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Abstract

Policies to protect coastal resources may lead to greater social, economic, and ecological returns
when they consider potential co-benefits and trade-offs on land. In Guanica Bay watershed,

Puerto Rico, a watershed management plan is being implemented to restore declining quality of
coral reefs due to sediment and nutrient runoff. However, recent stakeholder workshops indicated
uncertainty about benefits for the local community. A total of 19 metrics were identified to capture
stakeholder concerns, including 15 terrestrial ecosystem services in the watershed and 4 metrics

in the coastal zone. Ecosystem service production functions were applied to quantify and map
ecosystem service supply in 1) the Guanica Bay watershed and 2) a highly engineered upper
multi-watershed area connected to the lower watershed via a series of reservoirs and tunnels.
These two watersheds were compared to other watersheds in Puerto Rico. Relative to other
watersheds, the Upper Guanica watershed had high air pollutant removal rates, forest habitat area,
biodiversity of charismatic and endangered species, but low farmland quality and low sediment
retention. The Lower Guénica watershed had high rates of denitrification and high levels of
marine-based recreational and fishing opportunities compared to other watersheds, but moderate
to low air pollutant removal, soil carbon content, sediment and nutrient retention, and terrestrial
biodiversity. Our results suggest that actions in the watershed to protect coral reefs may lead

to improvements in other ecosystem services that stakeholders care about on land. Considering
benefits from both coastal and terrestrial ecosystems in making coastal management decisions may
ultimately lead to a greater return on investment and greater stakeholder acceptance, while still
achieving conservation goals.

Keywords
Coastal communities; Coral reef; Decision-making; Ecosystem services; Land-use

1. Introduction

An integrated consideration of coastal ecosystem services (e.g., tourism, fishing, and
shoreline protection) in coastal planning can not only meet conservation goals, but also
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lead to greater social and economic returns than assessments focused mainly on ecological
endpoints (Arkema et al., 2015). However, decisions which positively affect coastal
ecosystem services may have positive or negative consequences to the provisioning of other
ecosystem services in the landscape (Raudsepp-Hearne et al., 2010). Policies to protect
coastal resources may gain greater stakeholder support when they are responsive to the
social and economic concerns of stakeholders in both the coastal zone and the watershed
(Productivity Commission, 2003; Roebeling, 2006).

The multi-agency U.S. Coral Reef Task Force (CRTF) initiated a program in 2009 to
address critical land-based sources of pollution impacting nearshore coral reefs outside
Guanica Bay, Puerto Rico (Warne et al., 2005; Rodriguez, 2013; Bradley et al., 2016).
Proposed actions to reduce runoff included changes to agricultural practices, riparian
plantings, dredging of sediment-filled reservoirs, restoration of a lagoon, and development
of wetlands (CWP, 2008). Workshop discussions with stakeholders, however, indicated

the watershed management plan could have unintended consequences beyond protecting
coral reefs (Carriger et al., 2013; Bradley et al., 2014, 2016). Controversy about the plan
implementation was caused by stakeholder uncertainty about the consequences of proposed
actions and a perceived lack of consideration of stakeholder concerns (Sotomayor-Ramirez
and Pérez-Alegria, 2011).

Characterizing stakeholder values is a key first step to help decision-makers identify
management alternatives that have a greater probability of acceptance by stakeholders
(Keeney, 1992). The willingness of stakeholders to accept trade-offs will depend on both
the initial starting point and the potential range of consequences (Keeney, 2002). Identifying
and mapping a broad suite of ecosystem services relevant to a specific decision context can
provide a more holistic assessment of the starting point and potential benefits of a coastal
management plan (Egoh et al., 2012; Martinez-Harms and Balvanera, 2012).

