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ABSTRACT
BACKGROUND: Depressive disorders are linked to dysfunction in reward-related behaviors and corticostriatal
reward circuitry. Low-grade dysregulation of the immune system, e.g., elevations in plasma interleukin 6 (IL-6) and
tumor necrosis factor a, have been thought to affect corticostriatal reward circuitry. Little is presently known about
the degree to which these relationships generalize to patients with treatment-resistant depression (TRD) and/or
childhood trauma history.
METHODS: Resting-state functional connectivity between the ventral striatum (VS) and ventromedial prefrontal
cortex (vmPFC) regions and plasma inflammatory marker levels (IL-6, tumor necrosis factor a) were measured in 74
adults with TRD. Regression analyses examined associations of inflammatory markers with VS-vmPFC connectivity
and the moderating effects of self-reported childhood trauma on these associations, with exploratory analyses
examining trauma subtypes.
RESULTS: IL-6 was negatively associated with VS-vmPFC connectivity (specifically for the left VS). Childhood trauma
moderated the relationships between tumor necrosis factor a and VS-vmPFC connectivity (specifically for the right
VS) such that greater childhood trauma severity (particularly emotional neglect) was associated with stronger
cytokine-connectivity associations.
CONCLUSIONS: This study independently extends previously reported associations between IL-6 and reductions in
corticostriatal connectivity to a high-priority clinical population of treatment-seeking patients with TRD and further
suggests that childhood trauma moderates specific associations between cytokines and corticostriatal
connectivity. These findings suggest that associations between elevated plasma cytokine levels and reduced
corticostriatal connectivity are a potential pathophysiological mechanism generalizable to patients with TRD and
that such associations may be affected by trauma severity.

https://doi.org/10.1016/j.bpsgos.2021.06.009
Depression, characterized by low mood and anhedonia, is a
major contributor to lifetime disability in adults (1), highly
prevalent (2), and associated with significant morbidity and
increased mortality (3), making it a major health concern. In
particular, treatment-resistant depression (TRD), commonly
characterized by nonresponse to one or more antidepressant
trials, is an important subtype of depression affecting at least
30% of patients with depression (4). TRD significantly con-
tributes to the overall disease burden of depression and is
associated with poorer clinical and psychosocial outcomes (5).
To ultimately help develop more effective individualized treat-
ments for both depression and TRD, researchers in recent
decades have attempted to better understand neurobiological
correlates associated with depression. One such neurobio-
logical correlate is reward neural circuitry dysfunction, which is
consistent with findings of behavioral reward-related impair-
ments in patients with depression (6). Functional neuroimaging
studies of patients with depression have demonstrated blunted
activity in ventral striatal (VS) regions such as the nucleus
accumbens and elevated activity in the ventromedial prefrontal
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cortex (vmPFC) during reward tasks (7). Given abnormalities in
VS and vmPFC activity in depression during reward tasks,
preclinical and early clinical studies have built on these findings
to further identify that reduced resting-state corticostriatal (CS)
connectivity may be a core neural substrate linked to depres-
sive symptomology (8–11). However, the pathophysiology of
dysfunction in VS-vmPFC connectivity in patients with
depression is unclear. In parallel with the diverse phenotypic
clinical manifestations that characterize depression, notable
heterogeneity in reward dysfunction exists within samples of
patients with depression.

