Table 3.
Model | Accuracy | AUROCa | Specificity | Sensitivity | Precision | F1 score |
Random forest | 0.813 | 0.871 | 0.938 | 0.574 | 0.827 | 0.677 |
Decision tree | 0.705 | 0.674 | 0.772 | 0.577 | 0.568 | 0.572 |
LDAb | 0.722 | 0.720 | 0.850 | 0.474 | 0.622 | 0.538 |
AdaBoostc | 0.746 | 0.794 | 0.872 | 0.505 | 0.672 | 0.576 |
XGBoostd | 0.674 | 0.763 | 0.913 | 0.213 | 0.559 | 0.309 |
RGFe | 0.800 | 0.863 | 0.920 | 0.568 | 0.788 | 0.660 |
aAUROC: area under the receiver operating characteristic.
bLDA: linear discriminant analysis.
cAdaBoost: adaptive boosting.
dXGBoost: extreme gradient boosting.
eRGF: regularized greedy forest.