Skip to main content
. 2022 Mar 1;12:3383. doi: 10.1038/s41598-022-07217-0

Table 2.

Segmentation results on the (a) MPUH; (b) Radboud test sets.

(a)
Classes UNet + FPN + ASPP — ResNeXt50 Ours UNet++ — EfficientNetB4 DeepLabV3+ 
Benign 0.852 0.86 0.887 0.887
Grade 3 0.881 0.897 0.836 0.856
Grade 4 0.90 0.912 0.905 0.889
Grade 5 0.923 0.923 0.95 0.952
(b)
Classes UNet + FPN + ASPP — ResNeXt50 Ours UNet++ — EfficientNetB4 DeepLabV3+ 
Benign 0.721 0.745 0.673 0.759
Grade 3 0.849 0.830 0.712 0.726
Grade 4 0.802 0.795 0.584 0.787
Grade 5 0.920 0.925 0.676 0.767