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Introduction

ATP-binding cassette (ABC) proteins bind ATP, hydrolyze
ATP, and use the energy released from the reaction to drive
transport or regulate cellular functions. The plant ABC pro-
tein family is classified into eight subfamilies: A–G and I
(Verrier et al., 2008). Most ABC proteins form membrane
transporters that consist of two nucleotide-binding domains
(NBDs) and two transmembrane domains (TMDs). Full-size
ABC proteins alone form functional transporters, but
many half-size ABC proteins or some bacterial-type intrinsic
members form multisubunit complexes to perform their
functions. While NBDs are highly conserved among ABC
proteins, TMDs vary, allowing the transport of many differ-
ent substrates. For the detailed structural and phylogenetic
characteristics of plant ABC proteins, refer to previous
reviews (Verrier et al., 2008; Kang et al., 2011).

In plants, which generally contain more ABC proteins
than most other living organisms, these proteins facilitate
the transport of diverse substrates and regulate multiple
physiological processes (Hwang et al., 2016; Tables 1, 2).
The substrates of plant ABC proteins include hormones,
pigments, toxic chemicals, secondary metabolites important
for defense, lipidic molecules, and reactive oxygen species
(ROS)-related compounds (Jasi�nski et al., 2001; Footitt et al.,
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2002; Goodman et al., 2004; Geisler et al., 2005; Song et al.,
2010; Do et al., 2019). In some cases, a single ABC protein is
thought to transport many chemically unrelated substrates.
However, some of these candidate substrates might be indi-
rectly altered in concentration in a compartment, rather
than directly transported by the ABC protein. It is difficult
to test the substrate specificity rigorously using current tech-
nology, especially for ABC proteins, which have a tremen-
dous range of substrates. Tables 1, 2 summarize the
physiological roles of plant ABC transporters, the candidate
substrates suggested based on the physiological roles, and
the substrates that have been characterized using direct
transport assays. Some excellent reviews and recent reports
are available on ABC proteins involved in hormone trans-
port (Geisler et al., 2017; Kang et al., 2017; Park et al., 2017;
Ofori et al., 2018; Aryal et al., 2019; Borghi et al., 2019; Feng
et al., 2019; Krattinger et al., 2019; Liu et al., 2019; Pawela et
al., 2019; Zhao et al., 2019; Wang et al., 2020). This topic will
not be covered in this review due to space limitations.

Here, we focus on developments that have occurred in
the field of ABC proteins since our previous review (Hwang
et al., 2016), including newly identified functions and regula-
tory mechanisms and insight into how these proteins con-
tribute to the development and physiology of terrestrial
plants. These findings support the idea that ABC proteins
transport a wide range of substrates essential for plant sur-
vival under dry conditions. Furthermore, we discuss interest-
ing future research directions (see “Outstanding questions”)
and potential applications (Box 1) of ABC proteins in plants.

Newly characterized ABC proteins

Development
ABCG functions in development by transporting surface

coating materials

Proper surface coating by lipid transporters including
Arabidopsis (Arabidopsis thaliana) ABCG11, ABCG12, and
ABCG13 is essential from the beginning of plant develop-
ment to reproduction (Pighin et al., 2004; Panikashvili et al.,
2010). Numerous homologs and orthologs of these genes
are involved in various aspects of plant development (also
reviewed in Do et al., 2018). STIGMA EXSERTION1 (SGE1)
and MtABCG13, the Medicago (Medicago truncatula) ortho-
logs of AtABCG11 and AtABCG13, respectively, play roles in
determining SGE (Zhu et al., 2020), an important agricultural
trait for the utilization of heterosis in crop breeding. The use
of self-pollinating legume plants such as soybean (Glycine
max) and Medicago for heterosis is limited due to their
complex fused floral architecture, in which the pistil is cov-
ered by petals. However, in the mtsge1 mutant, the stigma is
exposed to the outside of the flower because the petals fail
to expand and cover the stigma due to a lack of cutin and
wax. MtSGE1 can dimerize with MtABCG13, and mtabcg13
exhibits a similar phenotype to mtsge1, suggesting that the
MtSGE1/MtABCG13 dimer transports cutin/wax compo-
nents for petal surface coating (Zhu et al., 2020).

OsABCG9 in rice (Oryza sativa) mainly functions as a wax
transporter, in contrast to its Arabidopsis ortholog
AtABCG11, a cutin/wax transporter (Panikashvili et al., 2010;
Nguyen et al., 2018). OsABCG9 is primarily expressed in
shoots at the vegetative stage. In osabcg9 plants, the cuticu-
lar wax load is reduced by half, but cutin levels are not; this
mutant exhibits growth retardation and enhanced suscepti-
bility to drought stress (Nguyen et al., 2018). OsABCG15,
OsABCG26, and OsABCG3 function in pollen development
(Zhao et al., 2015; Chang et al., 2018). OsABCG3 is specifi-
cally expressed in anthers at pollen development Stages 9–
10, and its loss of function causes male sterility, similar to
that observed for loss of OsABCG15 and OsABCG26 func-
tion (Zhao et al., 2015; Chang et al., 2018). However,
OsABCG3 functions specifically in pollen wall formation
(nexine II and intine layers), while OsABCG15 and
OsABCG26 function broadly in pollen wall, pollen coat, and
anther cuticle formation (Zhao et al., 2015; Chang et al.,
2018). In Arabidopsis, ABCG5 functions as a wax transporter,
which is important for early seedling establishment (Lee et
al., 2020). When grown under waterlogged conditions,
atabcg5 plants had water-soaked cotyledons and experi-
enced hypoxic stress due to reduced cuticular wax content,
leading to water permeation into the cotyledons. The
atabcg5 seedlings failed to develop true leaves under these
conditions. Both recent and previous studies of ABCG trans-
porters of surface coating materials (reviewed in Do et al.,
2018) demonstrated that the hydrophobic barrier on the
plant surface is essential for proper plant development by
providing the lubrication needed for organ separation and
protecting the plant from both excess water and dry air by
limiting water movement through its surface.