In recent years, low-grade inflammatory marker elevation
has emerged as a potential biological factor that may
contribute to abnormalities in corticostriatal (e.g., VS-vmPFC)
connectivity in patients with depression (12). Several meta-
analyses have demonstrated low-grade elevations in periph-
eral cytokine levels (specifically interleukin 6 [IL-6] and tumor
necrosis factor a [TNF-a]) in patients with depression as
compared with healthy control subjects (13). Researchers have
theorized that such elevations may contribute to dysfunction in
of Biological Psychiatry. This is an open access article under the
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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reward circuitry (e.g., CS connectivity) via evolutionarily pre-
served mechanisms that promote reduced motivation and
anhedonic-like behavior in response to acute infection (14).
Several preclinical and clinical studies have examined the ef-
fects of exogenous immune stimuli on VS-vmPFC circuitry in
preclinical studies and healthy control subjects and found that
administration of cytokine-inducing stimuli resulted in
decreased activation of the VS during reward tasks (15,16).
Similarly, other studies have found that inflammatory markers
are associated with decreased connectivity of the vmPFC with
numerous brain regions (12). Furthermore, such studies iden-
tified that immune system activation was linked to depressive-
like behaviors or symptoms of depression (e.g., low mood,
anhedonia, fatigue) (15,17–19). Of note, although having some
overlap in physiological function, the cytokines TNF-a and IL-6
appear to have distinct biological roles (e.g., TNF-a has been
reported to have primarily proinflammatory activity, while IL-6
has been reported to have both pro- and anti-inflammatory
activity) and potentially distinct mechanistic effects, with clin-
ical findings suggesting differences between TNF-a and IL-6 in
strengths of cytokine level associations with neural connec-
tivity or specific symptoms of depression (20–23).

To probe associations between inflammatory pathology and
effects on VS-vmPFC functional connectivity in the context of
depression, a seminal study by Felger et al. found that higher
levels of C-reactive protein and IL-6 were associated with
reduced VS-vmPFC connectivity in 48 patients with unse-
lected (unipolar and bipolar) depression (23). However, other
studies of patients with depression have focused on investi-
gating either cytokine-depression relationships or CS
connectivity–depression relationships, separately from one
another. Furthermore, the association between cytokines and
CS connectivity in the high-priority cohort of TRD has not yet
been examined. A deeper understanding of this potential
pathophysiological mechanism in TRD would be helpful to
inform novel treatment initiatives for TRD, which are a high
priority in depression research precisely because front-line
treatment options are less efficacious and/or tolerable in
these patients (24). In addition, a substantial subset of patients
with TRD (e.g., 20% to .50%) report a history of childhood
trauma (25,26), which contributes to overall refractory out-
comes in depression (27,28). Recent research has highlighted
the importance of examining the role of childhood trauma in
moderating cytokine-connectivity relationships (29–31). Child-
hood trauma may have moderating effects on cytokine-
connectivity relationships, with evidence for both positive
and negative moderation effects (29–31), and is independently
associated with low-grade cytokine elevation (32).

In light of growing recognition that a large percentage of
published research findings later fail to be replicated (33,34),
we sought to both replicate and extend previous work
regarding the associations of inflammatory-related cytokine
markers (IL-6, TNF-a) with VS-vmPFC connectivity. Specif-
ically, we sought to examine these relationships in a cohort of
74 treatment-seeking TRD participants with moderate-to-
severe depression—a population of high clinical interest and
concern. Additionally, we examined moderating effects of
childhood trauma on these relationships. We hypothesized
that 1) inflammatory-related markers would be negatively
associated with VS-vmPFC connectivity, extending previous
46 Biological Psychiatry: Global Open Science January 2022; 2:45–53
findings in a novel sample of patients with TRD and 2) child-
hood trauma would moderate relationships between
inflammatory-related markers and connectivity, with potential
for either positive or negative moderation effects. On an
exploratory basis, we also assessed subtypes of childhood
trauma (e.g., emotional abuse/neglect, physical abuse/neglect,
sexual abuse) to identify which particular subtypes of child-
hood trauma may have driven moderation effects for trauma-
related findings.
METHODS AND MATERIALS

Data were obtained at a pretreatment baseline from partici-
pants enrolled in an ongoing parent clinical trial
(R01MH113857; ClinicalTrials.gov: NCT03237286). We
included all participants with usable data for both peripheral
blood and functional magnetic resonance imaging (fMRI)
measures.

