Skip to main content
. 2022 Feb 15;10(2):e33063. doi: 10.2196/33063

Table 3.

Test set performance of each model with all features.

Model Accuracy AUROCa Specificity Sensitivity Precision F1 score
Random forest 0.813 0.871 0.938 0.574 0.827 0.677
Decision tree 0.705 0.674 0.772 0.577 0.568 0.572
LDAb 0.722 0.720 0.850 0.474 0.622 0.538
AdaBoostc 0.746 0.794 0.872 0.505 0.672 0.576
XGBoostd 0.674 0.763 0.913 0.213 0.559 0.309
RGFe 0.800 0.863 0.920 0.568 0.788 0.660

aAUROC: area under the receiver operating characteristic.

bLDA: linear discriminant analysis.

cAdaBoost: adaptive boosting.

dXGBoost: extreme gradient boosting.

eRGF: regularized greedy forest.