ABCG functions in development by transporting redox-

related compounds

The regulation of cell redox status is critical for plant sur-
vival in oxygen-rich terrestrial environments. The
Arabidopsis ABC transporter of the mitochondria 3
(AtATM3)/AtABCB25 functions in Fe–S cluster formation
(Kushnir et al., 2001) by exporting glutathione polysulfide
from the mitochondria for cytosolic Fe–S cluster assembly
(Schaedler et al., 2014). The rice ortholog OsATM3 was re-
cently shown to be essential for cytosolic Fe–S cluster as-
sembly and, thus, meristem maintenance (Zuo et al., 2017).
The osatm3 mutation results in lethality at the four-leaf
stage due to a defect in Fe–S cluster biosynthesis and the
hyperaccumulation of superoxide anion (Zuo et al., 2017).

Tip-growing cells such as pollen tubes and root hairs re-
quire tip-focused ROS for continuous growth. An
Arabidopsis half-size ABCG with a unique topology is critical
in establishing proper ROS levels at the tips of these struc-
tures (Do et al., 2019). This transporter, AtABCG28, is
expressed specifically in mature pollen and growing pollen
tubes and localizes to the membranes of secretory vesicles.
AtABCG28 is involved in sequestering polyamines (source of
ROS) into the vesicles that move and fuse to the growing
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Table 1 Summary of the physiological functions of plant ABC proteins identified to date

Physiological function ABC proteins involved Referencesa

Secretion of surface coating materials
Cutin and wax precursors AtABCG5, AtABCG11, AtABCG12, AtABCG13,

AtABCG32, OsABCG9, OsABCG15, OsABCG26,
OsABCG31, MtSGE1, MtABCG13, PpABCG7,
HvABCG31

Pighin et al. (2004); Bird et al. (2007); Bessire et al.
(2011); Chen et al. (2011); Panikashvili et al. (2011);
Buda et al. (2013); Qin et al. (2013); Zhao et al. (2015);
Garroum et al. (2016); Nguyen et al. (2018); Lee et al.
(2020); Zhu et al. (2020)

Suberin precursors AtABCG1, AtABCG2, AtABCG6, AtABCG11,
AtABCG20, OsABCG5, StABCG1

Panikashvili et al. (2010); Landgraf et al. (2014); Shiono
et al. (2014); Yadav et al. (2014); Fedi et al. (2017);
Shanmugarajah et al. (2019)

Lignin precursors AtABCG29 Alejandro et al. (2012)
Pollen wall and coat materials AtABCG1, AtABCG9, AtABCG16, AtABCG26,

AtABCG31, OsABCG3, OsABCG15, OsABCG26
Quilichini et al. (2010); Qin et al. (2013); Choi et al.

(2014); Yadav et al. (2014); Zhao et al. (2015); Chang
et al. (2018)

Hormone transport and signaling
Cytokinins AtABCG14, OsABCG18, VviABCG14, VviABCG7,

MdABCG28, AtABCI19, AtABCI20, AtABCI21
Ko et al. (2014); Zhang et al. (2014); Feng et al. (2019);

Zhao et al. (2019); Kim et al. (2020); Wang et al.
(2020)

ABA AtABCG25, AtABCG40, AtABCG30, AtABCG31,
MtABCG20, TaLr34, AaABCG40

Kang et al. (2010); Kuromori et al. (2010); Kang et al.
(2015); Krattinger et al. (2019); Pawela et al. (2019)

Auxins and precursors AtABCB1, AtABCB4, AtABCB14, AtABCB15,
AtABCB19, AtABCB21, AtABCG1, AtABCG16,
AtABCG36, AtABCG37, LjABCB1, OsABCB14,
ZmABCB1, SlABCB4

Geisler et al. (2005); Lin and Wang (2005); Santelia et al.
(2005); Terasaka et al. (2005); Knöller et al. (2010);
Ruzicka et al. (2010); Kaneda et al. (2011); Kamimoto
et al. (2012); Takanashi et al. (2012); Xu et al. (2014);
Ofori et al. (2018); Aryal et al. (2019); Fu et al. (2020);
Liu et al. (2020a, 2020b)

JA and JA-Ile AtABCG16 Li et al. (2017)
SL PhPDR1, PaPDR1, MtABCG59 Kretzschmar et al. (2012); Sasse et al. (2015); Banasiak

et al. (2020)
Regulation of cellular redox state

Transport of Fe–S cluster precursor AtABCB25 (ATM3), OsATM3 Schaedler et al. (2014); Zuo et al. (2017)
Sequestering polyamines AtABCG28 Do et al. (2019)

