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Abstract

Sexual development in malaria parasites involves multiple signal transduction pathways mediated 

by reversible protein phosphorylation. Here, we functionally characterized a protein phosphatase, 

Ser/Thr protein phosphatase 5 (PbPP5), during sexual development of the rodent malaria 

parasite Plasmodium berghei. The recombinant protein phosphatase domain displayed obvious 

protein phosphatase activity and was sensitive to PP1/PP2A inhibitors including cantharidic 

acid (IC50=122.2 nM), cantharidin (IC50=74.3 nM), endothall (IC50=365.5 nM) and okadaic 

acid (IC50=1.3 nM). PbPP5 was expressed in both blood stages and ookinetes with more 

prominent expression during sexual development. PbPP5 was localized in the cytoplasm of the 

parasite and highly concentrated beneath the parasite plasma membrane in free merozoites and 

ookinetes. Targeted deletion of the pbpp5 gene had no influence on asexual blood-stage parasite 

multiplication or the survival curve of the infected hosts. However, male gamete formation and 

fertility were severely affected, resulting in almost complete blockade of ookinete conversion 

and oocyst development in the Δpbpp5 lines. This sexual development defect was rescued by 

crossing Δpbpp5 with the female defective Δpbs47 parasite line, but not with the male defective 

Δpbs48/45 line, thus confirming the essential function of the pbpp5 gene in male gamete fertility. 

Furthermore, the aforementioned PP1/PP2A inhibitors all had inhibitory effects on exflagellation 

of male gametocytes and ookinete conversion. In particular, endothall, a selective inhibitor of 

PP2A, completely blocked exflagellation and ookinete conversion at ~548.3 nM. This study 

elucidated an essential function of PbPP5 during male gamete development and fertility.
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1. Introduction

Despite decades of effort to control malaria, it remains a global health burden, especially 

for the tropical and subtropical countries. The 2017 World Malaria Report showed that 

there were approximately 216 million malaria cases in 2016, resulting in an estimated 

445,000 deaths (WHO, 2018). Current malaria control efforts rely heavily on vector-based 

approaches such as insecticide-treated nets and indoor residual sprays, and effective 

artemisinin-based combination therapy (ACT) (Bhatt et al., 2015). However, the emergence 

and spread of insecticide-resistant vectors and artemisinin-resistant Plasmodium falciparum 
parasites have compromised the effectiveness of these control measures. Integrated and 

novel approaches targeting vulnerable steps in the life cycle of the malaria parasites 

are needed. Transmission of malaria from the vertebrate host to the mosquito vector is 

dependent on the formation of gametocytes, a process termed gametocytogenesis (Liu et al., 

2011).Strategies to interfere with these developmental processes by using gametocytocidal 

drugs and transmission blocking vaccines are actively pursued. Currently, transmission 

blocking vaccines are still in development (Wu et al., 2015). Most of the commonly used 

antimalarial drugs only target asexual stages and have no effect on gametocyte stages 
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(Kiszewski, 2011; Cui et al., 2015). Only the 8-aminoquinoline drug primaquine is effective 

on gametocytes, and to interrupt Plasmodium falciparum transmission a single dose of 

primaquine (0.25 mg/kg) is recommended by the World Health Organization (WHO) to be 

added to the standard ACT (Graves et al., 2018). However, there is still concern about the 

hemolytic risk of primaquine in people with glucose-6-phosphate dehydrogenase deficiency. 

Thus, there is an urgent need for new transmission blocking drugs, and it is hoped that better 

understanding of the transmission stages will yield novel drug targets.

Transmission of malaria to a susceptible mosquito is initiated when she ingests the arrested 

sexual precursor stage, the gametocyte, from the vertebrate host. Inside the mosquito 

midgut, a drop in temperature, change in pH, and mosquito factors such as xanthurenic acid 

induce the gametocyte to undergo gametogenesis to form male and female gametes (Billker 

et al., 1997). Microgametes then fertilize macrogametes to form zygotes, which transform 

into motile and invasive ookinetes. To orchestrate these form changes, the parasites utilize 

multiple signaling pathways, which involve reversible protein phosphorylation through 

kinases and phosphatases (Billker et al., 2004; Doerig et al., 2008; McRobert et al., 

2008; Miliu et al., 2017). It is thus conceivable that a better understanding of kinases and 

phosphatases involved in sexual development of the parasites will help identify viable targets 

for transmission blocking drug discovery (Doerig and Meijer, 2007; Lucet et al., 2012).

Malaria parasites encode approximately 85 putative protein kinases and 30 protein 

phosphatases (Ward et al., 2004; Wilkes and Doerig, 2008; Guttery et al., 2014). Advances 

in functional genomics tools allowed large-scale functional analyses of Plasmodium kinases 

and phosphatases. Studies in the human and rodent Plasmodium parasites revealed that 

approximately half of the protein kinases are essential for asexual blood stages, while 

a further 14 protein kinases are needed for sexual development (Tewari et al., 2010; 

Solyakov et al., 2011). Similarly, functional studies of the 30 predicted phosphatases of 

the Plasmodium berghei phosphatome showed that 14 of them are dispensable for asexual 

stages, among which six show essential functions during sexual development (Guttery et 

al., 2014). Specifically, among the metal-dependent protein phosphatase (PPM) members, 

ppm1 is essential for exflagellation of the microgametocytes, ppm2 deletion reduces 

macrogamete number and ookinete conversion, whereas ppm5 deletion severely affects 

oocyst development. Two unique phosphatase family members, the protein phosphatase 

containing kelch-like domains (ppkl) and the Shewannella-like protein phosphatase (shlp1), 

involve ookinete differentiation and oocyst development, respectively (Guttery et al., 2012b; 

Patzewitz et al., 2013). The Protein Tyrosine Phosphatases (PTP)-like A homologue is 

essential for sporogony, as its knockout produces similar numbers of oocysts to the wild type 

(WT) but no sporozoites.