Stakeholder concerns elicited during a Public Values Forum (Gregory and Gonzales, 2013)
were used to identify and map ecosystem services endpoints relevant to the Guanica Bay
water-shed management plan to restore and protect coral reefs (CWP, 2008; Carriger et

al., 2013). Existing studies on ecosystem service supply for Puerto Rico have limited
applicability because of a narrow focus on carbon and water ecosystem services (Gingold,
2007; Smith, 2007; Ostertag et al., 2008; Uriarte et al., 2011). To fully maximize

usefulness of ecosystem services quantification for decision-making, it is necessary to
identify stakeholder-relevant metrics (e.g., Laurans et al., 2013) and assess a broader suite of
ecosystem services (e.g., Raudsepp-Hearne et al., 2010; Arkema et al., 2015).

Baseline measures for relevant ecosystem services were calculated by parameterizing and
applying existing methods to map ecosystem service supply for the Guanica Bay watershed
(e.g., Russell et al., 2013; Tallis et al., 2013). Ecosystem service supply was also mapped for
all other watersheds and coastal areas in Puerto Rico in order to compare the relative supply
of services in the Guanica Bay study area to the range of potential services provided across
Puerto Rico. Results are considered within the context of potential management actions

in the watershed and illustrate the importance of considering both coastal and terrestrial
ecosystem services in coastal management decisions.
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2. Methods

2.1. Study area

The upper mountainous area and lower Lajas Valley of the Guanica Bay watershed are
considered distinct agricultural communities (Gregory and Gonzales, 2013; Bradley et al.,
2016), with uncertain contributions of sediment and nutrient loading into the bay (Carriger et
al., 2013; Bradley et al., 2016). To reflect these differences, the mapped study area was split
to distinguish the lower Lajas Valley (Guanica Bay Watershed) and upper mountainous area
(sub-watersheds of Lago Yahuecas, Lago Guayo, Lago Prieto, and Lago Lucchetti) (Fig. 1).

Ecosystem service supply in the Lower and Upper Guanica areas were calculated, mapped,
and compared to 22 other watersheds in Puerto Rico (Fig. 1). Watershed delineations were
determined by the 10-digit Hydrologic Unit Code (HUC10) for all watersheds. The Upper
Guanica area comprised four smaller HUC12 sub-watersheds that overlapped with the
Yauco and Aflasco HUC10 watersheds (USGS National Hydrography Dataset, USGS.gov;
USDA Natural Resources Conservation Services Watershed Boundary Dataset, USDA.gov).
Coastal ecosystem service supply was paired with the nearest coastal watershed, where
stakeholders are assumed most likely to benefit from coastal resources.

2.2. Public values forum

EPA convened a Public Values Forum in 2013 to engage a broad representation of Guanica
Bay watershed community members and decision-makers in defining what is important

for restoration of their watershed and the associated coastal areas (Gregory and Gonzales,
2013; Bradley et al., 2016). Five topic areas were generated through discussions (terrestrial
ecology, aquatic ecology, economic, social and cultural, and governance and process), and
participants self-organized to document objectives for each (Table 1; Gregory and Gonzales,
2013; Bradley et al., 2016).From the full list of objectives, those that were directly related
to thesupply of ecosystem services were selected for this study (Table 2). A total of

19 ecosystem services metrics were identified as directly related to supply of ecosystem
services. Information from the 2010 Coral Reef Decision Support workshop (Bradley et al.,
2014) and planning documents (Carriger et al., 2013) were also used to help inform the
choice of ecosystem services metrics.

2.3. Mapping ecosystem service supply

Ecological production functions were applied to translate measures of ecosystem condition
from land use/land cover (LULC) and other environmental data layers (Appendix A;

Table Al) to supply of ecosystem services (Wainger and Boyd, 2009; Egoh et al., 2012;
Martinez-Harms and Balvanera, 2012). The ecological production functions, described in
the following sections, were implemented and mapped using ArcMap (ESRI, 2010) or Invest
3.0.0 (Tallis et al., 2013). Most ecosystem services were mapped at the same resolution as
LULC data (30 x 30 m2; NLCD, 2008) and then averaged to calculate a mean value for

each metric within each HUC10 watershed in Puerto Rico or the combined four HUC12
sub-watersheds forming the Upper Guanica study area (Fig. 1).
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2.4. Air quality

Rates of air pollutant removal depend on the downward flux of particles intercepted by the
tree canopy (Nowak et al., 2008; Russell et al., 2013) and can be calculated as:

Relative pollutant removal = %canopy cover X deposition velocity )
X pollutant concentration

Because atmospheric pollutant concentration can vary widely across space and time, we
standardized across watersheds by calculating the removal rate per unit concentration of
particulate matter greater than 10 p,m (PM1), assuming a pollutant concentration of 1 g/m?,
and applying a typical deposition velocity of 1.25 cm/s (Lovett, 1994).