Participants

Participants included 74 TRD individuals aged 19–60 years,
with history of nonresponse to one or more adequate trial(s) of
a Food and Drug Administration–approved antidepressant,
score $ 25 on the Montgomery–Åsberg Depression Rating
Scale, and low self-worth based on self-report indices.
Exclusion study criteria included lifetime bipolar or psychotic
disorder, substance use disorder, current pregnancy, and
serious unstable medical illnesses such as severe head injury
(see further details and full inclusion/exclusion criteria at Clin-
icalTrials.gov: NCT03237286). Participants were recruited into
a larger, ongoing depression treatment trial from the commu-
nity and outpatient settings through web advertisements,
clinical referral, or a local research registry. Clinical measures,
inflammatory marker plasma measures, and blood oxygen
level–dependent (BOLD) fMRI data were acquired within a
span of approximately 1–2 weeks. All participants denied
having recent acute febrile illness on self-reports. Of all par-
ticipants, 75.7% (56/74) were taking any psychotropic medi-
cation, while 40.5% (30/74) were taking a selective serotonin
reuptake inhibitors, which was the major class of medication
prescribed.

Cytokine Measurement

Venous blood draw was done between 7 and 9 AM, with
samples then centrifuged and plasma samples immediately
stored at 280 �C. IL-6 and TNF-a were measured in plasma
samples using a Meso Scale Discovery MESO QuickPlex SQ
120 plate reader (Meso Scale Diagnostics LLC). Samples were
loaded in duplicate into Meso Scale Discovery V-Plex Human
proinflammatory panel I ELISA plates according to manufac-
turer instructions and calculated concentrations were gener-
ated through Discovery workbench software (version 4.0;
Meso Scale Diagnostics LLC). Average coefficient of variation
values between plasma duplicates were 8% for IL-6 and 10%
for TNF-a. All the samples were above the detection limit for
each cytokine. Our cytokine levels (i.e., IL-6 , 10 pg/mL and
TNF-a ,15 pg/mL) fell uniformly within commonly reported
ranges for patients with depression (35).
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BOLD fMRI Data Acquisition and Preprocessing

A 3T Siemens PRISMA scanner (Siemens Healthineers) was
used to obtain BOLD fMRI data through use of Human Con-
nectome Project sequences (multiband factor = 8, repetition
time = 800 ms, echo time = 37, fractional anisotropy = 52�, field
of view = 200 3 200, 72 slices, 2 mm isotropic voxels). Stan-
dard preprocessing steps were applied in Analysis of Func-
tional NeuroImages (AFNI) consistent with the afni_proc.py
pipeline, as described in previous publications (36). Briefly,
preprocessing steps included slice timing correction, motion
correction, spatial distortion correction, cross-registration to a
magnetization prepared rapid acquisition gradient-echo
structural scan, warping to the Montreal Neurological
Institute-27 template, and smoothing (6 mm full width at half
maximum). For single-subject analyses, regression models
(using AFNI’s 3dDeconvolve) included motion parameters and
their derivatives and were utilized to generate resting-state
whole brain maps. The fast ANATICOR tool was used to
reduce white matter artifacts. Bandpass filtering (0.01, f, 0.1
Hz) was done through inclusion of a bandpass regressor in
regression models.
BOLD fMRI Data Analysis

Analysis of resting-state functional connectivity of the VS-
vmPFC was done in AFNI, with a priori definitions of seed
and target regions of interest (Figure 1). The VS seed region
was defined by two bilateral anatomically defined nucleus
accumbens seed regions as per AFNI’s Talairach-Tournoux
brain structure atlas (see https://afni.nimh.nih.gov/
AFNIAtlases). The vmPFC was separately defined by four
regions of interest in the AFNI brain structure atlas, specif-
ically the left Brodmann areas 10 and 11 (LBA10/LBA11) and
right Brodmann areas 10 and 11 (RBA10/RBA11), which were
examined separately, given findings associating inflammatory
processes differently with each of these frontal regions
(23,37). We analyzed the left and right VS seed regions
separately, given that previous studies have noted greater
effects of inflammatory processes on neural activity in the left
striatum (23). For each subject, voxelwise connectivity cross-
correlations were computed separately for each of the
bilateral VS seeds, and connectivity correlation coefficients
were averaged within each of the four vmPFC target
regions and extracted for further analysis in the statistical
software R (R Foundation for Statistical Computing). Eight
connectivity scores (2 VS seeds 3 4 vmPFC targets) were
Biological Psychiatry: Glob
then used in regression analyses as measures of VS-vmPFC
connectivity.