Malaria parasites have homologues of all major human phosphoprotein phosphatase (PPP) 

subfamilies PP1 – PP7 (Kutuzov and Andreeva, 2008). Functional studies showed that 

all of them are indispensable for asexual blood stages (Guttery et al., 2014). Of the 

PPP subfamilies, PP5 differs from other phosphatases in possessing three N-terminal 

tetratricopeptide repeat (TPR) domains, which are auto-inhibited and responsible for 

protein-protein interactions. Being expressed in virtually all mammalian systems, PP5 

interacts with a number of proteins through its TPR domains to function as a modulator 
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in multiple signaling pathways (Becker et al., 1994; Chinkers, 1994; Hinds and Sanchez, 

2008). In protozoan parasites, down-regulation of PP5 in Eimeria tenella leads to 

apoptosis in second generation merozoites (Zhou et al., 2013). Over-expression of PP5 

in Trypanosoma brucei rendered the parasite more resistant to geldanamycin treatment, 

whereas its knockdown reduced cell growth (Jones et al., 2008). PP5 in P. falciparum 
shares a similar structure with other protozoan PP5 proteins and it interacts with Heat 

Shock Protein 90 (Hsp90) (Dobson et al., 2001; Lindenthal and Klinkert, 2002).Although its 

function is not known, PP5 is highly expressed in male gametocytes in P. berghei, suggesting 

an important role in sexual development (Guttery et al., 2014). Here, we attempted to 

elucidate the function of PbPP5 through in vitro enzyme studies and genetic manipulation, 

which identified an important role of PbPP5 in regulating male gamete fertilization.

2. Materials and methods

2.1. Sequence analysis

SMART software (http://smart.embl-heidelberg.de/) was used to analyze the conserved 

domains of PbPP5 (GenBank Accession number XP_673410.2) (Letunic and Bork, 

2018), while TMHMM software (http://www.cbs.dtu.dk/services/TMHMM-2.0/) was 

used to analyze its transmembrane domain. Motif scan software (https://myhits.isb-

sib.ch/cgi-bin/motif_scan) was used to analyze structural domains, and BLASTp (http://

www.ncbi.nlm.nih.gov/BLAST/) was used to search for homologous proteins. Phylogenetic 

analysis of PbPP5 and known PPs in other species retrieved from GenBank were 

aligned using MUSCLE software (https://www.ebi.ac.uk/Tools/msa/muscle/). Subsequently, 

a phylogenetic tree was constructed using the neighbor-joining method in MEGA 7.0 

(https://www.megasoftware.net/). The reliability of the tree was measured by bootstrap 

analysis with 1,000 replicates.

2.2. Experimental animals, parasites and mosquitoes

Six- to eight-week old female BALB/c mice (Beijing Animal Institute, China) and 

mosquitoes were infected with WT Plasmodium berghei ANKA 2.34 strain and mutant 

parasites as previously described (Kou et al., 2016). Animal handling was conducted 

according to a China Medical University Animal Care and Use Committee approved 

protocol. Female Anopheles stephensi mosquitoes were fed a 10% (w/v) glucose solution 

and reared at 25 °C and 50–80 % humidity with a 12:12 h light:dark period under standard 

laboratory conditions.

2.3. Generation of transgenic parasites

Targeted deletion of the pbpp5 gene was accomplished by double-crossover homologous 

recombination using the vector PbGEM-301794 (kindly provided by plasmoGEM; http://

plasmogem.sanger.ac.uk/). Primers used for transgenic plasmid construction are listed in 

Supplementary Table S1. To generate the plasmids for the pbs47 (PlasmoDB accession 

number PBANKA_1359700) knockout, DNA fragments of 962 bp upstream and 766 

bp downstream sequences were amplified from P. berghei genomic DNA (gDNA) using 

primers in Supplementary Table S1. To knock out pbs48/45 (PlasmoDB accession number 

PBANKA_1359600), DNA fragments of 538 bp upstream and 779 bp downstream 
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sequences were amplified (Supplementary Table S1). The amplified fragments were digested 

with HindIII/PstI and KpnI/NotI, respectively, and subsequently cloned into the pL0034 

plasmid, which contains the hdhfr cassette conferring resistance to pyrimethamine, to 

generate the pL0034-pbs47 and pL0034-pbs48/45 plasmids (van Dijk et al., 1995). Before 

transfection, the PbGEM-30194 plasmid was linearized using NotI, and the pL0034-pbs47 

and pL0034-pbs48/45 plasmids were linearized with SacII and KpnI. To generate episomally 

expressed full-length PbPP5 protein tagged with green fluorescent protein (GFP) at the 

C-terminus, specific primers PbPP5full lenthB1F and PbPP5full lengthB2RV3 were used to 

amplify the open reading frame (ORF) of PbPP5, and PbPP55’UTRF and PbPP55’UTRR 

primers were used to amplify the 5’ untranslated region (UTR) region (−1892 ~ −2 bp) 

of the pbpp5 gene (Supplementary Table S1). Gateway BP (attachment bacterial site (attB) 

and attachment phage site (attP)) recombination reactions of PCR product with pDONR™ 

221 and pDONR™ P4-P1R (Invitrogen) were performed to generate pEN12-PbPP5full length 

and pENTR41-PbPP5–5’UTR plasmids. A Gateway MultiSite LR (attachment left site 

(attL) and attachment right site (attR)) recombination reaction was performed with pEN12-

PbPP5full length, pENTR41-PbPP5–5’UTR, pENT23-GFP and pCHDR-3/4 plasmids to 

generate a pCHDR-PbPP5full length-GFP plasmid (van Dooren et al., 2005) according to 

the manufacturer’s instructions. Transfection, selection and parasite cloning were performed 

as previously described (Janse et al., 2006a,b). Infected blood was collected to confirm the 

correct integration by diagnostic PCR (Supplementary Table S1).