Intracellular metabolite transport
Phytic acid AtABCC5, ZmMRP4, OsMRP5, TaABCC13,

BnMRP5
Shi et al. (2007); Nagy et al. (2009); Xu et al. (2009);

Bhati et al. (2016); Sashidhar et al. (2020)
Lipid transfer AtABCD1, AtABCA9, AtABCI14 (TGD1),

AtABCI15 (TGD2), AtABCI13 (TGD3)
Xu et al. (2003); Awai et al. (2006); Lu et al. (2007);

Nyathi et al. (2010); Kim et al. (2013)
Defense against infection or herbivory

Secretion of defense molecules AtABCG34, AtABCG36, AtABCG40, NtPDR1,
SpTUR2, CrTPT2, MtABCG10, TaLr34,
NtABCG5, VmABCG1

van den Brûle et al. (2002); Bienert et al. (2012); Crouzet
et al. (2013); Yu and De Luca (2013); Lu et al. (2015);
Biala et al. (2017); Demessie et al. (2017); Khare et al.
(2017); He et al. (2019); Rajagopalan et al. (2020)

Translation regulation AtABCF4 (GCN4), AtABCF3 (GCN20), LrABCF1 Sun et al. (2016); Kaundal et al. (2017); Han et al. (2018)
Accumulation of defense molecules AtABCC2, VvABCC1, CsABCC4a, CsABCC2,

ZmMRP3, CjABCB1, CjABCB2
Shitan et al. (2003); Goodman et al. (2004); Francisco et

al. (2013); Shitan et al. (2013); Behrens et al. (2019);
Demurtas et al. (2019)

Metal homeostasis
Chloroplast AtABCI11 (NAP14), AtABCI10, AtABCI12,

OsABCI7
Voith von Voithenberg et al. (2019); He et al. (2020)

Mitochondria AtATM1, AtATM3 Chen et al. (2007); Teschner et al. (2010)
Regulation of stomatal aperture via

malate transport
AtABCB14 Lee et al. (2008)

Nutrient acquisition from the soil
under iron deficiency

AtABCG37,NtPDR3 Fourcroy et al. (2014); Ziegler et al. (2017); Lefèvre et al.
(2018)

Attracting pollinators by releasing VOCs PhABCG1 Adebesin et al. (2017)
Self-incompatibility MdABCF, PiABCF Meng et al. (2014)
Regulation of the root microbiome via

root exudate secretion
AtABCG30, AtABCG37 Badri et al. (2009); Ziegler et al. (2017)

Detoxification by sequestering heavy
metals and toxic organics

AtABCC1, AtABCC2, AtABCC3, AtABCG36,
AtABCG40, AtABCB27 (ALS1), AtABCI16
(ALS3), AtSTAR1, OsALS1, OsABCG36,
OsSTAR1, OsSTAR2, PtoABCG36, PtABCC1,
FeALS1.1, FeALS1.2, FeSTAR1, FeSTAR2,
HvABCB25

Larsen et al. (2005); Lee et al. (2005); Kim et al. (2007);
Larsen et al. (2007); Huang et al. (2009); Huang et al.
(2010); Song et al. (2010); Huang et al. (2012); Park
et al. (2012); Brunetti et al. (2015); Che et al. (2018);
Sun et al. (2018); Fu et al. (2019); Wang et al. (2019a,
2019b); Liu et al. (2020a, 2020b)

aDue to space limitations, representative publications are cited for individual ABC transporter proteins and their associated functions.

1878 | PLANT PHYSIOLOGY 2021: 187; 1876–1892 Do et al.



Table 2 Summary of plant ABC transporter proteins of which substrates have been characterized by transport assays using single-cell systems or
purified protein of interest

ABC protein Substrates Transport assaysa References

ABCAb

ABCB
AtABCB1 IAA and NAA 3H-IAA and 3H-NAA transport of atabcb1 mesophyll protoplasts;

3H-IAA and 3H-NAA transport of Saccharomyces cerevisiae
JK93da expressing AtABCB1; 3H-IAA transport of
Schizosaccharomyces pombe expressing AtABCB1; 3H-IAA and
3H-NAA transport of HeLa cells expressing AtABCB1

Geisler et al. (2005); Yang and
Murphy (2009); Kamimoto
et al. (2012)

AtABCB4 IAA and NAA 3H-IAA and 3H-NAA transport of BY-2 cell lines expressing
AtABCB4; 3H-IAA transport of S. cerevisiae JK93da expressing
AtABCB4; 3H-IAA transport in S. pombe expressing AtABCB4;
3H-IAA transport of HeLa cells expressing AtABCB4

Terasaka et al. (2005);
Kamimoto et al. (2012);
Kube�s et al. (2012)

AtABCB14 Malate 14C-malate transport of Escherichia coli strain dct expressing
AtABCB14; 14C-malate transport of HeLa cells expressing
AtABCB14

Lee et al. (2008)

AtABCB19 IAA and NAA 3H-IAA accumulation of S. pombe expressing AtABCB19; 3H-IAA
transport of HeLa cells expressing AtABCB19

Yang and Murphy (2009);
Kube�s et al. (2012)