2.5. Water quality and quantity

Long-term average water yield was estimated for each HUC12 sub-watershed as the
difference between total precipitation and the amount absorbed by the different land

cover classes using a reservoir hydropower production model (INVEST 3.0.0; Tallis et al.,
2013). Each land cover class was assumed to have different capacities for retaining water,
depending on root depths and evapotranspiration coefficients (Appendix A, Table A2). The
final water yield estimate represents a long-term average amount of water runoff after
retention by vegetation and land.

The maximum rainwater storage capacity of the landscape during a major precipitation event
(in%/in?) depends on soil moisture retention (S) and initial abstraction of water by vegetation
(/8), and can be estimated by the curve number method (USDA and NRCS, 1986; Lim et al.,
2006):

Maximum retained volume = S + Ia =1.05 X (% — 10) )

Curve numbers (CN) were calculated based on the mean distribution of hydrologic soil
groups for each region (Appendix A, Table A4) in each land cover class at a resolution of 30
x 30 m? (Appendix A, Table A3). Retention was then converted from inches to mm3/mm2.

Denitrification rates were assigned to each land cover class, applying the mean of rates for
natural sub-tropical ecosystems obtained from the literature (Appendix A, Table A3; Russell
et al., 2013). To calculate rates of denitrification for developed land cover classes, a fixed
rate of denitrification for urban lawns was assumed for all land not covered by impervious
surface.

Nutrient retention was estimated by first calculating water yield and establishing the
quantity of nitrogen or phosphorous retained by different land cover classes using a water
purification model (INVEST 3.0.0; Tallis et al., 2013). Different land cover classes have
different capacities for retaining nutrients, depending on the efficiency of vegetation in
removing either nitrogen or phosphorous and the rates of nitrogen or phosphorous loading
(Appendix A, Table A2). Sediment retention was estimated by applying the Universal
Soil Loss Equation (USLE) in each HUC12 sub-watershed using a sediment retention
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model (INVEST 3.0.0; Tallis et al., 2013). The calculated capacity of a land parcel to
retain sediment depends on cover and management factor, management practice factor, and
sediment retention efficiency (Appendix A, Table A2).

2.6. Soil quality

Carbon content in soil and nitrogen fixation rates were assigned to each land cover class,
applying the mean of rates for natural sub-tropical ecosystems obtained from the literature
(Appendix A, Table A3; Russell et al., 2013). To calculate rates of nitrogen fixation for
developed land cover classes, a fixed rate of nitrogen for urban lawns was assumed for all
land not covered by impervious surface (NLCD, 2008). Similarly, soil carbon content for
developed land cover classes was also calculated assuming an urban lawn soil content for
pervious surfaces, in addition to an urban forest soil content for land covered by tree canopy
(USGS, 2013). Additionally, the percent of area occupied by important, prime, or potentially
prime farmland was calculated for each watershed (e.g., USDA and NRCS, 2008a,b,c,d,
2009a, 2012b), where designation is based on soil properties, flooding frequency, irrigation,
water table drainage capacity, and wind erodibility (USDA and NRCS, 2009b).

2.7. Terrestrial ecology and economic opportunities

The percent of each watershed covered by forest habitat was quantified as a measure of its
relative importance. The number of threatened and endangered species (USFWS, 2013) was
mapped by summing the number of species with overlapping spatial distributions (Gould

et al., 2008). Similarly, the potential for eco-tourism was quantified as the number of rare,
endemic, and charismatic fauna with overlapping spatial distributions (Lepage, 2003; Gould
et al., 2008; Miller and Lugo, 2009). The percent tree canopy cover (USGS, 2013) in
developed areas was calculated in each HUC10 watershed as an estimate of the potential for
temperature regulation through shade production.

