Skip to main content
. 2022 Feb 16;11:806603. doi: 10.3389/fonc.2021.806603

Table 3.

Superpatches evaluation using polyserial correlation coefficient.

Model Name ACC (147) BLCA (64) BRCA (348) CESC (61) COAD (65) ESCA (312) HNSC (324) KIRC (319)
Baseline 0.720 0.552 0.679 0.329
VGG-16 0.879 0.787 0.745 0.592 0.688 0.777 0.904 0.515
ResNet-34 0.925 0.740 0.797 0.654 0.658 0.810 0.883 0.599
Incep-V4 0.963 0.744 0.797 0.667 0.695 0.805 0.897 0.598
Model Name LIHC (248) LUAD (63) LUSC (65) MESO (271) OV (158) PAAD (440) PRAD (66) READ (62)
Baseline 0.615 0.658 0.695 0.819 0.706
VGG-16 0.891 0.670 0.830 0.840 0.565 0.886 0.885 0.702
ResNet-34 0.872 0.733 0.775 0.805 0.527 0.874 0.862 0.715
Incep-V4 0.854 0.617 0.789 0.818 0.635 0.870 0.818 0.811
Model Name SARC (299) SKCM (67) STAD (63) TGCT (303) THYM (324) UCEC (64) UVM (64) ALL (4198)
Baseline 0.666 0.728 0.692 0.681
VGG-16 0.912 0.816 0.713 0.859 0.774 0.667 0.896 0.807 (0.77 ± 0.12)
ResNet-34 0.932 0.794 0.821 0.799 0.765 0.766 0.899 0.808 (0.78 ± 0.10)
Incep-34 0.921 0.822 0.752 0.823 0.790 0.742 0.913 0.820 (0.79 ± 0.10)

The number in brackets indicated the number of superpatches in the respective cancer type. Baseline is the model developed in (33).

Highest polyserial correlation in each dataset (cancer type) is indicated in bold.