Skip to main content
. 2022 Mar 2;26(19):10435–10464. doi: 10.1007/s00500-022-06886-3

Table 8.

The impact of features descriptors on the performance of AOA against other recent optimizers over Precision measures

Precision GT dataset FEI dataset
Algorithms HOG LBP GLCM HOG LBP GLCM
HHO 0.9014 0.8677 0.8949 0.9903 0.9347 0.9951
SCA 0.8891 0.8400 0.8870 0.9880 0.9560 0.9877
EO 0.9018 0.8414 0.8927 0.9928 0.9642 0.9904
EPO 0.8960 0.8475 0.8883 0.9882 0.9383 0.9881
MRFO 0.9052 0.8352 0.8913 0.9951 0.9510 0.9929
HGSO 0.8908 0.8361 0.8874 0.9928 0.9417 0.9927
MVO 0.8974 0.8399 0.8977 0.9927 0.9478 0.9927
AOA 0.9099 0.8529 0.8980 0.9951 0.9457 0.9951