Skip to main content
. 2022 Feb 16;13:807639. doi: 10.3389/fphar.2022.807639

TABLE 2.

Molecular targets of fingolimod and its relevant effective concentrations/doses.

Author/Year Model/Therapeutic dose Molecular target/Form Effect Mechanisms of action
Chiba 1998 Rats - Decreases Circulating Lymphocytes Lymphocyte homing acceleration
Chiba et al. (1998) 0.1–1 mg/kg oral
Mandala 2002 Mice and Rats S1P receptors/Phosphorylated Rapid peripheral lymphopenia Lymphocytes sequestration
Mandala et al. (2002) 2.5 mg/kg IV
Brinkmann 2002 Rats S1P receptors Decreases Circulating Lymphocytes Lymphocytes sequestration in secondary lymphatic tissues and away from inflammatory lesions and graft sites
Brinkmann et al. (2002) 0.1–1 mg/kg oral (1,3–5)/Phosphorylated
Sanchez 2003 Mice S1P receptors/Phosphorylated Decrease in VEGF-induced vascular permeability, maintains the integrity and functionality of endothelial cells stimulates VE-cadherin and ß-catenin translocation and assembly into cell-cell junctions
Sanchez et al. (2003) 50 µg by gavage
Matloubian 2004 Mice S1P1/Phosphorylated Lymphopenia S1P1 downregulation
Matloubian et al. (2004) 1.1 or 1 mg/kg IP
Bandhuvula 2005 Mice S1P lyase/Non- Phosphorylated Lymphopenia S1P lyase inhibition
Bandhuvula et al. (2005) 1 mg IP
Lamontagne 2006 Mice S1P1/Phosphorylated Inhibition of tumor-associated angiogenesis S1P1 internalization
LaMontagne et al. (2006) 0.3 or 3 mg/kg oral
Payne 2007 In vitro cPLA2α/Non- Phosphorylated Inflammation inhibition cPLA2α inhibition
Payne et al. (2007) 200–800 p.m.
Schmid 2007 Mice S1P1/Phosphorylated Inhibition of tumor-associated angiogenesis
Schmid et al. (2007) 10 mg/kg IP
Toneli2010 In vitro SK1/Non-Phosphorylated Induces apoptosis in cancer cells ubiquitin-proteasomal degradation
Tonelli et al. (2010) 50 µM
Lahiri 2009 In vitro Ceramide synthase/Non-Phosphorylated - noncompetitive inhibition toward acyl-CoA and sphinganine
Lahiri et al. (2009) 25–100 µM
Chen 2013 Rats Ceramide synthase/Non-Phosphorylated Protects retina from light-induce degeneration De novo Ceramide synthase inhibition
Chen et al. (2013) 10 mg/kg IP
Dawson 2011 In vitro ASMase/Non-Phosphorylated - proteolytic degradation of the enzyme complex
Dawson and Qin, (2011) 10 µM
Hait 2014 In vitro class I HDACs/Phosphorylated facilitates fear extinction memory reactivates ERα expression Binding to active site of class I HDACs leading to enzymatic activity inhibition
Hait et al. (2014) 5 µM
Hait 2015 Mice
Hait et al. (2015) 1 mg/kg oral
Segura-Ulate 2017 In vitro HDAC/- reverses a-synuclein-induced downregulation of BDNF increased histone 3 acetylation
Segura-Ulate et al. (2017) 150 nM
Perla 2020 In vitro HDAC/- induces antitumor activities in medulloblastoma cells increased histone 3 acetylation
Perla et al. (2020) 7.5 or 10 µM
Ji 2019 Rat HDAC/Phosphorylated M1 to M2 shift decrease pro-inflammatory factors prevent ischemia-induced brain injury prevents KLF4 to interact with HDAC1
Ji et al. (2019) 2 mg/kg IP
Qin 2013 In vitro TRPM7/Non-Phosphorylated inhibits cell proliferation and migration TRPM7 inhibition
Qin et al. (2013) 1 µM
Schilling 2014 In vitro TRPM7/- inhibits cell proliferation and polarization of macrophages TRPM7 inhibition
Schilling et al. (2014) 3 µM
Van meeteren 2008 In vitro Autotaxin/LPA axis/Phosphorylated reduces plasma levels of LPA Autotaxin inhibition
van Meeteren et al. (2008) 100–250 nM
Mice
Szepanowski 2016 1 mg/kg oral
Mice
Szepanowski et al. (2016) 1 mg/kg IP Phosphorylated LPA reduction LPA synthesis inhibition
Matouska 2003 In vitro PP2A/Non-Phosphorylated Akt and p70S6k/p85S6k dephosphorylation leading to cell apoptosis disruption of interaction of PP2A to SET, leading to PP2A activation
Matsuoka et al. (2003) 2.5–10 µM