Table 12.
The performance results of AOA based on GLCM descriptor against other recent optimizers for Gallagher’s dataset
| Gallagher’s Dataset – GLCM Descriptor | |||||||
|---|---|---|---|---|---|---|---|
| Algorithms | Fitness | Accuracy | Recall | Precision | Fscore | Selection R | CPU tiime |
| HHO | 0.9425 | 0.9475 | 0.9525 | 0.9533 | 0.9524 | 0.5510 | 1861.5200 |
| SCA | 0.9486 | 0.9505 | 0.9525 | 0.9535 | 0.9525 | 0.2449 | 1106.1770 |
| EO | 0.9470 | 0.9501 | 0.9520 | 0.9530 | 0.9520 | 0.4490 | 1566.2000 |
| EPO | 0.9408 | 0.9441 | 0.9475 | 0.9486 | 0.9475 | 0.3878 | 1600.2400 |
| MRFO | 0.9445 | 0.9457 | 0.9495 | 0.9496 | 0.9495 | 0.5714 | 1560.8800 |
| HGSO | 0.9417 | 0.9452 | 0.9500 | 0.9483 | 0.9488 | 0.4082 | 453.2250 |
| MVO | 0.9437 | 0.9493 | 0.9524 | 0.9534 | 0.9525 | 0.6122 | 2045.6700 |
| AOA | 0.9482 | 0.9503 | 0.9525 | 0.9537 | 0.9525 | 0.2653 | 406.5800 |