2.8. Aquatic ecology and economic opportunities

Beach opportunities in each HUC10 watershed were quantified as the percent of coastline
length designated as recreational beach (Google Earth, 2013; Travel and Sports, 2013). The
total area of coral reef habitat and the total area of mangrove habitat associated with the
nearest watershed was calculated from maps of benthic habitats (NOAA, 2008). The value
of finfish ($/m?2) and the relative value of fishing, snorkeling, and swimming opportunities
were calculated as weighted averages of values assigned to individual benthic habitat groups
(Mumby et al., 2008) depending on the relative coverages of benthic habitats associated with
each watershed (Yee et al., 2014). Maps of benthic habitats for Puerto Rico (NOAA, 2008)
were assigned to habitat groups (Mumby et al., 2008) based on benthic habitat descriptions
(Kendall et al., 2002; Appendix A, Table A4).

2.9. Spatial patterns across metrics

Principal component analysis (PCA) was applied to evaluate similarities in the spatial
distribution of the 19 ecosystem services metrics within watersheds across the landscape
(Quinn and Keough, 2002). Analyses were run using the “rda” function of package

“vegan” using the software R (www.r-project.org). To explain patterns of potential supply of
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ecosystem services in relation to gradients in land cover, correlations between environmental
vectors and the PCA ordination were calculated using the “envfit” function in R. Percent

of each land cover type and mean elevation in each watershed were examined as potential
explanatory variables.

3. Results

3.1

Nineteen metrics of ecosystem service supply were mapped for the HUC10 watersheds in
Puerto Rico (Fig. 2). The upper and lower portions of the Guéanica study area were mapped
separately and compared to the other watersheds in Puerto Rico (Fig. 3; Table 3).

Lower Guanica

The Lower Guanica region had the seventh highest overall supply of ecosystem services
among all watersheds in Puerto Rico (Fig. 3). This region had one of Puerto Rico’s largest
estimated areas of mangrove and coral reef habitat, which contribute to potential economic
opportunities including marine-based recreation and fishing. Lower Guanica also had a
relatively large portion of coastline designated beach (Table 3). Supply of non-aquatic
ecosystem services within the Lower Guénica watershed was moderate compared to other
watersheds, including greater than the highly urbanized areas of San Juan and Bayamon

but well below the heavily forested watersheds of Arecibo and Afiasco (Fig. 3). Lower
Guanica ranked among the five lowest watersheds in terms of the ability of the environment
to regulate air pollution, yield water, and provide forest habitat of economic and cultural
importance. Although the percentage of potential farmland was high, only 14% of this was
existing farmland. Nitrogen fixation, nitrogen retention, phosphorus retention, and sediment
retention were among the lower estimates throughout Puerto Rico. The Lower Guanica
Region did have higher rates of denitrification compared to other watersheds in Puerto Rico.

3.2. Upper Guanica

Excluding marine-based ecosystem services, the Upper Guanica study area had the third
highest overall supply of ecosystem services across all the watersheds in Puerto Rico (Fig.
3). Air pollutant removal, water yield, and rainwater retention in the Upper Guéanica area
were among the highest estimates across all Puerto Rico watersheds (Table 3). Terrestrial
ecosystem services of potential cultural and economic importance (e.g., area of forest
habitat, biodiversity of charismatic and endangered species, and shading in urban areas)
were also among the highest estimates observed across Puerto Rico. Upper Guanica also had
the lowest portion of potential farmland, although rates of nitrogen retention, phosphorous
retention, and nitrogen fixation were high. However, the ability of the environment

to retain sediment was among the lowest across Puerto Rico. Low sediment retention
could be attributed to the watershed’s average elevation (approximately 637m) and slope
(approximately 19°), which were amongst the highest in Puerto Rico.