AtABCB21 IAA 3H-IAA transport of atabcb21 knock-down mesophyll protoplasts
cells; 3H-IAA transport of S. cerevisiae JK93da expressing
AtABCB21

Kamimoto et al. (2012)

AtABCB25
(AtATM3)

Glutathione polysulfide ATP hydrolysis of AtABCB25 expressed and purified in
Lactoccocus lactis; 35S-GSSG transport of vesicles derived from
L. lactis expressing AtABCB25

Schaedler et al. (2014)

LjABCB1 IAA Auxin transport using heterologous cells expressing LjABCB1 Takanashi et al. (2012)
OsABCB14 IAA IAA transport of yeast strain expressing OsABCB14; IAA

transport of rice protoplasts derived from osabcb14
Xu et al. (2014)

SlABCB4 IAA IAA transport of N. benthamiana protoplasts expressing SlABCB4 Ofori et al. (2018)
ABCC

AtABCC1

GS conjugates and
chlorophyll catabolites

As(III)-PC2

Folate monoglutamates
and antifolates

ABA-GE

Uptake of 14C–Bn-NCC-1, 3H–DNP-GS, 3H-GSSG, and
14C–Metolachlor-GS by vacuolar membrane purified from
S. cerevisiae DTY168 expressing AtMRP1

As-PC transport of vesicles derived from S. cerevisiae expressing
AtABCC1

Transport of 3H-folate monoglutamates and antifolates of
vacuolar vesicles derived from atabcc1 and yeast strain
DTY168 expressing AtABCC1

Transport of 14C- or 3H-ABA-GE into vesicles derived from yeast
strain YMM36 expressing AtABCC1

Lu et al. (1998)

Song et al. (2010)

Raichaudhuri et al. (2009)

Burla et al. (2013)

AtABCC2

GS conjugates and
chlorophyll catabolites

Anthocyanins, Flavone,
Flavonol glucosides
As(III)-PC2

ABA-GE

Uptake of 14C–Bn-NCC-1, 3H–DNP-GS, 3H-GSSG, and
14C–Metolachlor-GS by vacuolar membrane purified from
S. cerevisiae DTY168 expressing AtMRP2

Anthocyanins and flavonoids transport of vesicles derived from
yeast strain DTY168 expressing AtABCC2

As-PC transport of vesicles derived from S. cerevisiae expressing
AtABCC2

Transport of 14C- or 3H-ABA-GE into vesicles derived from yeast
strain YMM36 expressing AtABCC1

Lu et al. (1998)

Behrens et al. (2019)

Song et al. (2010)

Burla et al. (2013)
AtABCC3 GSH conjugate and

chlorophyll catabolite
Uptake of 14C-DNB-GS and 14C-Bn-NCC by vesicles derived from

yeast strains expressing AtABCC3
Tommasini et al. (1998)

AtABCC4 Antifolates 3H-methotrexate transport of vesicles derived from yeast strain
Dycf1Dbpt1

Klein et al. (2004)

AtABCC5

Inositol hexakisphosphate

Glutathione conjugate
and glucuronide
conjugate

33P-inositol hexakisphosphate uptake into microsomes isolated
from yeast ycf1 expressing AtMRP5

Uptake of 14C-glutathione conjugate and 3H-glucuronide conju-
gate into microsomes from yeast DTY168 expressing AtMRP5

Nagy et al. (2009)

Gaedeke et al. (2001)

OsABCC7 As(III)-phytochelatin and
As(III)-glutathione

Efflux assay using Xenopus laevis oocytes expressing OsABCC7 Tang et al. (2019)

VvABCC1 Glucosylated
anthocyanidins

Malvidin 3-O-glucoside transport of vesicles derived from yeast
strain ybt1 expressing VvABCC1

Francisco et al. (2013)

(continued)
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tip. Therefore, AtABCG28 confines the site of ROS
production to the growing tip, thereby contributing to tip
growth and protecting the cytosol from ROS damage
(Figure 1). Various other ABCG proteins with similar domain
structures to AtABCG28 might also contribute to the polar
distribution of intracellular ROS by sequestering ROS sources
to secretory vesicles.

ABCCs function in development via phytic acid transport

Several AtABCC5 orthologs have been identified in crop
plants as potential vacuolar transporters for phytic acid,
which enable phytic acid to accumulate in the vacuole and
mediate its removal from the cytosol (Bhati et al., 2016;
CominelLi et al., 2018, 2020; Sashidhar et al., 2020). Phytic
acid functions as a major storage of phosphorus, but it
is also an anti-nutritional factor that reduces mineral ab-
sorption from the diet (Cominelli et al., 2020). AtABCC5

orthologs have been an important target gene for the devel-
opment of low phytic acid cereals and legumes. The knock-
out of OsMRP5 with myoinositol kinase gene (OsMIK)
successfully reduced the phytic acid content in rice seeds
(Tan et al., 2019). However, downregulating TaABCC13 in-
duced multiple developmental and functional phenotypes in
wheat (Triticum aestivum), including reduced seed yields, al-
tered stomatal movement, and altered root growth (Bhati et
al., 2016). Phytic acid functions as a signaling factor and a
precursor of other signaling factors as well; thus, it is not
surprising that changes in its level cause developmental
defects. Therefore, there is a need to generate agricultural
products with low phytic acid contents without adversely
affecting the plants.