2.4. Expression of recombinant PbPP5 and immunization

The recombinant PbPP5 protein used in the current study was expressed using the Pichia 
expression system in the host strain GS115 his4 (auxotrophic for histidine) (Genecreate, 

Inc.). Briefly, the PP2Ac domain of PbPP5 (amino acid (aa) positions 407–711) was 

amplified, cloned into the expression vector pPIC9K plasmid and transformed into the 

GS115 strain. Expression of the recombinant PbPP5yPP2Ac (rPbPP5 yPP2Ac) protein was 

induced by adding 200 μl of 5% methanol into the yeast peptone (YP) culture medium at 

30oC for 24 h. The rPbPP5yPP2Ac protein was purified using a Ni-NTA column, dialyzed 

in 20 mM Tris-HCl (pH 7.5) and 1 mM DTT, and concentrated using Amicon®Ultra 0.5 

(Millipore, USA) to yield 2 mg/ml of protein concentration.

For immunization of mice, 6–8 weeks old female BALB/c mice (n = 10) were initially 

immunized by s.c. injection with 50 μg of rPbPP5yPP2Ac protein emulsified in FCA (Sigma), 

followed by two booster injections at 2 week intervals with the same amount of protein in 

incomplete Freund’s adjuvant. Mice in the control group (n = 10) were injected with PBS 

using the same immunization procedure. Final bleeding was done 2 weeks after the last 

immunization. Blood was collected from the tail vein of each mouse and allowed to clot at 

room temperature. The antiserum titer against PbPP5 was analyzed by ELISA as previously 

described (Zheng et al., 2016). Briefly, a 96-well plate was coated with the rPbPP5yPP2Ac 

protein at 10 μg/mL overnight at 4°C, and then blocked with 3% BSA in 1 × PBS and 

0.05% Tween 20 (PBS-T) for 2 h at room temperature. Mouse antiserum was diluted in 

PBS containing 10% calf serum albumin (pH 7.2), added to the wells, and incubated for 2 

h at 37 °C. After two washes with PBS-T, horse radish peroxidase (HRP)-conjugated goat 

anti-mouse IgG antibodies (Thermo Scientific) diluted 1:5000 was added and incubated for 
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2 h at 37 °C. After seven washes with PBS-T, the chromogenic substrate was added and 

developed for 5 min. The reaction was stopped by adding 50 μl of 2 mM H2SO4 to each 

well. The plate was immediately read with a plate reader at 490 nm.

2.5. Indirect immunofluorescence assay (IFA)

IFA was carried out on different developmental stages of P. berghei as previously described 

(Tonkin et al., 2004). Briefly, 100 μl of P. berghei-infected tail blood were collected into a 

1.5 ml tube, and washed three times with PBS. Cells were fixed with 4% paraformaldehyde 

and 0.0075% electron microscope (EM) grade glutaraldehyde in PBS for 30 min. Fixed 

cells were either subjected to permeabilization with 0.1% Triton X-100 for 5 min on ice or 

without permeabilization, followed by PBS washing and rinsing with 0.1 mg/ml of sodium 

borohydride (NaBH4)/PBS for 10 min, and blocked with 5% skimmed milk for 30 min at 

37°C. After blocking, cells were incubated with mouse anti-PbPP5 sera (1:500), mouse or 

rabbit anti-GFP monoclonal antibody (mAb) (abcam, USA), or rabbit anti-GAPDH (abcam, 

USA) at 37°C for 1 h. After washing three times in PBS, the slides were incubated with the 

secondary antibodies (AlexaFluor-goat anti-mouse 488 and/or anti-rabbit 594) (Invitrogen) 

at 1:500 for 1 h at 37°C. Parasite nuclei were counter-stained with 1 μg/mL of DAPI 

(Thermo scientific, USA). Cells were washed three times with PBS and mounted with 

ProLong® Gold anti-fade reagent (Thermo scientific, USA). After that, the cells were settled 

on a slide, covered by coverslips and visualized under a Nikon ECLIPSE 80i microscope.

2.6. Western blot

The purification of schizonts, gametocytes and ookinetes was performed as previously 

described (Sinden et al., 1985; Beetsma et al., 1998; Janse et al., 2006b). After collection, 

parasite-infected cells were treated with 0.15% saponin (Sigma) in PBS for 8 min on ice and 

pelleted through centrifugation at 4°C. Parasite pellets were washed several times with PBS 

containing protease inhibitors (PBS-PI) and proteins were extracted with PBS-PI containing 

2% SDS and 0.1% Triton-X100 for 30 min at room temperature. Equal amounts of parasite 

antigens (10 μg) were electrophoresed on a 12% SDS-PAGE gel and transferred to a 0.22 μm 

polyvinylidene fluoride (PVDF) membrane (Bio-Rad). The membrane was incubated with 

mouse anti-PbPP5 antiserum (1:500), anti-GFP mAb (9F9. F9, abcam), rabbit polyclonal 

anti-GAPDH antibodies (1:2000, abcam), or anti-Hsp70 mAb (5A5, abcam) in Tris-buffered 

saline containing 0.1% Tween 20 (TBS-T) for 3 h at room temperature, washed three times 

in TBS-T, and then incubated for 2 h at 37°C with HRP-conjugated goat anti-mouse IgG 

(H+L) antibodies (Thermo Scientific) diluted at 1:25,000 in TBS-T. Proteins on the blot 

were visualized with a Pierce ECL Western Blotting Kit (Thermo Scientific) on Tanon 

4200 (Tanon). The relative molecular masses of proteins were estimated with reference to 

PageRuler Prestained Protein Ladder (Thermo Scientific).

