Table 1.
Model Architecture Performance by Feature Set
| P < 0.05 | Z > 2 | Z > 3 | Gini | Gini DT | |
|---|---|---|---|---|---|
| 3-Fold | |||||
| Random Forest | 0.717 [55.4] | 0.713 [57.55] | 0.714 [51.1] | 0.716 [54.35] | 0.717 [50.55] |
| KNN | 0.715 [2] | 0.715 [2] | 0.711 [2] | 0.717 [3] | 0.717 [3] |
| SVC [linear] | 0.71 | 0.609 | 0.505 | 0.6 | 0.64 |
| SVC [poly] | 0.698 | 0.607 | 0.517 | 0.599 | 0.616 |
| SVC [sigmoid] | 0.62 | 0.551 | 0.47 | 0.54 | 0.553 |
| SVC [rbf] | 0.642 | 0.521 | 0.487 | 0.567 | 0.581 |
| Decision Tree | 0.715 | 0.715 | 0.711 | 0.715 | 0.714 |
| 5-Fold | |||||
| Random Forest | 0.654 [41.3] | 0.651 [46.75] | 0.641 [45.75] | 0.652 [43.95] | 0.654 [41.3] |
| KNN | 0.558 [3.39] | 0.496 [9.71] | 0.515 [8.44] | 0.535 [3.67] | 0.558 [3.39] |
| SVC [linear] | 0.615 | 0.553 | 0.504 | 0.589 | 0.634 |
| SVC [poly] | 0.593 | 0.535 | 0.501 | 0.562 | 0.574 |
| SVC [sigmoid] | 0.551 | 0.489 | 0.458 | 0.517 | 0.521 |
| SVC [rbf] | 0.563 | 0.504 | 0.469 | 0.537 | 0.541 |
| Decision Tree | 0.634 | 0.636 | 0.634 | 0.64 | 0.637 |
Distribution of model accuracy using a variety of different architectures and different feature lists for both 5-fold and 3-fold cross validation methods. For KNN and Random Forest, average values for parameters with the highest accuracy are recorded in brackets