Stress responses
ABC transporters are involved in plant responses to different
types of stress by functioning as transporters of secondary

Table 2 Continued

ABC protein Substrates Transport assaysa References

CsABCC4a and
CsABCC2

Crocins Crocins uptake using microsomes from S. cerevisiae expressing
CsABCC4a and CsABCC2

Demurtas et al. (2019)

ABCD
AtABCD1/CTS Fatty acyl-CoAs with

various carbon chain
Fatty acyl-CoAs induced ATPase activity of peroxisomes derived

from S. cerevisiae expressing AtABCD1
Nyathi et al. (2010)

ABCEb

ABCFb

ABCG
AtABCG1 Long-chain fatty acids

and fatty alcohol
ATPase assay with heterologously expressed and purified

AtABCG1 in Pichia pastoris
Shanmugarajah et al. (2019)

AtABCG16 JA and JA-Ile 3H-JA transport of yeast strain expressing AtABCG16; transport
of 3H-JA and 3H-JA-Ile by the nuclei isolated from atabcg16
plant

Li et al. (2017)

AtABCG25 ABA ABA transport assay in membrane vesicles derived from
AtABCG25-expressing Sf9 insect cells

Kuromori et al. (2010)

AtABCG29 p-coumaryl alcohol p-coumaryl alcohol uptake using microsomes from S. cerevisiae
expressing AtABCG29

Alejandro et al. (2012)

AtABCG30 ABA 3H-ABA transport of yeast strains expressing AtABCG30 Kang et al. (2015)
AtABCG31 ABA 3H-ABA transport of yeast strains expressing AtABCG31 Kang et al. (2015)
AtABCG37 IBA, 2,4-D 3H-IBA export from abcg37 leaf mesophyll protoplasts ; 3H-IBA

transport in yeast strains expressing AtABCG37; export of
3H-2,4-D and 3H-IBA in HeLa cells expressing AtABCG37

Ruzicka et al. (2010)

AtABCG40 ABA 3H-ABA uptake in yeast strain YMM12 and BY-2 cell lines
expressing AtABCG40

Kang et al. (2010)

AaABCG40 ABA ABA transport of yeast strain expressing AaABCG40 Fu et al. (2020)
MtABCG20 ABA ABA efflux from BY2 cell lines overexpressing MtABCG20;

ATP-dependent 3H-ABA transport in membrane vesicles
derived from BY2 cells overexpressing MtABCG20

Pawela et al. (2019)

OsABCG18 CK Export assay with heterologous expression of OsABCG18 in
N. benthamiana protoplasts

Zhao et al. (2019)

OsABCG36 Cd or Cd conjugate Efflux activity with heterologous expression in yeast cells Fu et al. (2019)
TaABCG36
(Lr34)

ABA 3H-ABA transport of yeast strains W303 and YMM12 expressing
Lr34

Krattinger et al. (2019)

PhABCG1 Methylbenzoate and
benzyl alcohol

14C-methylbenzoate and benzyl alcohol transport of BY2 cells
expressing PhABCG1

Adebesin et al. (2017)

NtPDR1 Diterpenes and
sesquiterpenes

Diterpenes (sclareol and cembrene) and sesquiterpenes
(capsidiol) enhanced ATPase activity of purified
NtPDR1-reconstitued liposomes

Pierman et al. (2017)

ABCIb

aBrief methods of transport assays from literature cited are listed in no particular order.
bNone of these subfamily members have been characterized for substrate transport via transport assay.
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Box 1 APPLICATION POTENTIAL OF PLANT ABC TRANSPORTERS

• ABCC-induced sequestering of toxic heavy metals and metalloids into the vacuole could be exploited to
produce plants that clean up or reduce the erosion of heavy metal-contaminated soils or crops containing
fewer heavy metals.

• Valuable secondary product yield could be increased by overexpressing ABC proteins that sequester these
compounds in the vacuole.

• The oil contents of oilseed plants and microalgae could be increased by genetic engineering using ABCA
transporters similar to AtABCA9.

• ABC transporters conferring pathogen resistance could be transferred to susceptible varieties to create
pathogen-resistant plants.

• Increasing the activities of ABC transporters that release compounds into the soil for symbiotic interactions
could improve plant growth, as shown for strigolactone excretion.

• Low phytic acid grains could be generated using a phytic acid transporter at the vacuole.