2.7. Protein phosphatase assay

The phosphatase activity of the PbPP5yPP2Ac protein was assayed by using the ProFluor® 

Ser/Thr PPase Assay kit (Promega, USA). Briefly, concentrations of PbPP5yPP2Ac and 

His-tag protein as the control (Zhu et al., 2017) were determined by the Bradford method 

using BSA as the standard (TaKaRa, Japan). The rPbPP5yPP2Ac and the His protein in 

25 μl of phosphatase dilution solution were added into each well. An equal volume of 
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peptide solution was added into all wells, mixed for 15 s, and incubated for 10 min at 

room temperature. Then, 25 μl of protease were added into each well and the plate was 

incubated at room temperature for 90 min. Finally, 25 μl of stabilizer solution were added 

into each well and the plate was read on a Biomek 2000 laboratory automation workstation 

(Beckman Coulter, Inc., Fullerton, CA, USA). Fluorescence emission from the product 

was measured with a multiwell plate reader (Cytofluor II; Applied Biosystems, Foster 

City, CA, USA) with excitation at 485 nm (20 nm bandwidth) and emission at 530 nm 

(30 nm bandwidth). Inhibition of the rPbPP5yPP2Ac by several PP1/PP2A inhibitors from 

the Screen-Well Phosphatase Inhibitor Library (BML-2384, Enzo Life Science), including 

cantharidic acid, cantharidin and endothall (Supplementary Table S2), was performed as 

described above.

2.8. Phenotypic analysis of Δpbpp5 parasites during parasite development

To study the functions of pbpp5 during development, 10 mice were pre-treated with 

phenylhydrazine. Two groups of five mice each were injected i.p. with 1 × 106 Δpbpp5- 

and WT P. berghei-infected RBCs (iRBCs), respectively. Parasitemia was monitored daily 

by Giemsa-stained tail blood smears. On day 3 p.i., gametocytemia (mature gametocytes 

per 100 RBCs), gametocyte sex ratio, exflagellating male gametocytes, and interactions 

between male and female gametes were determined. For the exflagellation assay, 10 μl 

of gametocyte-infected blood were obtained from the tail vein and mixed immediately 

with 90 μl of complete ookinete culture medium. The mixture was placed under a Vaseline-

coated coverslip at 25°C for 15 min, the exflagellation centers were counted under a phase 

contrast microscope in 30 fields. The numbers of male gametocytes forming or not forming 

exflagellation centers were counted. An exflagellation center is defined as an exflagellating 

male gametocyte with more than four tightly associated red blood cells (Bialojan and Takai, 

1988). For quantification of male-female interactions, 10 min after induction of gamete 

formation, the cell suspension was placed in a Vaseline-coated coverslip and observed for 

a period of 20 min under a phase contrast microscope. Attachment of males to females 

was scored if the male had active interaction/attachment with the female for more than 

3 s. Ookinete formation was evaluated by adding 10 μl of iRBCs into 90 μl of ookinete 

culture medium and incubating at 19°C for 24 h. Cultured ookinetes were labeled with 

a mouse anti-Pbs21 monoclonal antibody (1:500) and enumerated under a fluorescence 

microscope. Cross-fertilization experiments with different parasite lines defective in either 

male or female gametogenesis were performed as previously described (Ponzi et al., 2009; 

Boisson et al., 2011). Briefly, gametes from the Δpbpp5 line were cross-fertilized with 

gametes of parasite lines that produced only fertile female gametes (Δp48/45) (van Dijk et 

al., 2001) or fertile male gametes (Δp47) (Khan et al., 2005). All the fertilization/ookinete 

maturation assays were done in triplicate from independent experiments.

To determine the effect of Δpbpp5 on sporogonic development in mosquitoes, A. stephensi 
mosquitoes (~100/mouse) starved for 6 h were allowed to feed for 30 min on three mice 

infected 3 days earlier with either the WT P. berghei or Δpbpp5. Fully engorged mosquitoes 

were maintained at 19–22°C and in 50–80% relative humidity. Ten days after feeding, up to 

40 mosquitoes were dissected in each group. The midguts of mosquitos were removed and 

stained with 0.5% mercurochrome (Sigma–Aldrich). Oocysts were counted to determine the 
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prevalence (number of infected mosquitoes) and intensity of infection (number of oocysts 

per midgut). Mosquitoes were dissected on day 18 post blood feeding to determine the 

presence of salivary gland sporozoites.

2.9. Exflagellation and ookinete conversion inhibition assay

The inhibitory effects of cantharidic acid, cantharidin and endothall on P. berghei 
exflagellation and ookinete conversion were evaluated in vitro. All three compounds were 

prepared as 10 mM stock solutions in DMSO. They were further diluted in ookinete culture 

medium to a final concentration of 1× and 1.5× of their respective half maximal inhibitory 

concentration (IC50) determined for the rPbPP5yPP2Ac recombinant enzyme: cantharidic acid 

(1×IC50=122.2 nM, 1.5×IC50=183.3 nM), cantharidin (1×IC50=74.3 nM, 1.5×IC50=111.5 

nM) and endothall (1×IC50=365.5 nM, 1.5×IC50=548.3 nM). They were used for in vitro 

exflagellation and ookinete conversion assays as described above.Ookinete culture medium 

containing 0.1% DMSO was used as a control. All experiments were performed in triplicate 

with each replicate using the parasite-infected blood of a different mouse.

2.10. Statistical analyses

Statistical comparison between groups (IgG levels, parasitemia, gametocytemia, and 

ookinete numbers) was done by Student’s t tests using the GraphPad Prism software. The 

intensity of infection (oocysts/midgut) was analyzed using the Mann–Whitney U test, while 

infection prevalence was assessed using the Fisher’s exact test.

3. Results

3.1. Sequence analysis of PbPP5

The pbpp5 gene encodes a protein of 711 aa. Similar to its P. falciparum orthologue 

PfPP5, PbPP5 contains a C-terminal phosphatase domain (PP2Ac, 418–694 aa) and an 

extended N-terminal domain containing three TPR motifs (TPR1, 186–219 aa; TPR2, 278–

311 aa; and TPR3, 312–345 aa), a typical feature of PPPs (Supplementary Fig. S1A). 