Clinical Measures

The Childhood Trauma Questionnaire (CTQ) (38), used in
moderation analyses, is a 28-item retrospective self-report
assessment of lifetime childhood trauma with subscales
measuring spectrum of abuse (emotional, physical, and sexual)
and neglect (emotional and physical), with greater scores
reflecting greater trauma severity. Further information on the
CTQ and depression/anxiety scales (respectively, the
Montgomery–Åsberg Depression Rating Scale and PROMIS
Anxiety item bank) are described in detail in the Supplement.

Statistical Analysis

Statistical analyses were conducted using the statistical soft-
ware R version 3.5.2 (see https://cran.r-project.org/). Both in-
flammatory marker and fMRI signal values were winsorized to
reduce the effects of outliers, with few values overall being
affected by winsorizing (,15%). Inflammatory marker values
were log-transformed. Independent regression analyses were
used to conduct examination of each of the 8 connectivity
measures’ degree of association with inflammatory marker
values, while statistically adjusting for immunoassay batch,
age, biological sex, race (dichotomized as Caucasian or non-
Caucasian), and body mass index in all analyses. For moder-
ation analyses, we similarly conducted regression analyses
while examining interaction effects of the CTQ composite and
inflammatory marker values on outcome measures of con-
nectivity, while statistically adjusting for covariates as in pre-
vious analyses. For all analyses, we present unadjusted p
values and adjusted p values using false discovery rate (FDR)
correction (corrected for the 8 connectivity indices, applying
the FDR correction for each cytokine separately), with a set at
0.05. FDR correction was utilized in this manner, given our
conceptualization and prior evidence of IL-6 and TNF-a as
having distinct biological roles and potential mechanistic ef-
fects (20–23), each warranting a unique family of hypothesis
tests.

Sensitivity analyses were done excluding participants (n =
18) with history of medical illnesses (e.g., HIV, cancer, eczema)
or taking current medications (e.g., loratadine, nonsteroidal
anti-inflammatory drugs) potentially affecting immune system
function, with no appreciable change in significant findings or
notable changes in effect sizes of findings (Table S2).
Figure 1. The following seed and target regions
and corresponding colors (in parentheses) are
demonstrated above: left Brodmann area 10 (yellow),
right Brodmann area 10 (red), left Brodmann area 11
(dark blue), right Brodmann area 11 (lime green), right
ventral striatum (orange), and left ventral striatum
(cyan). Montreal Neurological Institute coordinates
are detailed below images.
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Sensitivity analysis examining serotonergic medication use
(selective serotonin reuptake inhibitors/serotonin and norepi-
nephrine reuptake inhibitors), neuroleptic use, substance use,
depression severity, anxiety severity, and childhood trauma
severity (for regression models not including childhood trauma)
was done by adding these covariates separately into regres-
sion models, without any change in significant findings for our
primary analyses (Table S3).
RESULTS

Participant Characteristics

Participants included 74 TRD participants with an average age
of 36.2 years (range 19–60), and 65% of participants were
female. Plasma IL-6 levels were an average of 1.3 6 1.2 pg/
mL, while plasma TNF-a levels were an average of 3.4 6 2.1
pg/mL. Consistent with previous studies finding strong asso-
ciations of body mass index and IL-6, surface validity tests
found strong correlations between body mass index and IL-6
(r = 0.44, p , .001, N = 74). See Table 1 for baseline clinical
characteristics, with basic intervariable correlations further
described in Table S1.

Associations Between Inflammatory Markers and
VS-vmPFC Connectivity in TRD Participants

IL-6 was significantly associated with decreased connectivity
between the left VS and both the LBA11 (B = 20.07, unad-
justed p = .003, adjusted p = .02, N = 74) and RBA11
(B = 20.05, unadjusted p = .009, adjusted p = .034, N = 74)
(Figure 2). Nonsignificant associations were noted between IL-
6 and left VS (LVS)-LBA10 connectivity (B = 20.07, unadjusted
p = .089, adjusted p . .1, N = 74). No significant associations
were found for TNF-a (unadjusted ps . .35).
Table 1. Participant Information Regarding Demographic
Characteristics, Clinical Measures, and Cytokine Levels