Figure 1 NAP12-like ABC proteins with many Cys residues at their N termini may be involved in the localized ROS generation required for tip
growth. A, NAP12-like subfamily members possess a unique extracellular domain at their N termini, which is distinct from the other half-size
ABCG transporters. The multiple Cys residues and Cys-proline) motifs in the extracellular domain are potential targets of ROS. B–D, Proposed
mode of action of AtABCG28, a NAP12-like ABC transporter, in tip growth of a pollen tube and a root hair. AtABCG28 mediates the sequestration
of the ROS precursor polyamines (spermine/spermidine [Spm/Spd]) from the cytosol (Cy) into secretory vesicles, which move and fuse to the
growing tip (B). Spm/Spd is oxidized to generate H2O2 via enzymes present in secretory vesicles (C) and/or the cell wall (CW) after vesicle fusion
(D). This process establishes tip-focused production of ROS, which is required for tip growth.
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metabolites, xenobiotics, or stress hormones or as regulators
of stress response genes. Throughout their lifetimes, plants
are exposed to many host and non-host pathogens. Many
pleiotropic drug resistance (PDR)-type ABC transporters
serve as weapons that protect plants from pathogens by
mediating the secretion of antimicrobial compounds.
Therefore, pathogen resistance-associated PDRs are valuable
genetic tools for generating pathogen-resistant crops. The
representative one is wheat Lr34. The Lr34res allele is associ-
ated with durable resistance to rust diseases as well as pow-
dery mildew (Krattinger et al., 2009). This allele is one of the
long-lasting sources of quantitative fungal resistance in
wheat. Heterologous expression of Lr34res confers disease re-
sistance in maize (Zea mays), sorghum (Sorghum bicolor),
and barley (Hordeum vulgare; Schnippenkoetter et al., 2017;
Sucher et al., 2017; Boni et al., 2018). The expression of
Lr34res in rice constitutively induced transcriptome changes
similar to abscisic acid (ABA) responses, the Lr34res rice
seedlings accumulated significantly higher levels of ABA
than near-isogenic seedlings, and heterologously expressed
Lr34 enhanced the accumulation of radioisotope-labeled
ABA in yeast cells, suggesting that ABA is a substrate of
Lr34 (Krattinger et al., 2019). Other reports suggest that
Lr34 is involved in lipid transport and phenylpropanoid ac-
cumulation. Lr34 mediated the trans-leaflet movement of
the phospholipids PA, PS, and PIs when expressed in
tobacco (Nicotiana tabacum) Bright Yellow 2 cells (Deppe et
al., 2018). A semi-targeted metabolomics analysis of flavo-
noid-rich wheat extracts revealed that the Lr34res allele
accumulates much higher concentrations of phenylpropa-
noid diglyceride 1-O-p-coumaroyl-3-feruloylglycerol (CFG;
Rajagopalan et al., 2020). CFG has low antifungal activity
and might be a precursor of more efficient antimicrobial
metabolites.

AtPEN3/AtPDR8/AtABCG36 is the most intensively studied
pathogen resistance gene (Stein et al., 2006). The AtPEN3/
AtPDR8/AtABCG36 transporter appears to be involved in
transporting a broad range of substrates, including glucosi-
nolate derivatives, auxin, and cadmium (Cd; Table 1).
Camalexin was recently included in this potential substrate
group (He et al., 2019). Another transporter also involved in
camalexin secretion is AtABCG34/AtPDR6 (Khare et al.,
2017). The atabcg34/atpdr6 knockout mutant is sensitive to
the fungus Alternaria brassicicola due to a decrease in the
secretion of camalexin to the infected surface of the plant.

NpPDR1 was the first ABC protein to be identified for its
antifungal effect as a sclareol exporter in Nicotiana plumba-
ginifolia (Stukkens et al., 2005). NpPDR1 orthologs in other
Nicotiana species also function in pathogen resistance.
Nicotiana benthamiana ABCG1/PDR1 and ABCG2/PDR2 are
involved in capsidiol secretion during Phytophthora infestans
infection (Shibata et al., 2016). Nicotiana attenuata PDR1
and PDR1-like function against infection by the fungus
Alternaria alternata (Xu et al., 2018).

During plant responses to insect/herbivore attacks, ABC
transporters are involved in the secretion of toxic com-
pounds stored in glandular trichomes (secretory glands).
NtPDR5/NtABCG5 was the first ABC protein reported to be
involved in short- and long-term defense against insects by
secreting toxic substrates (Bienert et al., 2012). NtPDR5/
AtABCG5 is induced by wounding, methyl jasmonate (JA),
or herbivory and is recruited to the damaged site of the
plant. Silencing of NtABCG5 supported the rapid growth of
Manduca sexta, a common insect pest of Solanaceae.
Petunia hybrida PDR2 is thought to be involved in tri-
chome-related chemical defense against herbivores (Sasse et
al., 2016). PhPDR2 is highly expressed in trichomes and leaf
margins, which are major sites of herbivore attack, and is in-
duced upon insect attack. PhPDR2-downregulated plants
exhibited enhanced susceptibility to Spodoptera littoralis and
reduced concentrations of the potent insecticidal com-
pounds petuniasterone and petuniolide.

Many structurally diverse molecules, including hormones,
hormone derivatives, metal ions, phospholipids, and numer-
ous secondary metabolites, have been suggested as potential
substrates of plant PDRs mostly based on physiological data,
as described above and elsewhere (Hwang et al., 2016).
However, most of these putative substrates of plant PDRs
have not been verified via direct transport assays because of
the difficulties in expressing functional proteins in heterolo-
gous cell systems and also due to the chemical nature of
some substrates (e.g. hydrophobicity). Many other candidate
substrates of plant ABC transporters remain putative
(Tables 1, 2), and it is largely unclear which are bona fide
substrates of plant ABC proteins and which molecules un-
dergo indirect changes in concentration due to the trans-
port activity of ABC proteins. For example, the
accumulation of CFG might be due to the transport activity
of Lr34, or the changes in ABA distribution by Lr34 might
have induced the synthesis of CFG.