Searching the motif database revealed 12 putative N-glycosylation sites, nine casein kinase 

II phosphorylation sites, 13 protein kinase C phosphorylation sites, and one tyrosine kinase 

phosphorylation site (Supplementary Fig. S1B). Additional biological evidence is required 

to validate these predictions. PbPP5 was aligned with other known PP5 protein family 

members, which showed significant homology in the TPR domain and the PP2Ac domain 

(Supplementary Fig. S1C). A phylogenetic tree constructed from the alignment showed that 

PbPP5 was clustered with other protozoan PP5s (Supplementary Fig. S1D).

3.2. PbPP5 enzyme activity and sensitivity to PP1/PP2A inhibitors

To examine the catalytic activity of PbPP5, the PP2Ac domain of PbPP5 protein was 

expressed in yeast as a His-tag fusion protein and was affinity-purified to almost 

homogeneity (Fig. 1A). The band size of the rPbPP5yPP2Ac protein on the SDS-PAGE gel 

is around 36 kDa, consistent with the predicted size (Fig. 1A). The catalytic activity of 

rPbPP5yPP2Ac protein was compared with the control His-tag protein from the pET32a (+) 

vector expressed and purified from Escherichia coli (Zhu et al., 2017) using phosphorylated 

S/T PPase R110 (Promega) as the substrate. As shown in Fig. 1B, rPbPP5 exhibited obvious 
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phosphatase activity compared with the control (P < 0.001). Furthermore, the phosphatase 

activity of the rPbPP5 was sensitive to PP1/PP2A inhibitors, with IC50 values for cantharidic 

acid, cantharidin, endothall and okadaic acid of 122.2, 74.3, 365.5, and 1.3 nM, respectively 

(Fig. 1C–F). This result is in good accordance with the inhibitory effect of okadaic acid on 

recombinant PfPP5 (Dobson et al., 2001).

3.3. PbPP5 expression and localization

To investigate the localization of PbPP5, we generated a parasite line with episomally-

expressed PbPP5 fused with GFP at its C-terminus (PbPP5-GFP) driven by its own 

promoter. The expression of PbPP5-GFP was confirmed by Western blot analysis of parasite 

lysates of mixed blood stages using the anti-GFP antibody, which showed an ~110 kDa 

protein band that is consistent with the predicted molecular size of the fusion protein (Fig. 

2A). Additionally, we raised polyclonal mouse antibodies against rPbPP5, and the antisera 

recognized the rPbPP5 protein in a Western blot (data not shown). To study PbPP5 protein 

expression in different developmental stages, proteins extracted from different stages of the 

WT parasites were separated by SDS-PAGE and probed with the polyclonal anti-PbPP5 

antisera. Whereas the mouse pre-immune sera did not identify any specific protein bands in 

a parallel Western blot (data not shown), a protein band with a molecular mass of ~82 kDa 

was detected in each of the developmental stages examined by the anti-PbPP5 antisera, and 

the protein band corresponds to the size of the endogenous PbPP5 (Fig. 2B). It is noteworthy 

that the PbPP5 protein was substantially more abundant in sexual stages than in asexual 

stages.

We used both WT and PbPP5-GFP parasites to determine the localization of PbPP5 protein 

during blood stage development of the parasite. First, using mouse-anti-PbPP5 antisera 

and rabbit anti-GFP antibody, we showed significant overlap of the fluorescent signals, 

indicating that PbPP5-GFP was correctly localized in the parasites (Supplementary Fig. S2). 

The fluorescence signals for GFP at ring, trophozoite, schizont and gametocyte stages were 

diffused in parasite cytosol, and some signals were associated with the membranes (Fig. 

3A). The localization patterns were similar to that of the PbPP5 in WT parasites detected 

with the anti-PbPP5 antisera (Fig. 3B). Co-localization analysis showed that the fluorescent 

signals for PbPP5 and GAPDH (a cytosolic marker) partially overlapped, suggesting some 

of the PbPP5 proteins were cytosolic (Fig. 3B). Interestingly, in free merozoites and zygotes 

- ookinetes, the fluorescent signals were more intense at the rim of the parasites, which 

were reminiscent of membrane localization (Fig. 3B, Supplementary Fig. S2). Yet, when 

the zygote to ookinete stage parasites were examined under non-permeabilized conditions, 

PbPP5 was not detectable, suggesting that PbPP5 was concentrated beneath the parasite 

plasma membrane (Supplementary Fig. S3).

3.4. PbPP5 deletion and function during asexual stages

To study the function of PbPP5 during the parasite’s intraerythrocytic cycle, we generated 

pbpp5 knockout (Δpbpp5) parasite lines. After homologous recombination, the pbpp5 open 

reading frame (ORF) was replaced by the hdhfr selectable cassette (Supplementary Fig. 

S4). Correct allelic replacement was confirmed by diagnostic PCR (Supplementary Fig. 

S4B). Furthermore, Western blot analysis using specific antibodies against PbPP5 in mixed 
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blood stage parasites confirmed deletion of pbpp5, where the PbPP5 protein of ~82.5 kDa 

was observed in WT but not the Δpbpp5 parasites (Supplementary Fig. S4C). We selected 

two clones, Δpbpp5 clones k1 and k3, from two independent transfection experiments, for 

phenotypic analysis. In mice infected by i.v. injection of approximately the same numbers of 

WT, Δpbpp5 k1, and Δpbpp5 k3 parasites, we did not observe noticeable differences in daily 

parasitemias among the three groups between days 3 and 20 (Supplementary Fig. S5A), 

indicating that PbPP5 is dispensable for asexual blood stages of P. berghei. Furthermore, 

pbpp5 deletion did not appear to affect the growth phenotype of the parasites as the survival 

curves of BALB/c mice infected with the WT parasites and the two Δpbpp5 lines were 

comparable (Supplementary Fig. S5B).

3.5. Functions of PbPP5 during sexual development

We next explored whether PbPP5 plays any rolesin sexual development of the parasite. 

