acquired at b-values of 50 s/mm2 , 400 s/mm2 , and 800 s/mm2 . To compare the performance 
of CDIs for PCa delineation with current standard MRI techniques, ADC maps were also obtained from DWI 
acquisitions.

Axial T2w acquisitions were also obtained as a reference of comparison, and were performed using a turbo 
spin-echo sequence with TR ranging from 3880 to 7434.8 ms with a median of 5660 ms and TE ranging from 
101 to 112 ms with a median of 104 ms. The in-plane resolution of the acquisitions ranged from 0.3 to 0.6 mm 
with a median of 0.5 mm and slice thickness ranged from 3 to 4.5 mm with a median of 3 mm. The DFOV ranged 
from 18× 18 cm2 to 19.2× 19.2 cm2 with a median of 19.2× 19.2 cm2.

Finally, axial DCE imaging was conducted with a turbo flash gradient-echo sequence, with TR ranging from 
3.72 to 36 ms with a median of 36 ms and TE ranging from 1.41 to 1.84 ms with a median of 1.41 ms. The in-plane 
resolution of the acquisitions ranged from 1.3 to 1.8 mm with a median of 1.5 mm, slice thickness ranged from 3 
to 5 mm with a median of 3.5 mm, and the temporal resolution was 3.5 s. The DFOV ranged from 19.2× 19.2 cm2 
to 25× 25 cm2 with a median of 19.2× 19.2 cm2 . Maps of the pharmacokinetic parameter Ktrans were obtained 
from the DCE series.

PCa, whole gland, transition, and PZ annotations for all patient acquisitions in this cohort were used in this 
study, with the annotation being performed by two radiology residents and two experienced board-certified 
radiologists (working in pairs) at the University of Naples Federico II, Naples, Italy34. Clinical interpretation of 
CDIs , T2w, ADC, and Ktrans was conducted in this study by an expert radiologist with over 20 years of experi-
ence interpreting prostate MRI (MAH).

Synthetic correlated diffusion imaging.  In this study, an extended variant of CDI we term CDIs is 
introduced. The first key distinguishing aspect of CDIs when compared to CDI is the introduction of synthetic 
signal acquisitions alongside native signal acquisitions to reduce acquisition time, allow existing clinical imag-
ing protocols and pulse sequences that are routine in mpMRI imaging sessions to be used, as well as overcome 
SNR limitations and distortion limitations faced by CDI, particularly under gradient pulse configurations with 
longer echo times. The second key distinguishing aspect of CDIs when compared to CDI is the introduction of 
signal calibration into the signal mixing procedure of CDI to allow for greater consistency in the resulting SI 
dynamic range across machines and protocols. This signal calibration thus addresses the issue associated with 
CDI with respect to large variability in SI amongst inter-patient and intra-patient acquisitions that could highly 
affect clinical interpretation.

The methodology behind CDIs is summarized in Fig. 4. First, multiple DWI signal acquisitions are conducted 
using a set of different configurations of gradient pulse strengths and timings. By varying these configurations 
between signal acquisitions, each acquisition is sensitized to a different degree of Brownian motion, allowing the 
multiple signal acquisitions to provide a more complete picture of the tissue characteristics within a local volume 
by quantifying the distribution of water molecules with respect to their degree of Brownian motion within tissue. 
The different configurations of gradient pulse strengths and timings used in CDIs can be represented by a set of 
so-called b-values, denoted B = {b1, b2, ..., bN } . Each b-value bi may be expressed as

(1)bi = γ 2G2
i δ

2
i

(

�i −
δi

3

)

,

Table 1.   Summary of demographic, MR scanner, and clinical significance variables of the patient cohort used 
in this study. Age and MR scanner statistics are expressed on a patient level, while clinical significance statistics 
are expressed on a tumor level.