Measure Mean (SD) or %

Demographic Characteristics

Age, years 36.24 (10.83)

Biological sex, female 65%

Race, non-Caucasian 15%

BMI 28.23 (6.32)

Clinical Measures

MADRS 32.93 (5.33)

CTQ total 51.84 (17.8)

CTQ emotional abuse 13.1 (5.95)

CTQ emotional neglect 14.77 (5.35)

CTQ physical abuse 7.9 (3.54)

CTQ physical neglect 8.41 (3.55)

CTQ sexual abuse 7.66 (4.85)

Cytokine Levels

IL-6, pg/mL 1.27 (1.19)

TNF-a, pg/mL 3.41 (2.06)

N = 74 for all measures except CTQ scores for which n = 73.
BMI, body mass index; CTQ, Childhood Trauma Questionnaire;

MADRS, Montgomery–Åsberg Depression Rating Scale.
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Moderating Effects of Trauma on Cytokine-
Connectivity Relationships

For TNF-a, childhood trauma positively moderated associa-
tions between TNF-a and connectivity between the right VS
and the RBA11 (B = 0.004, unadjusted p = .005, adjusted p =
.037, n = 73), such that participants with higher levels of both
trauma and TNF-a had greater connectivity between right VS
and RBA11 regions (Figure 3). Post hoc simple slopes analysis
of this interaction effect found that for individuals with higher
trauma severity (i.e., 11 standard deviation), TNF-a was
positively associated with right VS (RVS)-RBA11 connectivity
(B = 0.07, p = .03, n = 73), while negative associations of TNF-a
with RVS-RBA11 connectivity for individuals with lower trauma
severity (i.e., 21 standard deviation) did not reach statistical
significance (B =20.07, p = .089, n = 73). No significant trauma
moderation effects were found for IL-6 and connectivity after
multiple comparisons adjustment (adjusted ps. .05), although
near-significant associations before multiple comparisons
adjustment are described in Table S4.

Exploratory Analysis Examining CTQ Subtypes

In exploratory analyses, we examined moderation effects of
trauma subtypes on inflammatory markers and connectivity
relationships. For TNF-a, CTQ emotional neglect positively
moderated associations between TNF-a and RVS-RBA11
connectivity (B = 0.015, unadjusted p = .001, adjusted p = .01)
(Figure 4). For IL-6, CTQ emotional neglect positively moder-
ated associations between IL-6 and RVS-LBA10 (B = 0.02,
unadjusted p = .001, adjusted p = .007) and RVS-RBA10
connectivity (B = 0.018, unadjusted p = .002, adjusted p =
.007) (Figure 4). For the findings with TNF-a and IL-6, the na-
ture of the moderation effects of childhood emotional neglect
severity on cytokine-connectivity relationships was similar to
moderation effects of composite childhood trauma severity as
reported in our primary results.

No other CTQ subscale had significant moderation in-
teractions after FDR correction, although certain CTQ sub-
scales had significant findings that were not robust after FDR
correction in Table S5.

DISCUSSION

In this study of adults with unipolar treatment-resistant
depression, higher IL-6 levels were associated with
decreased resting-state functional connectivity in cortico-
striatal circuitry (LVS-RBA11, LVS-LBA11), shedding light on
an association that may help guide future research examining
pathophysiological mechanisms relevant for TRD. Further-
more, we identified that childhood trauma and TNF-a levels
interacted to predict right VS-vmPFC connectivity (RVS-
RBA11) in participants with depression, such that individuals
with higher levels of both trauma and TNF-a had greater VS-
vmPFC connectivity. In exploratory analyses, these associa-
tions appeared to be driven primarily by a specific type of
trauma—emotional neglect.