Compared with the WT parasite, the pbpp5 deletion lines did not show a defect in 

gametocytogenesis, as the day 3 gametocytemias were similar among the three parasite 

lines (P > 0.05, t test; Fig. 4A). In addition, although sex ratios of gametocytes were slightly 

reduced in the Δpbpp5 lines, the difference was not significant (P > 0.05, t test; Fig. 4B). 

However, when day 3 infected blood was used for in vitro culture of ookinetes, there was a 

complete lack of ookinetes in Δpbpp5 parasites (Fig. 4C).

To substantiate the in vitro findings, mosquitoes were fed on mice infected with either 

WT or Δpbpp5 k1 parasites and oocyst development was examined on day 10 after 

feeding. Pbpp5 deletion almost resulted in a complete blockade of subsequent sporogonic 

development. In mosquitoes fed on three Δpbpp5-infected mice, infection prevalences were 

0% (0/33), 30.6% (11/36), and 7.5% (3/40) compared with 100% (26/26), 100% (26/26) 

and 100% (37/37) among mosquitoes fed on WT P. berghei-infected mice (Fig. 4D). The 

mean oocyst density was 0, 1.4, and 0.1 oocysts/midgut in mosquitoes fed on the three 

Δpbpp5 k1 parasite-infected mice, significantly lower than that of 47.5, 80.8, and 69.9 

oocysts/midgut in mosquitoes fed on the three WT P. berghei-infected mice (P < 0.001, 

Mann–Whitney U test; Fig. 4D). Subsequent dissection of ~35 mosquitoes 18 days after 

feeding on Δpbpp5-infected mice did not reveal salivary gland sporozoites.

To identify which step(s) during the development of ookinetes was defective in the 

Δpbpp5 parasites, we first compared the gametogenesis process. Whereas the formation 

of macrogametes appeared normal in the pbpp5 KO lines (Fig. 4E), the proportion of 

microgametocytes forming exflagellation centers in the Δpbpp5 parasite lines was severely 

reduced: 13.8 – 25% exflagellating Δpbpp5 male gametocytes in the Δpbpp5 lines compared 

with 88.9% in WT parasites (P < 0.001, t test; Fig. 4F). To investigate whether the male 

gametes lacking expression of Δpbpp5 could attach to female gametes, we analyzed the 

interactions between male and female gametes at 30 min after induction of gametogenesis 

under a light microscope. The results revealed that the proportions of male gametes attached 

to female gametes were drastically reduced in Δpbpp5 parasite lines (mean = 9.26%) 

compared with those in WT parasites (mean = 70.42%) (P <0.01, t test; Fig. 4G).

To ascertain that the block in ookinete formation resulted from defective males, we 

performed genetic crosses with parasite lines defective in either males or females (Boisson 
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et al., 2011). For this purpose, we generated Δpbs48/45 and Δpbs47 parasite lines that 

are defective in male and female gametes, respectively (Supplementary Fig. S6), using the 

previously described method (van Dijk et al., 2010). Crossing of Δpbpp5 with the pbs48/45 
deletion mutant showed no rescue of the phenotype, whereas crossing with the pbs47 
deletion parasite resulted in 78.4% ookinete formation compared with 88.0% in the WT 

(Fig. 4H). These results confirmed that PbPP5 was vital for the sexual development with a 

major effect on male gamete fertility.

3.6. Effect of phosphatase inhibitors on sexual development

To assess the potential of phosphatase inhibitors for blocking malaria transmission, we 

determined the activities of three PP1/PP2A inhibitors on blocking exflagellation and 

ookinete conversion. Previous studies identified that okadaic acid not only inhibits PP1/

PP2A, but also PP2B and PP6 (Bialojan and Takai, 1988; Cohen, 1989; Takai et al., 1992; 

Prickett and Brautigan, 2006), and thus was excluded from the in vitro exflagellation and 

ookinete conversion inhibition assay.Cantharidic acid, cantharidin and endothall all inhibited 

exflagellation and ookinete conversion in a concentration-dependent manner (Fig. 5). The 

specific PP2A inhibitor endothall completely blocked exflagellation of male gametocytes 

and ookinete conversion at the 1.5×IC50 concentration of the recombinant rPbPP5yPP2Ac 

protein (Fig. 5E, F).

4. Discussion

Reversible protein phosphorylation is crucial for multiple cellular processes. The protein 

kinases and phosphatases that catalyze protein phosphorylation and dephosphorylation 

are well-identified drug targets in various diseases (Cher et al., 2010; Haslbeck et al., 

2015; Chen et al., 2017). Similarly, the malaria parasite kinome and phosphatome have 

been subjects of both bioinformatic and functional studies (Ward et al., 2004; Wilkes 

and Doerig, 2008; Tewari et al., 2010; Solyakov et al., 2011; Guttery et al., 2014). A 

recent functional study of the P. berghei phosphatome showed approximately half of the 30 

predicted phosphatases were essential for asexual intraerythrocytic development (Guttery et 

al., 2014). However, the functions for phosphatases in sexual stage development are not fully 

understood. Among these essential phosphatases, PP5 plays important roles in protozoan 

parasites such as Toxoplasma, Eimeria, Leishmania and Trypanosoma (Liu et al., 2005; 

Golden et al., 2008; Jones et al., 2008; Han et al., 2012; Zhou et al., 2013; Figueras et al., 

2014; Norris-Mullins et al., 2014; Feng et al., 2015; Wang et al., 2015). This makes PP5 

protein a potential target for novel antimalarial and antiparasitic drugs.