3.3. Spatial patterns across metrics

The first three principal components (PC) from PCA explained 67% of the variability among
watersheds (Fig. 4a; Table 4). Area of forested habitat was one of the strongest drivers of
differences in ecosystem service supply across watersheds, along with air pollutant removal,
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nitrogen fixation, rainwater retention, and numbers of threatened and charismatic species
(strongest positive loading on PC1; Fig. 4a; Table 4). Soil carbon content and tree canopy
for shading (PC2) and marine recreational and fishing opportunities (PC2, PC3) were also
strong drivers distinguishing watersheds (Fig. 4a; Table 4). The Upper and Lower Guanica
watersheds were almost opposite in their supply of ecosystem services. Upper Guanica had
high supply of ecosystem services associated with higher forest cover (e.g., air pollutant
removal, rainwater retention, nitrogen and phosphorous retention, charismatic species, and
threatened species), similar to levels in other highly forested watersheds including Arecibo,
Afiasco Yaguez, and Yauco (Fig. 4b). Lower Guanica, in contrast, was more similar to

low elevation coastal watersheds where farmland quality, denitrification, marine habitat, and
marine-based opportunities tended to be high. Watersheds with high sediment retention and
low water yield were positively associated with greater mangrove and coral reef area (Fig.
4a). Sediment retention in Puerto Rico watersheds was not highest in watersheds with high
forest cover, but instead was strongly negatively correlated with elevation. This contrasted
patterns for nitrogen and phosphorous retention, which were positively related to forest land
cover. Low elevation barren lands, shrub lands, and woody wetlands had the greatest rates of
sediment retention (Fig. 4b).

4. Discussion

4.1.

Ecosystem service supply in the Guanica Bay watershed

The Upper Guanica study area had the third highest overall supply of terrestrial ecosystem
services across Puerto Rico. The Lower Guanica study area, in contrast, was generally

low for most terrestrial ecosystem services, but the highest across Puerto Rico in coastal
ecosystem services. The differences between the lower and upper areas was strongly related
to forest habitat cover and elevation. Moreover, terrestrial ecosystem service supply across
Puerto Rico was most strongly related to forest habitat cover. Less than 35% of the Lower
Guanica watershed was covered with forest, compared to more than 70% in Upper Guanica.
The Lower Guanica watershed instead exhibited the greatest area of coral reef habitat across
Puerto Rico. However, the relative value of fishing and recreational opportunities derived
from marine habitats was only slightly above the median for Puerto Rico, perhaps because
of a similarly high proportion of less desirable habitats (e.g., macroalgae) in the same area.

4.2. Considering impacts of management actions on ecosystem services

The distribution of ecosystem services can help to inform actions proposed by the watershed
management throughout the Guanica watershed. For example, nutrient retention was related
to forest cover, suggesting that management actions proposed to reduce sediment runoff by
improving vegetative cover (e.g., switching from sun-grown to shade-grown coffee) could
have secondary benefits toward preserving the quality of farmland. Moreover, forest cover
was positively associated with a suite of ecosystem services, indicating that actions such

as reforestation could benefit a number of stakeholder goals (e.g., improving air quality,
charismatic and threatened species, and rainwater retention) in addition to potential benefits
for coral reefs. Levels of these ecosystem services were already relatively high in the upper
part of the watershed, indicating actions targeted to the lower watershed may lead to a
broader suite of potential gains.
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Sediment retention in the Guénica study area as a whole was lower than most other Puerto
Rico watersheds, particularly the upper portion. Throughout Puerto Rico, sediment retention
was associated with availability of coral and mangrove habitat. Previous studies have shown
that coral degradation is linked to sediment loading due to smothering and reducing light for
photosynthesis (Rogers, 1990; Philipp and Fabricius, 2003). Throughout Puerto Rico, rates
of sediment retention were strongly affected by the steep elevation regardless of land cover.
This suggests that management efforts targeted at changing land cover in the Upper Guanica
area (e.g., hydroseeding and agricultural practices) may be less effective at protecting coral
reefs, simply because of the challenges in over-coming steep slopes. Furthermore, sediment
loads from the upper portion of the Guanica watershed may be trapped by the lower portion
of the Guéanica watershed because of its higher sediment retention rate, thus potentially
reducing the sediment loading into adjacent coral reefs and mangroves.