Anthocyanins are a prominent group of pigments that
function in stress responses and in interactions with other
organisms. ABC transporters are important for anthocyanin
accumulation in various species. In red grapevine (Vitis vinif-
era), VvABCC1 is expressed in the fruit epidermal layer dur-
ing berry development. When expressed in yeast
microsomes, VvABCC1 facilitated the uptake of the anthocy-
anin malvidin 3-O-glucoside in a glutathione-dependent
manner (Francisco et al., 2013). Two ABC transporters of
the saffron crocus (Crocus sativus), CsABCC4a and
CsABCC2, facilitate the uptake of crocin into vacuoles in the
stigma; this compound is primarily responsible for the red
color of saffron (Demurtas et al., 2019). Expressing
CsABCC4a together with CCD2, encoding an enzyme respon-
sible for crocin production, resulted in the production of
considerable levels of crocin in N. benthamiana, a plant that
does not normally produce this compound. It is likely that
the efficient transport of crocin into the vacuole reduces the
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cytosolic concentrations of this product, resulting in the in-
creased production of valuable secondary compounds by
bypassing feedback inhibition.

Communication with other organisms
Some ABC transporters mediate communication between
plants and other organisms by releasing chemicals from the
root to the soil. These chemicals function as signals for sym-
biotic interactions and shape the root microbiome. ABC
transporters play essential roles in the symbiosis of plants
with arbuscular mycorrhizal fungi, which improve the acqui-
sition of mineral nutrients. Mycorrhizal fungi and host plants
exchange nutrients. The host plant provides sugars and fatty
acids to support the growth of arbuscular mycorrhizal fungi,
and the fungi provide nitrate and phosphate to the plant.
Plants secrete strigolactone (SL) to initiate their interactions
with their fungal partners, a process mediated by PDR1 in
P. hybrida and Petunia axillaris (Solanaceae family;
Kretzschmar et al., 2012; Sasse et al., 2015). PaPDR1 is polarly
localized in hypodermal passage cells at the PM side facing
the soil, where SL is released to the rhizosphere (Sasse et al.,
2015). Increasing SL excretion via PaPDR1 overexpression
resulted in more rapid mycorrhization, providing an advan-
tage to plants growing in phosphate-poor soils (Liu et al.,
2018). In M. truncatula (Fabaceae family), MtABCG59 is a
potential SL exporter that might facilitate mycorrhization
(Banasiak et al., 2020).

STR and STR2 are half-size transporters of the ABCG
subfamily that dimerize and specifically localize to the peri-
arbuscular membrane (Zhang et al., 2010). STR-STR2, which
are required for arbuscular mycorrhizal symbiosis in
Medicago and rice (Zhang et al., 2010; Gutjahr et al., 2012),
mediate the transfer of fatty acids from the host plant to
the symbiont (Jiang et al., 2017).

Plants also communicate with other organisms via vola-
tiles. Plant volatile organic compounds (VOCs) are often
small, which led to the long-standing assumption that they
passively diffuse into the environment. However, a recent
study of P. hybrida flowers showed that VOC secretion
depends on the half-size ABC transporter PhABCG1
(Adebesin et al., 2017). Downregulating PhABCG1 resulted in
decreased VOC emissions and an increase in internal VOC
levels. Transport assays in tobacco BY-2 cells showed that
PhABCG1 exports methylbenzoate and benzyl alcohol. The
active transport of VOCs by ABC transporters protects
the cell from the toxic effects of these compounds on the
plasma membrane (PM).

Since secretion of chemicals by plant roots is important
for formation of the root microbiome, and ABC proteins are
often responsible for secretion of large organic molecules,
we expect there will be more exciting new findings on ABC
proteins involved in the root microbiome formation. Such
information will allow us to develop tools to attract more
beneficial bacteria and shape the root microbiome to
protect plants against pathogens in a sustainable manner
while improving yields.

Recent studies on ABCF and ABCI proteins
Some ABC proteins serve as regulators instead of transport-
ers. ABCE and ABCF proteins only contain NBDs and,
depending on their partner proteins, perform different func-
tions such as regulation of protein synthesis and stability.

Plant ABCFs were initially assumed to function as ribo-
somal translation factors like their yeast orthologs, but re-
cent studies revealed that they are involved in diverse
cellular processes. AtGCN1/ABCF1 functions together with
AtGCN20/AtABCF3 in translational regulation in response
to pathogen infection (Izquierdo et al., 2018). AtABCF3 regu-
lates the expression levels of aquaporins, which are involved
in hydrogen peroxide (H2O2) transport (Li et al., 2018).
AtABCF3 is also required for repairing DNA damage in roots
(Han et al., 2018). AtGCN4/AtABCF4 might be involved in
protein degradation (Kaundal et al., 2017). AtGCN4 interacts
with RIN4 and 14-3-3 proteins, which activate proton
pumps, and decreases their stability. As a result, proton
pump activity decreases, which leads to stomatal closure,
thereby resulting in increased drought tolerance and re-
duced pathogen entry through stomatal pores (Kaundal et
al., 2017).

Malus domestica (apple) ABCF is localized to the pollen
tube membrane, where it facilitates the entry of S-RNase
into the pollen tube (Meng et al., 2014). Silencing of
MdABCF reduced S-RNase uptake into pollen tubes, thereby
weakening self-incompatibility. Lilium regale ABCF1 func-
tions in pathogen responses via an unknown mechanism
(Sun et al., 2016). LrABCF1 is induced by viral infection, sali-
cylic acid, and ethylene. Petunia plants heterologously
expressing LrABCF1 exhibited reduced susceptibility to
Cauliflower mosaic virus, Tobacco rattle virus, and Botrytis
cinerea infection.