Age

 30–39 3 (1.5%)

 40–49 5 (2.5%)

 50–59 45 (22.5%)

 60–69 112 (56%)

 70–79 35 (17.5%)

MR Scanner (Siemens MAGNETOM)

 Skyra 3.0T 195 (97.5%)

 Trio 3.0T 5 (2.5%)

Clinical significance (Gleason Score)

 csPCa (GS ≥ 7) 76 (25.4%)

 insPCa (GS < 7 or PI-RADS12 ≤ 2) 223 (74.6%)
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where γ denotes the proton gyromagnetic ratio, Gi represents the gradient pulse strength, δi represents the gradi-
ent pulse duration, and �i represents the time between gradient pulses35.

Second, the multiple acquired signals are then passed into a signal synthesizer to synthesize synthetic signal 
acquisitions at desired configurations of gradient pulse strengths and timings not captured via native signal 
acquisitions. Third, the native and synthetic signal acquisitions are mixed together in a calibrated manner to 
obtain the final quantitative signal characterizing the joint correlation across the acquired signals within a local 
volume V. The idea behind this calibrated signal mixing procedure in CDIs stems from our hypothesis that the 
distribution of water molecules with different degrees of Brownian motion within tissue in a local volume with 
PCa would differ significantly from that with non-cancerous tissue. For example, healthy PZ regions are largely 
comprised of glandular tissue, resulting in tighter distributions characterized by high relative SI at gradient pulse 
configurations with lower b-values and low relative SI at gradient pulse configurations with higher b-values 
used in CDIs . More importantly, BPH, AFMS, and CZ are all non-cancerous and are largely comprised of non-
glandular tissue, resulting in distributions characterized by low relative SI across all gradient pulse strengths 
and timings used in CDIs . On the other hand, PCa regions are characterized by a more heterogeneous mixture 
of tissue with various degrees of relatively high cellular densities, resulting in a wider spread in the distribution 
of water molecules with varying degrees of Brownian motion within a local volume, including slow moving 
water molecules due to various degrees of true restricted diffusion, and thus high relative SI across all gradient 
pulse strengths and timings used in CDIs . In the case of DWI, ADC hypointensity is exhibited by BPH, AFMS, 
CZ, and PCa, resulting in significant ADC overlaps between them (particularly depending on the choice of 
DWI sequence) and thus increased risk of false positives30. By taking advantage of these distribution differences 
between PCa and non-cancerous tissue in the signal mixing process in the form of joint correlation in a calibrated 
fashion, CDIs can achieve improved signal contrast between PCa and non-cancerous tissue and facilitate for 
more effective PCa screening and diagnosis, as well as greater consistency in SI dynamic range across machines 
and protocols to reduce inter-patient and intra-patient variability in clinical interpretation.

As mentioned earlier, we extend upon the signal mixing process in CDI19 in two key ways to form CDIs . 
First, we introduce a calibrated signal mixing function C(x) for characterizing the contribution-adjusted local 
signal correlation across the multiple signal acquisitions, which is parameterized by a set of b-values {bα , ..., bβ} 
and is defined as

where x represents spatial location, S represents a signal acquisition, f presents the conditional joint probability 
density function, V(x) represents a local volume around x , ρi represents coefficients for controlling the contribu-
tion of the different gradient pulse strengths and timings, and Z represents a calibration factor. The calibration 
factor allow the signal mixing function to compensate for inherent variations due to the scanner machine and 
imaging protocol used during acquisition which can lead to differences in CDI SI appearance across patients or 
even for the same patient at different acquisitions.

For this study, {bα , ..., bβ} was set at {50 s/mm2, 1000 s/mm2, ..., 7000 s/mm2
} (at 1000 s/mm2 intervals), V 

was defined as a 6 mm × 6 mm × 3 mm volume centered at x , and the definition of ρ will be discussed in a later 

(2)C{bα ,...,bβ }(x) =
1

Z

∫

. . .

