Skip to main content
. 2022 Mar 2;23:172. doi: 10.1186/s12864-022-08366-2

Table 1.

Model Architecture Performance by Feature Set

P < 0.05 Z > 2 Z > 3 Gini Gini DT
3-Fold
 Random Forest 0.717 [55.4] 0.713 [57.55] 0.714 [51.1] 0.716 [54.35] 0.717 [50.55]
 KNN 0.715 [2] 0.715 [2] 0.711 [2] 0.717 [3] 0.717 [3]
 SVC [linear] 0.71 0.609 0.505 0.6 0.64
 SVC [poly] 0.698 0.607 0.517 0.599 0.616
 SVC [sigmoid] 0.62 0.551 0.47 0.54 0.553
 SVC [rbf] 0.642 0.521 0.487 0.567 0.581
 Decision Tree 0.715 0.715 0.711 0.715 0.714
5-Fold
 Random Forest 0.654 [41.3] 0.651 [46.75] 0.641 [45.75] 0.652 [43.95] 0.654 [41.3]
 KNN 0.558 [3.39] 0.496 [9.71] 0.515 [8.44] 0.535 [3.67] 0.558 [3.39]
 SVC [linear] 0.615 0.553 0.504 0.589 0.634
 SVC [poly] 0.593 0.535 0.501 0.562 0.574
 SVC [sigmoid] 0.551 0.489 0.458 0.517 0.521
 SVC [rbf] 0.563 0.504 0.469 0.537 0.541
 Decision Tree 0.634 0.636 0.634 0.64 0.637

Distribution of model accuracy using a variety of different architectures and different feature lists for both 5-fold and 3-fold cross validation methods. For KNN and Random Forest, average values for parameters with the highest accuracy are recorded in brackets