Implications for coastal resource management

This study serves to raise awareness of potential trade-offs in watershed management and
the need to consider the overall suite of benefits, or potential negative consequences, of a
decision. Strategies to protect coastal resources often do not account for potential effects

on terrestrial resources (Productivity Commission, 2003; Roebeling, 2006). Our study
illustrates that a consideration of terrestrial ecosystem services could influence management
options to protect coastal resources. For example, actions were proposed in the Guanica
watershed management plan to achieve two key objectives: 1) improving sediment retention
and 2) protecting coral reefs (CWP, 2008). Our analysis, like others (Bousquin et al.,

2014), indicates actions in the upper watershed to improve sediment retention may be less
impactful in protecting coral habitat than actions in the lower watershed. However, the
potential smaller relative effects of actions in the upper watershed on sediment retention
may still be worth pursuing when they are augmented by maintaining or improving other
ecosystem services that stakeholders care about (e.g., air quality regulation, agricultural
quality, economic and cultural opportunities in terrestrial habitats).

4.4, Quantifying stakeholder objectives

In order for stakeholders or decision-makers to weigh potential trade-offs, objectives must
be measured and quantified. Our analysis focused on ecosystem service supply; that is, the
production of services without knowledge or economic value of their use. Other studies, in
contrast, have quantified the economic value of ecosystem services (Gingold, 2007; Smith,
2007). Economics-based assessments, however, can be controversial if important variables
that are difficult to monetize are left out. In many cases, non-economic metrics may be more
appropriate to represent stakeholder concerns (Gregory et al., 2012). Though not entirely
comprehensive in terms of economic (e.g., dollar value) or health outcomes (e.g., rates of
asthma) that may sometimes be more meaningful to stakeholders, our study illustrates a
baseline quantification of a suite of ecosystem service supply linked explicitly to stakeholder
concerns within the context of a watershed management plan.
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5. Conclusions

Decision-making is an iterative process (Gregory et al., 2012), and the analysis presented
here is a first step toward characterizing the potential trade-offs and benefits of coastal
management decisions throughout a watershed. Identifying potential consequences of
decisions is extremely difficult, particularly when scientific knowledge and data are
incomplete (Knol et al., 2010). This study addressed one area of uncertainty raised by
stakeholders by identifying stakeholder-relevant ecosystem services and quantifying their
baseline values, but did not go as far as to predict outcomes of specific alternative decision
scenarios. Often, however, the goal of assessments is not to develop extensive quantitative
predictive models, but to provide enough information to expose key trade-offs, identify
shared benefits, and facilitate communication between stakeholders and decision-makers
(Gregory et al., 2012). Our study illustrates that actions in the watershed to protect coral
reefs may lead to improvements in other ecosystem services that stakeholders care about
on land. Consideration of both coastal and terrestrial benefits in coastal management may
ultimately lead to decisions that gain a greater return on investment and greater stakeholder
acceptance, while still achieving conservation goals.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A.

Table A1

Ecological condition data layers used as input to ecological production functions.

Ecosystem Service Metric Data Layer (Source)
Atmospheric pollution removal Percent canopy cover (USGS, 2013)
Water availability LULC (NLCD, 2008)

Digital elevation (USGS, 2006)

Mean annual precipitation (NOAA, 2008)

Soil depth, available water content, average annual potential
evapotranspiration (2008a-b, 2009a,b, 2012a-b)

Volume of rainwater retained LULC (NLCD, 2008)
Hydrologic soil groups (2008a-b, 2009a,b, 2012a-b)

Denitrification rate/Nitrogen fixation LULC, percent impervious surface (NLCD, 2008)

Nitrogen retention rate/Phosphorous retention LULC (NLCD, 2008)
rate

Sediment retention rate LULC (NLCD, 2008)
Digital elevation (USGS, 2006)
Rainfall erosivity index, soil erodibility (NOAA, 2008)
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Ecosystem Service Metric

