Skip to main content
. 2022 Mar 2;26(19):10435–10464. doi: 10.1007/s00500-022-06886-3

Table 3.

The impact of features descriptors on the performance of AOA against other recent optimizers over fitness measures

Fitness GT dataset FEI dataset
Algorithms HOG LBP GLCM HOG LBP GLCM
HHO 0.8947 0.8644 0.8913 0.9776 0.9262 0.9849
SCA 0.8914 0.8653 0.8873 0.9820 0.9518 0.9841
EO 0.9002 0.8642 0.8927 0.9853 0.9461 0.9829
EPO 0.8966 0.8658 0.8887 0.9804 0.9351 0.9780
MRFO 0.8950 0.8593 0.8902 0.9837 0.9412 0.9853
HGSO 0.8902 0.8543 0.8833 0.9837 0.9298 0.9834
MVO 0.8981 0.8589 0.8954 0.9805 0.9335 0.9825
AOA 0.9015 0.8690 0.8969 0.9882 0.9534 0.9858