Our study identified robust associations of peripheral IL-6
with reduced left VS to bilateral vmPFC resting-state func-
tional connectivity in patients with unipolar TRD, extending an
earlier finding of a negative correlational relationship between
cytokines and reward circuitry in patients with depression to
www.sobp.org/GOS
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Figure 2. Partial regression plot of residual IL-6
levels by residual LVS and RVS to LBA11 connec-
tivity scores, respectively (A, B). The partial regres-
sion plot permits graphical visualization of these
relationships while statistically adjusting for cova-
riates as described in the main text. BOLD, blood
oxygen level–dependent; IL-6, interleukin 6; LBA, left
Brodmann area; LVS, left VS; RVS, right VS; VS,
ventral striatum.
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the novel, high-priority population of patients with TRD. TRD
has been previously associated with both unique (e.g.,
decreased activity in visual recognition neural circuits) and
Moderation Effects of Childhood Trauma 
Composite on CS Connectivity

High levels of childhood trauma (CTQ score > median)

Low levels of childhood trauma (CTQ score < median)

Figure 3. Graph illustrating that childhood trauma interacted with TNF-a
levels (log-transformed) to predict CS connectivity (RVS–right BA11), such
that greater childhood trauma and greater TNF-a levels were associated
with greater CS connectivity. For visualization purposes, differences be-
tween participants with high levels of childhood trauma (blue line; CTQ score
. median) and low levels of childhood trauma (black line; CTQ score ,

median) are presented. BA, Brodmann area; CS, corticostriatal; CTQ,
Childhood Trauma Questionnaire; RVS, right VS; TNFa, tumor necrosis
factor a; VS, ventral striatum.
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common (e.g., reduced prefrontal-limbic-thalamic connectiv-
ity) pathophysiological mechanisms as compared with
treatment-sensitive depression (39–43). The extension of pre-
vious findings reported in unselected unipolar and bipolar
depressed patients suggests that inflammation may generally
impact reward circuitry irrespective of treatment resistance
and that similar inflammatory mechanisms in treatment-
sensitive depression are applicable in the context of TRD.
Furthermore, some (but not all) studies report higher cytokine
levels (e.g., TNF-a, IL-6) in patients with TRD as than in pa-
tients with treatment-sensitive depression, suggesting that any
such potential impact of cytokines on CS connectivity might
be particularly pertinent and commonplace in the context of
TRD (44,45). Given the lack of effective and/or safe treatments
for this high-priority group of patients with TRD, research to
understand the core pathophysiological processes contrib-
uting to depressive symptoms is imperative for development of
novel, effective treatments. For instance, understanding
mechanisms by which certain immunomodulatory treatments
(e.g., infliximab) or real-time fMRI neurofeedback may modu-
late corticostriatal circuitry could uncover more precise treat-
ments for patients with TRD (46).

Moreover, for the first time, we examined the moderating
effects of childhood trauma on associations between cyto-
kines and corticostriatal connectivity in TRD—a clinical popu-
lation where childhood trauma is known to have moderating
effects on neurobiology (47–49). Childhood trauma has sig-
nificant yet complex effects on brain regions involved in reward
neural circuitry (e.g., associated with both reduced VS acti-
vation in response to reward and increased VS-vmPFC
connectivity—a potential compensatory mechanism) (50),
and previous studies suggest that childhood trauma may
moderate relationships between stress-related biological
markers (e.g., cortisol) and neural circuitry (51–53). Importantly,
the severity of depression, severity of anxiety, and other po-
tential confounders did not change the pattern of these find-
ings in sensitivity analyses (Table S3). Our findings suggest
that dissociable mechanistic pathways may alter reward cir-
cuitry function for those with, versus those without, a sub-
stantial childhood trauma history. Specifically, we found that
greater TNF-a activation in the context of greater levels of
childhood trauma was predictive of greater corticostriatal
connectivity (specifically right VS to RBA11).
al Open Science January 2022; 2:45–53 www.sobp.org/GOS 49

http://www.sobp.org/GOS


A B
Moderation Effects of Childhood Emotional Neglect on 

Associations Between TNFα and CS Connectivity
Moderation Effects of Childhood Emotional Neglect 
on Associations Between IL-6 and CS Connectivity

High levels of childhood emotional neglect (CTQ-EN score > median)

Low levels of childhood emotional neglect (CTQ-EN score < median)