∫

Sbα (x
′)ρα . . . Sbβ (x

′)ρβ f
(

Sbα (x
′), . . . , Sbβ (x

′)|V(x)
)

dSbα (x
′) . . . dSbβ (x

′),

Figure 4.   The methodology behind synthetic correlated diffusion imaging, which can be summarized as 
follows. First, multiple native DWI acquisitions are performed using a set of b-values B = {b1, b2, ..., bN } . 
Second, the native signal acquisitions S are passed into a signal synthesizer to compute synthetic signal 
acquisitions Ŝ . Third, the native and synthetic signal acquisitions are mixed together in a calibrated manner 
to obtain the local correlation of signal attenuation across the acquired signals, which produces a final signal 
(C) that characterizes the tissue being imaged with greater consistency in dynamic range across machines and 
protocols.
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section. The probability density function f was defined as an uncorrelated Gaussian distribution with mean x 
and covariance matrix � = diag(4 mm2, 4 mm2, 0 mm2) , and the calibration factor Z is computed as the median 
CDIs SI within the prostate gland. These definitions yield the specific form of Equ. (2) used in this study:

Second, we introduce the hybrid use of both native and synthetic signal acquisitions in the signal mixing 
process, thus leading to the notion of CDIs . The use of synthetic signal acquisitions alongside native signal acqui-
sitions enables us to reduce the acquisition time required to capture signals at gradient pulse configurations with 
higher b-values, as well as overcome SNR limitations with acquiring signals at gradient pulse configurations with 
higher b-values due to factors such as longer echo times and eddy current-induced distortions. Furthermore, 
it enables the leveraging of existing clinical imaging protocols and pulse sequences that are routine in mpMRI 
imaging sessions. More specifically, a synthetic signal acquisition Ŝb at gradient pulse configuration w ith a par-
ticular b-value can be synthesized at the signal synthesizer as

where Sbref  is a reference signal acquisition at b = bref  and Â(x) is the least-squares ADC estimate. Â(x) is given 
by Equ. (5), where b and log(S) are the average b-value and average log-intensity of the acquired native signals, 
respectively:

In this study, native signal acquisitions Sbi at B = {50 s/mm2400 s/mm2800 s/mm2
} were leveraged to synthe-

size the aforementioned synthetic signal acquisitions Ŝ at {1000 s/mm2, ..., 7000 s/mm2
} (at 1000 s/mm2 intervals). 

The synthesized signal acquisitions were then used alongside the native signal acquisition at b = 50 s/mm2 in 
the signal mixing process for CDIs.

CDIs coefficient optimization.  As described in Equ. (2), the contribution of different gradient pulse 
strengths and timings to the CDIs signal produced by the signal mixer can be controlled via coefficients ρ . In 
this study, we will study the efficacy of CDIs in both a baseline form (i.e., ρ = 1 for all gradient pulse strengths 
and timings) as well as in a form that is tuned specifically to optimize delineation. More specifically, we tune the 
coefficients ρ for the different gradient pulse strengths and timings using a Nelder-Mead simplex optimization 
strategy, with the objective function being the area under the ROC curve. This coefficient optimization will yield 
a tuned form of CDIs , which we denote CDIst  , that accounts for the importance of the different gradient pulse 
strengths and timings to delineation performance.

Visualization of CDIs.  To map CDIs SI in a form that is more natural for clinical interpretation, the CDIs 
SI is transformed to the logarithmic space for clinical visualization purposes. Given that CDIs is computed as a 
product of exponential signal acquisitions, CDIs SI is more naturally interpreted in a logarithmic space. Further-
more, the transformed CDIs SI is visualized as a heatmap overlay on T2w images to provide additional anatomi-
cal context with respect to the prostate gland. All image visualizations of CDIs SI in this study are shown with 
the aforementioned transforms. Finally, DWI-derived ADC and DCE-derived Ktrans are visualized as heatmap 
overlays on T2w images for comparison purposes in this study.