An intriguing finding on the predominant expression of PbPP5 during sexual development 

and yet essential function of this gene during asation, which is consistent with the recent 

reports showing that both pbpp5 and pfpp5 are dispensable in blood stages (Bushell et al., 

2017; Zhang et al., 2018). This discrepancy between the studies of Guttery et al. (2014) 

and those of Bushell et al. (2017), which is consistent with the recent reports showing that 

both pbpp5 and pfpp5 are dispensable in blood stages (Bushell et al., 2017; Zhang et al., 

2018). This discrepancy between the studies of Guttery et al. (2014) and those of Bushell 

et al. (2017) and our own may be due to the use of different recombination arms. Guttery 
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et al. (2014) used relatively short recombination arms, which may have resulted in reduced 

recombination efficiency during genetic manipulation. Based on these and our studies, we 

conclude that pbpp5 is not essential for asexual blood stages, although we do not know 

whether this is due to complementation of other phosphatases expressed in asexual blood 

stages. Thus, the functions of PbPP5 in asexual blood stages warrant further studies to 

determine its targets during asexual stages and whether the pbpp5 deletion line is more 

sensitive to phosphatase inhibitors. Interestingly, phenotypic analysis showed that Δpbpp5 
parasites exhibited severe defects in male gamete formation and subsequent interactions with 

the female gametes, leading to a strong reduction in ookinete formation in vitro and oocyst 

formation in vivo. The defect in male gametogenesis was further corroborated through 

genetic crosses with either the female-defective Δpbs47 or male-defective Δpbs48/45 lines. 

Whether the function of PP5 in male gametogenesis and fertility is conserved in P. 
falciparum awaits further investigation. Moreover, strong expression of PbPP5 in ookinetes 

and possibly sporozoites suggests that PbPP5 may have additional functions in these stages, 

but these are not possible to dissect with the tools used in this study.

In malaria parasites, the complex pathways of gametogenesis are still not clear, but 

important pieces of the puzzle have emerged. It has been shown that redundant protein 

phosphatases and kinases play important roles in controlling gametogenesis (Guttery et al., 

2012a, 2014; Fang et al., 2017). In both P. berghei and P. falciparum, male gametocyte 

exflagellation is also completely blocked in parasites lacking mitogen-activated kinase-2, a 

gametocyte-specific mitogen-activated protein kinase (MAPK), which is not expressed in 

asexual stage parasites (Dorin et al., 1999; Tewari et al., 2005). The phenotypic similarity 

between Δmapk2 and Δpbpp5 knockout lines may imply that these two proteins might 

be in the same pathway. Although a direct link between PP5 and kinases in regulating 

gametogenesis has not yet been established, PfPP5 is predicted to interact with several 

regulatory proteins (Pandey et al., 2014). Interestingly, in mammalian cells, PP5 suppressed 

apoptosis of pancreatic islets and β-cells by a mechanism that involved p38 MAPK 

regulation (Fransson et al., 2014), suggesting a potential universal link between PP5 and 

MAPK. Analogously, a correlation between kinase, the GSK3α levels and spermatogenesis 

was noted (Bhattacharjee et al., 2018) and a phosphatase CDC14A was found to affect 

male fertility (Imtiaz et al., 2018). To elucidate the signaling pathways during sexual 

development, future work should determine the protein-protein interaction network, and 

substrates of the kinases and phosphatases.

Consistent with a previous study (Guttery et al., 2014), analysis of PbPP5 protein expression 

confirmed its ubiquitous expression during blood stages, albeit more predominant expression 

was noticed in sexual stages. The subcellular location of PP5 proteins varies in mammalian 

and protozoan parasites (Chen et al., 1994; Lindenthal and Klinkert, 2002). Even in P. 
berghei, our data demonstrated that PbPP5 retained a diffused cytosolic localization in rings, 

trophozoites, schizonts and gametocytes, whereas it was concentrated at or beneath the 

parasite plasma membrane in merozoite and ookinete stages. From the localization study, 

it is possible that PP5 might be associated with the inner membrane complex (IMC) in the 

zoite stages, as our protein pull-down work using the PP5-GFP parasites detected proteins 

present in the IMC and glideosome (data not shown). The differential localizations of PbPP5 

in these stages suggest it may have different substrates and functions. Previous reports 
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identifying the interacting proteins of protein phosphatases by using human keratinocyte 

(HaCaT) cells revealed that PP2Ac interacted with the regulatory subunit (MYPT1) of 

myosin phosphatase (Becsi et al., 2014). In Plasmodium, myosin is a component of the 

glideosome, and it is located beneath the plasma membrane, where it powers the motility of 

invasive stages of the parasite life cycle including merozoite, ookinete and sporozoite (Green 

et al., 2017). The predominant expression of PbPP5 in ookinete stages and its membrane-

associated localization pattern in merozoites and ookinetes suggest that this protein may also 

participate in parasite mobility other than gamete development, a question open for further 

investigation.

Efforts to develop new drugs have identified gametocytes as a good drug target to interrupt 

malaria transmission (Ross and Brancucci, 2018). Here we determined that the PP1/PP2A 

competitive inhibitors cantharidic acid, cantharidin, endothall and okadaic acid exhibit 

specific inhibition of the catalytic activity of recombinant PbPP5 (Dounay and Forsyth, 

2002). These inhibitors also have significant inhibitory effects on exflagellation and ookinete 

conversion. Endothall, which has been reported to exhibit greater selectivity for PP2A, could 

completely block sexual development at 548.3 nM. The structural similarity of Plasmodium 
PP5s to other PP5 proteins suggests that newly identified inhibitors of PP5 proteins such as 

Ro 90–7501, aurothioglucose, and N-oleoyldopamine may also be effective on PbPP5 (Hong 

et al., 2017). Due to the sequence similarity between human and parasite PP5 proteins, 

drug development efforts targeting PP5 need to emphasize selectivity of the compounds on 

parasites and mammalian cells. Furthermore, due to the structural similarity of the catalytic 

sites of PPP family phosphatases and the common competitive inhibition mechanism the 

inhibitors share, the specificity of compounds toward PP5 needs to be verified by observing 

their inhibitory effects on the other phosphatase members of the PPP family (Swingle et al., 