Figure 4. Graphs illustrating that childhood
emotional neglect interacted with log-transformed
cytokine levels TNF-a (A) and IL-6 (B) to predict
CS connectivity (Right VS–right BA11), such that
greater childhood TNF-a and greater cytokine levels
were associated with greater CS connectivity. For
visualization purposes, differences between partici-
pants with high levels of childhood emotional
neglect (blue line; CTQ score . median) and low
levels of childhood emotional neglect (black line;
CTQ score , median) are presented. BA, Brodmann
area; CS, corticostriatal; CTQ-EN, Childhood
Trauma Questionnaire–emotional neglect; IL-6,
interleukin 6; TNFa, tumor necrosis factor a; VS,
ventral striatum.
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Current theories suggest that in individuals with childhood
trauma, increased connectivity between PFC and VS regions
may exist as a top-down compensatory mechanism for
chronic dysfunctional reward processing (29,50,54,55), with a
role of the vmPFC in enhancing reward-related VS activity
(56). From a pathophysiological perspective, cytokines
released from microglia in the central nervous system may
contribute to decreased synthesis and reduced presence of
dopamine at neuronal synapses in the VS (15). Such effects
may occur owing to direct cytokine effects at dopamine
transporters or indirectly owing to cytokine activation of the
kynurenine pathway or nitro-oxidative stress pathways,
which can cause depletion of dopamine precursors such as
tyramine. Decreased dopamine synthesis and availability in
neuronal synapses likely ultimately lead to reduction in VS
activity and signaling in neuronal projections from the VS to
the PFC. In individuals with trauma (with chronic deficits in
reward signaling), compensatory overactivation of mPFC-VS
pathways (and consequently greater VS-vmPFC functional
connectivity) may thus occur in the context of decreased VS
activity secondary to cytokine activity, while in individuals
without significant childhood trauma (with acute deficits in
such VS-to-PFC signaling), such compensatory pathways
may not be established and thus not activate (29). Such
theories could be tested through longitudinal neuroimaging
studies and/or studies using treatments that reduce dysre-
gulated low-grade cytokine activity in such dopaminergic
pathways.

The described theories help guide a better understanding of
the heterogeneity in the pathophysiology of depression related
to childhood trauma and allow a clearer understanding of
potential differences in treatment targets within reward neu-
rocircuitry between depressed individuals with and without
trauma. However, this theoretical conceptualization requires
examination in future studies, given the inability to directly
measure causal cytokine effects at the molecular level on
50 Biological Psychiatry: Global Open Science January 2022; 2:45–53
VS-vmPFC activity in this cross-sectional study. Alternatively,
our findings may be due to unmeasured external confounding
factors (e.g., stress), which may differently affect cytokine-
circuitry associations in individuals with elevated childhood
trauma. Of note, one prior study’s exploratory analysis of a
community sample of women, not selected for depression,
with varying levels of trauma found an opposing pattern to
ours—specifically, that an inflammatory composite score was
negatively associated with LVS-vmPFC connectivity only in
high-trauma groups. These reports emphasize the need for
further research to examine potentially contrasting results in
TRD and nondepressed cohorts (57).

Our exploratory analysis examining childhood trauma sub-
types also suggested that emotional neglect in particular
interacted with both IL-6 and TNF-a to predict corticostriatal
connectivity, such that higher cytokine levels in participants
with greater childhood emotional neglect severity was asso-
ciated with greater corticostriatal connectivity. Although much
of the current literature related to childhood trauma has not
focused on emotional neglect (broadly defined as parental
disregard for a child’s emotional needs such as love or sup-
port) (58), this trauma subtype may play an important role in
reward circuitry development in TRD. For instance, one study
of 106 adolescents found that greater emotional neglect was
associated with blunted reward-related VS activity and that VS
activity partially mediated relationships between emotional
neglect and prospective depressive symptoms (59). Future
studies are needed to clearly dissect the role of emotional
neglect specifically in cytokine-connectivity relationships.