Statistical analysis.  Two different analysis methods were utilized in this study to investigate the relation-
ship between CDIs SI and the presence of PCa, as well as the performance of CDIs for delineating between csPCa 
tissue, insPCa tissue, and healthy tissue. In the first analysis method, we study the relationship between CDIs SI 
and the presence of PCa by performing histogram analysis to study the distribution of CDIs SI for healthy tissue, 
csPCa tissue, and insPCa tissue. In the second analysis method, a receiver operating characteristic (ROC) curve 
analysis was performed using CDIs to quantitatively assess the ability to delineate between healthy tissue, csPCa 
tissue, and insPCa tissue. Consistent with the contemporary concept of significant versus insignificant prostate 
cancer (csPCa vs. insPCa)21, csPCa tissue is defined as tissue with a Gleason score greater than or equal to 7 
(Gleason Grade Groups 2–5 according to the International Society of Urological Pathology) while insPCa tissue 
is defined as tissue with a Gleason score less than 7 (Gleason Grade Group 1). The ROC curves were estimated 
empirically, and for illustrative purposes ROC curves obtained from the pooled data of all patient cases were 
plotted. To provide a quantitative assessment of diagnostic accuracy, the area under the ROC curve was obtained 
as a single metric of delineation performance. For comparison purposes, histogram analysis and ROC curve 
analysis were also performed using T2w, DWI-derived ADC map values, and DCE-derived Ktrans map values.

To assess the statistical significance of differences in AUC values between different modalities, we adopt the 
critical ratio formulation of Hanley and McNeil22. Specifically, for each pair of modalities, the critical ratio z is 
defined as:

(3)C{bα ,...,bβ }(x) =
1

Z

∫∫∫

V(x)

Sbα (x
′)ρα . . . Sbβ (x

′)ρβ f
(

x′; x,�
)

dx′

(4)Ŝb(x) = Sbref (x) exp
(

−(b− bref )Â(x)
)

,

(5)Â(x) = −

∑
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(bi − b)
(

log(Sbi )− log(S)
)

∑
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where A1 and SE1 denote to the AUC and estimated standard error (SE) of modality 1, A2 and SE2 denote the 
AUC and estimated SE of modality 2, and r denotes the estimated correlation between A1 and A2 . The estimated 
SE for each modality is defined as:

where nP and nN denote the number of true positive and true negative examples, respectively.
To estimate the correlation coefficient r, the Pearson product-moment correlation is first used to estimate 

correlation between the two modalities for positive examples ( rP ) and negative examples ( rN ). The average of rP 
and rN and the average of A1 and A2 are then used to linearly interpolate the standard table presented by Hanley 
and McNeil22 to estimate r. Notably, differences in image resolution prevent one-to-one comparison of voxels 
when estimating the Pearson product-moment correlation, and as such the median values for csPCa, insPCa, 
and healthy tissue are used (computed per-patient).

Software.  Data processing, statistical analysis, and visualization was performed using the Python program-
ming language (version 3.7.5) with the following libraries: OpenCV (version 4.2.0.34)36, pydicom (version 
2.1.2)37, NiBabel (version 3.0.2)38, SciPy (version 1.4.1)39, scikit-learn (version 0.22.2.post1)40, NumPy (version 
1.18.2)41, SimpleITK (version 2.0.2)42, and Matplotlib (version 3.2.1)43.

Ethics.  This study has received ethics clearance from the University of Waterloo (30632), and was carried out 
in accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/
or their legal guardian(s).

Data availibility
The MRI dataset analysed during the current study is available in the PROSTATEx repository, https://​wiki.​cance​
rimag​ingar​chive.​net/​displ​ay/​Public/​SPIE-​AAPM-​NCI+​PROST​ATEx+​Chall​enges. The corresponding prostate 
segmentation masks and lesion segmentation masks are available in the PROSTATEx_masks repository, https://​
github.​com/​rcuoc​olo/​PROST​ATEx_​masks.

Code availability
The code used to compute CDIs from DWI is available from the corresponding authors on reasonable request.
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