Data Layer (Source)

Soil carbon content

Farmland quality

Forest habitat cover

Richness of endangered or threatened species/

LULC, percent impervious surface (NLCD, 2008)
Percent canopy cover (USGS, 2013)

Important, prime, or potentially prime farmland (e.g., 2008a-b,
2009a, 2012a-b)

LULC (NLCD, 2008)
Species distribution (Gould et al., 2008)

Richness of rare, endemic, or charismatic
species

Temperature regulation through shading LULC (NLCD, 2008)

Percent canopy cover (USGS, 2013)

Beach recreational opportunities
2013)

Coral reef habitat area/Mangrove habitat area/
Value of finfish stock/Relative value of fishing,
snorkeling, and swimming opportunities

Benthic habitat coverage (NOAA, 2008)

Coastline designated beach (Google Earth 2013; Travel and Sports,

Table A2

Biophysical parameters for Puerto Rico to implement reservoir hydropower model, water
purification model, and sediment retention model (INVEST 3.0.0; Tallis et al., 2013).

LULC Maximum  Plant Evapo- Ratesof  Rates of Vegetation  Vegetation Cover and Management ~ Sediment
Vegetative transpiratign Nitrogen Phosphorus  Efficiency  Efficiency Management Practi Retention,
Root Coefficient Loading  Loading of of Filtering  Factor Factor Efficiency
Dept@ (kg§1a/ (kg/halyr) Filtering Phoiphorus
(mm) yr) Nitrggen (%)
(%)
Open 0 1000 0.00 0.00 0 0 0.000 0.000 0.000
Water
Developed, 0 550 15.56 1.04 0 0 0.000 0.000 0.000
Open
Space
Developed, 0 428 15.56 3.04 0 0 0.000 0.000 0.000
Low
Intensity
Developed, 0 278 15.56 5.04 0 0 0.000 0.000 0.000
Medium
Intensity
Developed, 0 153 15.56 7.04 0 0 0.000 0.000 0.000
High
Intensity
Barren 0 500 3.40 0.10 0 0 0.900 0.000 0.000
Land
Evergreen 7300 1000 5.70 0.01 100 100 0.006 0.000 1.000
Forest
Shrub/ 5100 398 6.79 1.30 100 100 0.030 0.000 0.500
Scrub
Herbaceous 2600 650 6.79 1.30 100 100 0.110 0.000 0.500
Hay/ 2600 850 16.27 0.10 100 100 0.030 1.000 1.000
Pasture
Cultivated 2100 650 16.27 3.10 50 50 0.500 0.500 0.500
Crops
Woody 5200 1100 5.70 0.01 100 100 0.030 0.000 1.000
Wetlands
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LULC Maximum  Plant Evapo- Ratesof  Rates of Vegetation  Vegetation Cover and Management ~ Sediment
Vegetative transpiratign Nitrogen Phosphorus  Efficiency  Efficiency Management  Practi Retention,
Root Coefficient Loading  Loading of of Filtering  Factor Factor Efficiency
Deptl (kg§1a/ (kg/halyr) Filtering Phoiphorus
(mm) yr) Nitrggen (%)
(%)
Emergent 2600 1100 6.79 1.30 100 100 0.110 0.000 1.000
Herbaceous
Wetlands
1.
Canadell et al., 1996.
ZAIIen etal., 1998.
3’Reckhow etal., 1980.
4'Tallis etal., 2013.
5'Wischmeier and Smith, 1978.
6’St0ne and Hilborn, 2012.
Table A3

Rates of denitrification, nitrogen fixation, and carbon sequestration estimated as the mean
of typical values from literature surveys. Rates for developed land use classes represent

averages across Puerto Rico calculated for each watershed from urban lawn or urban tree
rates. Curve numbers were based on the mean distribution of soil types in each land cover

class.