Of note, we did not find significant correlations between
depression severity and cytokine levels in our cohort of pa-
tients with TRD (Table S1). However, given the marked het-
erogeneity of depression and the vastly heterogeneous
symptom presentations that are conflated when looking at
overall increased depression severity, different patients may
(from a theoretical standpoint) have symptoms of depression
www.sobp.org/GOS
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that are differentially impacted by low-grade elevations in
inflammation (60,61). Thus, these factors may lead to lack of
correlations between cytokines and depression severity within
a TRD cohort, particularly a cohort with a restricted range of
depressive symptoms (given that the participants in our cohort
uniformly had moderate-to-severe depression), which is
consistent with prior studies examining cohorts of patients
with TRD (44,62). However, even in the presence of weak
correlations between low-grade cytokine elevation and
depression severity, our focus on individual differences within
TRD permits identifying significant relationships between low-
grade cytokine elevation and neural connectivity, which may
nevertheless contribute substantially to depressive sympto-
mology in certain individuals with depression. Similarly, ge-
netic, biological, and psychological factors may contribute to
heterogeneity that precludes linear associations between low-
grade cytokine elevation and CTQ scores and also between
CTQ scores and depression severity (e.g., variable etiologies of
depressive symptoms occurring with vs. without frank child-
hood trauma history) (63,64). Consistently, correlations be-
tween CTQ composite scores and both depression severity
and peripheral cytokine levels were not significant in our
analysis (Table S1).

These study findings should be taken in the context of
certain limitations. First, our sample size may not have been
sufficient to detect significant differences while adjusting
appropriately for multiple comparisons, leading to type II error.
Specifically, we found that significant findings related to
cytokine type (IL-6 or TNF-a) or VS-vmPFC connectivity
indices differed based on the specific VS and vmPFC region,
warranting examination in future studies to decipher whether
true differences exist in these cytokine-connectivity patterns or
whether the pattern of findings is attributable to limited power
in this study. However, to our knowledge, this study is the
largest one examining cytokine associations with VS-vmPFC
connectivity in patients with depression. Second, our study
was cross-sectional, and thus we are unable to parse potential
causal or longitudinal associations. Third, our lack of a control
group limits our ability to directly identify whether low-grade
cytokine elevations (as compared with healthy control sub-
jects) were present on average in our sample. We could not
accurately compare our values with previously published
values from healthy control subjects, given between-laboratory
variability and between-assay variability in absolute levels of
cytokines; this variability would preclude identification of the
low-grade cytokine elevations (e.g., IL-6 or TNF-a elevations of
,5 pg/mL) found in patients with depression as compared with
healthy control subjects that have commonly been reported in
the literature (44,65,66). Moreover, our definition of TRD (one or
more failed antidepressant trials) was more liberal than that
used in many previous reported studies, but we defined TRD in
this manner given that such patients are at a higher risk for
worse outcomes and to achieve a balance between general-
izability and clinical severity (5,67). Setting too high a bar for
treatment resistance would limit generalizability to the large
proportion of patients who may attempt and fail only one
conventional antidepressant but are nevertheless at a height-
ened risk of worse outcomes. Finally, our use of a retrospective
measure of childhood trauma severity highlights the need for
prospective developmental studies examining causal
Biological Psychiatry: Glob
associations of childhood trauma on inflammation and corti-
costriatal connectivity.

In this study, we examined a cohort of adults with unipolar
TRD, identifying that IL-6 was associated with reduced bilat-
eral VS-vmPFC connectivity, which is important given that this
was the first replication, to our knowledge, of a seminal finding
reported in a smaller sample (N = 48) of patients with mixed
(unipolar/bipolar) depression and extends this finding to a
high-priority TRD cohort. We also found that childhood trauma
severity and TNF-a positively interacted to predict VS-vmPFC
connectivity, suggesting that cytokines may interact differently
with corticostriatal circuitry in patients depending on severity
of childhood trauma. Additionally, in exploratory analyses,
childhood emotional neglect positively moderated TNF-a to
VS-vmPFC connectivity, indicating that this is a needed area of
future research. Larger studies are also needed to parse
temporal relationships of these pathways through longitudinal
analyses. Overall, this study and future studies could help
pinpoint cytokine effects on corticostriatal dysfunction in pa-
tients with TRD, helping ultimately develop a better individu-
alized pathophysiological understanding of TRD to drive
development of targeted treatments.
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