Skip to main content
. 2022 Feb 8;25(3):103888. doi: 10.1016/j.isci.2022.103888

Table 2.

Comparing the effect of adaptation on the performance of models designed to predict exercise-related changes in glucose

Population model
Personalized model, coefficient adaptation
Comparison between population model and personalized model
RMSE (MAE) [mg/dL] [Sensitivity, specificity] (Accuracy) [%] RMSE (MAE) [mg/dL] [Sensitivity, specificity] (Accuracy) [%] Δ MAE [%] Δ Accuracy [%]
Predicting minimum glucose at the end of exercise

 MARS model
 Training, 16-fold CV 24.1 (19.2) [73, 67] (69) -- -- --
 Validation, Holdout Set 26.5 (23.4) [50, 86] (75) 23.1 (19.6) [70, 86] (81) −16.2 +8.3
 Validation, 20-fold CV 24.6 (20.0) [63, 63] (67) 23.0 (18.1) [61, 78] (78) - 9.5 +16.1a
 MARS model + exercise history features
 Training, 16-fold CV 23.1 (18.2) [75, 65] (68) -- -- --
 Validation, HoldouaSet 18.7 (14.3) [73, 86] (81) 19.7 (15.8) [73, 95] (88) +10.1 +7.7
 Validation, 20-fold CV 22.6 (17.6) [66, 69] (70) 22.1 (17.5) [51, 83] (77) - 0.6 +10.1a
 AR model: Population modelb
 Training, 16-fold CV 28.8 (22.7) [71, 94] (83) -- -- --
 Validation, Holdout Set 32.8(28.6) [59, 87] (72) 27.6 (233) [59, 87] (72) −18.7 +0
 Validation, 20-fold CV 29.6 (23.8) [71, 91] (81) 27.7 (22.0) [76, 90] (83) - 7.4 +3.1
 Logistic regression
 Training, 16-fold CV -- [66, 67] (66) --
 Validation, Holdout Set -- [73, 76] (75) -- [73, 90] (84) +12.5
 Validation, 20-fold CV -- [64, 56] (61) -- [68, 61] (70) +15.5a

Predicting minimum glucose 4 h after exercise

 MARS modelb
 Training, 16-fold CV 25.8 (19.7) [67, 68] (68) -- -- --
 Validation, Holdout Set 25.7 (21.6) [18, 76] (56) 21.5 (163) [33, 96] (78) - 24.8 +38.9
 Validation, 20-fold CV 25.1 (20.1) [62, 51] (56) 23.3 (18.3) [56, 70] (68) - 9.0 +21.4a
 MARS model + exercise history featuresb
 Training, 16-fold CV 24.8 (18.6) [79, 61] (69) -- -- --
 Validation, Holdout Set 30.7 (26.1) [29, 61] (47) 23.0 (16.0) [56, 96] (84) −38.8 +80.0
 Validation, 20-fold CV 26.3 (21.1) [74, 52] (57) 23.9 (18.2) [57, 70] (69) - 13.8 +20.0
 Logistic regressionb
 Training, 16-fold CV [57, 72] (65) --
 Validation, Holdout Set [32, 77] (50) [53, 92] (69) + 37.5
 Validation, 20-fold CV [63, 50] (58) [64, 74] (70) +20.4a

Values represent the mean performance across participants.

Training is performed with data from n = 16 participants, whereas the holdout set includes data from n = 4 participants.

The 20-fold validation includes data from all n = 20 participants.

a

indicates that the significance p < 0.05 determined Wilcoxon signed-rank test for paired, nonparametric data comparing the change in error or accuracy on a per-participant basis.

b

These models return predicted CGM, not SMBG values. The AR model is only designed to predict glucose approximately 43.2 min after the start of exercise, and the results for a 4 h prediction horizon are not shown.