2004; Bertini et al., 2009). The current study may serve as the starting point for designing 

effective transmission blocking drugs for malaria parasites. Taken together, this study 

identified a critical role of the protein phosphatase PbPP5 for male gamete fertility in the 

rodent parasite P. berghei, and further emphasizes signaling pathways during gametogenesis 

as potential targets for designing drugs targeting parasite transmission.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Recombinant Plasmodium berghei PP5 (rPbPP5) had phosphatase activity and 

was sensitive to PP1/PP2A inhibitors

2. PbPP5 was localized in the parasite cytoplasm and under the plasma 

membrane in some stages

3. A Pbpp5 gene knockout severely reduced male gamete formation and fertility

4. PP1/PP2A inhibitors reduced microgametocyte exflagellation and ookinete 

conversion
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Fig. 1. 
The catalytic activity of rPbPP5yPP2Ac (yeast system expressed Protein phosphatase 2A 

homologues, catalytic domain (PP2Ac )) domain of recombinant Plasmodium berghei 
protein phosphatase 5) and its sensitivity to protein phosphatase-1 and −2A (PP1/PP2A ) 

inhibitors. (A) Expression of the rPbPP5yPP2Ac protein. The rPbPP5yPP2Ac was purified 

from yeast and analyzed by SDS-PAGE under reducing conditions. Molecular weight 

markers are shown. The arrow indicates the expected size of rPbPP5 protein (~36 kDa). (B) 

Phosphatase activity of rPbPP5. Control, His-tag protein. ***, P<0.001. FLU, fluorescence 

light units. (C-F) Dose-response curves of different PP1/PP2A inhibitors: cantharidic acid 

(C), cantharidin (D), endothall (E), and okadaic acid (F). Each point represents the mean, 

and values are given as means and S.D. from three biological replicates.
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Fig. 2. 
Stage-specific expression of Plasmodium berghei protein phosphatase 5 (PbPP5). (A) 

Western blot of whole cell lysates of different stage PbPP5-GFP parasites with monoclonal 

anti-GFP antibody. (B) Western blot of wild type (WT) parasite cell lysates with anti-PbPP5 

antisera. R, ring stage; T, trophozoite stage; S, schizont stage; G, gametocyte stage; O, 

ookinete stage. The positions of the pre-stained molecular mass markers are indicated. 

Western blots with mouse anti-PbHSP70 antisera or rabbit polyclonal anti-GAPDH antibody 

is shown as loading controls. HSP, heat shock protein.
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Fig. 3. 
Subcellular localizations of Plasmodium berghei protein phosphatase 5 (PbPP5). (A) IFA 

of Plasmodium berghei blood stages to localize GFP-tagged PbPP5 proteins using mouse 

anti-GFP antibody. (B) Co-localization of the endogenous PbPP5 with anti-PbPP5 sera 

and anti-GAPDH antibodies. Different stages were observed under a Nikon fluorescence 

microscope with differential interference contrast (DIC), with the Alexa 488 channel (green) 

for detection of PbPP5, Alexa 594 channel (red) for detection of GAPDH, and with the 

DAPI channel (blue) to visualize DNA. Alexa 488, Alexa 594 and DAPI images were 
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merged to show concordance. Note that exposure times for different images were different, 

and were not meant for quantitative comparison. Anti-GAPDH antibody was used as a 

marker for the parasite cytoplasm. For all the images, the black scale bar = 5 μm, and the 

white scale bar = 2.5 μm. R, ring stage; T, trophozoite stage; S, schizont stage.
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Fig. 4. 
Functional analysis of Plasmodium berghei protein phosphatase 5 (PbPP5) during sexual 

development. (A) Gametocytemia of wild type (WT) and Δpbpp5 parasites at day 3 p.i. 

(B) Male/female gametocyte ratios of WT and Δpbpp5 parasites at day 3 p.i. (C) Absence 

of ookinete formation in the Δpbpp5 parasites. The conversion rate is the percentage of 

Pbs21-positive parasites (stained by anti-Pbs21 monoclonal antibody) that had successfully 

differentiated into elongated ‘banana-shaped’ ookinetes. (D) Absence of oocysts in midguts 

of mosquitoes infected with Δpbpp5 k1 parasites compared with WT at day 10 post feeding. 

Circles correspond to oocyte numbers in individual mosquitoes. The panel represents one of 

the two or more infections performed with three infected mice per parasite clone and per 

infection. The number of mosquitoes analyzed per infection: WT, n = 29, 26, 39; Δpbpp5 
k1, n = 33, 36, 40. (E) The formation of macrogametes. (F) The interaction of Δpbpp5 
male gametes with red blood cells (exflagellation centers). Results were obtained from five 

independent experiments for the comparison between the WT and Δpbpp5 parasites. Two 

infected mice were analyzed per parasite clone. (G) The interaction of Δpbpp5 male gametes 

with female gametes. (H) Ookinete conversion after crossing Δpbpp5 parasites with Δp47 
and Δp45/48 parasites. For all experiments, WT parasites were used as the control and 
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three mice were used for each group. Results were obtained from at least two independent 

experiments. n.s., not significant; *, P<0.05; **, P<0.01; ***, P<0.001.
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Fig. 5. 
Effects of protein phosphatase-1 and −2A (PP1/PP2A) inhibitors on gametocyte 

exflagellation (A, C, E) and ookinete formation (B, D, F). Inhibitors used include 

cantharidic acid (A, B), cantharidin (C, D) and endothall (E, F). Concentrations used were 

at 1× and 1.5× of the half maximal inhibitory concentration (IC50) of each individual 

drug on the recombinant rPbPP5yPP2Ac (yeast system expressed Protein phosphatase 2A 

(PP2Ac) homologues, catalytic domain) domain of recombinant Plasmodium berghei protein 

phosphatase 5) enzyme activity. The conversion rate is the percentage of Plasmodium 
berghei surface protein 21 (Pbs21) -positive parasites that had successfully differentiated 

into elongated ‘banana-shaped’ ookinetes. *, P<0.05; **, P<0.01; ***, P<0.001.
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