Denitrification1 Nitrogen fixation2 Carbon in soil3 Curve
LULC (g N/m2lyr) (g N/m2lyr) (g C/m?) number”
Open Water 5.17 0.00 143 0.00
Developed, Open Space 1.26 0.01 12177.9 79.11
Developed, Low Intensity 0.92 0.01 8876.4 78.21
Developed, Medium Intensity 0.50 3.55x 1073 4826.5 88.59
Developed, High Intensity 0.15 1.05x 1073 14545 93.26
Barren Land 0.00 0.00 3380 89.88
Evergreen Forest 0.25 33.94 5861.7 60.05
Shrub/Scrub 0.00 0.00 5000 71.38
Herbaceous 0.00 0.01 5139.1 84.44
Hay/Pasture 0.89 0.97 4452.3 78.78
Cultivated Crops 38.33 0.68 44523 80.19
Woody Wetlands 17.53 0.00 11100 74.57
Emergent Herbaceous Wetlands ~ 37.23 0.00 7798.9 88.17
Urban lawn 14 0.01 13460
Urban tree - - 1805

'Z'Reddy et al., 1989; Tsai, 1989; Walbridge and Lockaby, 1994; Chestnut et al., 1999; Mosier et al., 2004; Seitzinger et al.,

2006; Raciti et al., 2011.

Z'Carpenter etal., 1978; Espinoza, 1997; Freiberg, 1998; Ley and D’ Antonio, 1998; Brenner et al., 1999; Grossman, 2003;

Herridge et al., 2008.

3’Hought0n etal., 1991; McGuire et al., 1995; Ravindranath et al., 1997; Houghton, 1999; Masera et al., 2001; Ni, 2001;
Pouyat et al., 2002; Chabra et al., 2003; Grau et al., 2004; Silver et al., 2004; Li et al., 2005, 2006; Bernal and Mitsch,
2008; Marin-Spiotta et al., 2008, 2009; Ostertag et al., 2008.

4'USDA and NRCS, 2008a-b, 2009a,b, 2012a-b.
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5'300 g C/m2 for urban trees (Pouyat et al., 2002), 60% of which is attributed to soil (Nowak and Greenfield, 2009).

Table A4

Values of finfish stock and relative values of gmarine-based recreation for each benthic
habitat class, using value scores from Mumby et al., 2008 and benthic habitat descriptions
from Kendall et al., 2002.

Benthic Habitat Value of finfish stock Fishing, snorkeling
($200US/m?) swimming opportunities
Sand, mud 0.26 3
Linear reef, spur and gropve reef, reef colonized 3.61 25
pavement with channels
Patch reef, scattered coral rock 0.38 3
Reef colonized pavement or bedrockz 0.54 1
Hardbottom, reef rubble or uncolonized3 0.34 1
Mangrove 0.05 0
Seagrass, continuous or patchy >30%4 0.23 0
Seagrass, patchy <30%5 1.94 1
Macroalgae 1.88 1
1

"Acropora palmata or Montastraea/Orbicella reef.

N

‘Dense gorgonians.

wW

"Sparse gorgonians.

N

‘Dense or medium density seagrass.

S

"Sparse seagrass.

Appendix B.: Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.ecolind.2016.11.036.
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Fig. 1.
The watersheds of Puerto Rico, and the upper and lower portions of the Guanica Bay study

area. Inset shows the four sub-watersheds comprising the Upper Guénica Bay study area.
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Fig. 2.
Maps of ecosystem service supply (Table 3) across Puerto Rican watersheds. Nitrogen

retention and phosphorous retention were highly correlated and combined to a single

map (E). For convenience, ecosystem services defined by discrete habitat metrics (forest,
farmland, coral, and mangroves) were also combined to a single map (1). Tree canopy for
shading is based on% canopy cover, as is the map of pollutant removal (A), and is therefore
not shown separately. Finfish stock and marine recreation map directly onto benthic habitats
() and are not shown separately.
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Ordination plot showing the distribution of watersheds along the first two factors identified
in PCA. The direction of the arrows indicates (A) the ecosystem services metrics and (B) the

environmental variables that were correlated with a given PC axis.
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