AtNAP14/AtABCI11 is a chloroplast protein that is an
Arabidopsis ortholog of cyanobacterial Fe transporters
(Shimoni-Shor et al., 2010). atabci11 plants exhibit an albino
phenotype, growth defects, and increased accumulation of
transition metals such as Fe and Mo, suggesting that
AtABCI11 functions in transition metal homeostasis in plas-
tids (Shimoni-Shor et al., 2010). OsABCI8 (recently renamed
OsABCI7), a rice ortholog of AtABCI11, is thought to func-
tion in iron (Fe) homeostasis (Zeng et al., 2017). osabci8
accumulates high concentrations of Fe, Ni, and Mn, but its
albino phenotype appeared only after continuous exposure
to rainy days. Arabidopsis ABCI10 shares overlapping func-
tions with AtABCI11. atabci10 plants are dwarf and albino,
like atabci11 plants. AtABCI10 localizes to the chloroplast in-
ner envelope (IE) membrane, while AtABCI11 resides at the
plastoglobuli. AtABCI10 interacts with AtABCI12, forming a
complex at the IE, resembling group I energy-coupling fac-
tor-like ABC importers (Voith von Voithenberg et al., 2019).

Plant ABCIs have been implicated in transport of lipidic
molecules into the chloroplast (TGD2 and TGD3) or metal
ions into the chloroplast. A cluster of Arabidopsis ABCIs was
recently implicated in the regulation of cytokinin responses
(Kim et al., 2020). AtABCI19, AtABCI20, and AtABCI21,
which clustered together in a phylogenetic tree, form a
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300–400-kDa protein complex with unidentified endoplas-
mic reticulum (ER) membrane proteins. abci20 abci21 dou-
ble and abci19 abci20 abci21 triple mutant seedlings
exhibited enhanced sensitivity to cytokinin during root
growth (Kim et al., 2020). Given that the cytokinin receptors
and catabolic enzymes are prevalently localized to the ER
and that cytokinin binding to the receptor is more favored
at neutral-alkaline pH (as in the ER), the ER is likely an im-
portant site for cytokinin signaling and metabolism
(Romanov et al., 2018) in addition to the PM (Antoniadi et
al., 2020). Whether ABCI proteins are involved in cytokinin
transport in or out of the ER is an intriguing question.

How do ABC transporters play such diverse
roles in plants?
The incredibly diverse functions of plant ABC transporters
described in the previous section and other reviews point to
specific functional diversification mechanisms in addition to
the expansion of ABC transporter gene family members. In
this section, we introduce recent publications on plant ABC
transporters, which describe mechanisms that make ABC
transporters so versatile.

Dimerization with different partner ABC proteins
The Arabidopsis genome encodes 47 half-size ABC trans-
porters (Verrier et al., 2008; Hwang et al., 2016), and it seems
possible that some of them form dimers with multiple part-
ners (Box 2). For example, AtABCG11 (WBC11) is a half-size
transporter whose multiple dimerizing partners have been
revealed: ABCG5, ABCG9, ABCG12, and ABCG14 (McFarlane

et al., 2010; Le Hir et al., 2013; Lee et al., 2020). AtABCG11
appears to transport cuticular wax precursors to generate
an intact cuticle layer on cotyledons by partnering with
ABCG5 (Lee et al., 2020), precursors of the cuticular wax
layer of stems by partnering with ABCG12 (McFarlane et al.,
2010), and components required for vasculature develop-
ment by partnering with ABCG9 or ABCG14 (Le Hir et al.,
2013). Such diverse interactions with other ABC proteins
might explain the broad range of growth and development
defects observed in abcg11 knockout plants (Panikashvili et
al., 2010). Different gates and/or substrate binding pockets
might be created when ABCG11 forms dimers with different
partners. Thus, there is an exciting possibility that ABC
transporters transport different compounds depending on
their partner proteins.AtABCG16 is another half-size ABC
protein that might form diverse transporters (Wang et al.,
2019a, 2019b). AtABCG16 is involved in the transport of JA
at the PM, jasmonoyl-isoleucine (JA-Ile) at the nuclear mem-
brane (Li et al., 2017; Wang et al., 2019a, 2019b), and lipidic
and/or phenolic precursors necessary for the formation of
the intine and nexine layers of pollen (Yadav et al., 2014;
Yim et al., 2016). However, the biochemical identification of
partner proteins of AtABCG16 has not yet been performed;
thus, it remains possible that the ABCG16 homodimer is re-
sponsible for the transport of multiple substrates.

Regulation of ABC transporters by protein
phosphorylation and protein–protein interactions
Reversible post-translational modifications such as protein
phosphorylation and protein–protein interactions regulate

Box 2 DIFFERENTIAL PARTNERING OF HALF-SIZE ABC PROTEINS ENRICHES THE REPERTOIRE OF ABC
TRANSPORTER FUNCTIONS

Functional ABC transporters require two TMDs and two NBDs. Half-size ABC proteins must dimerize to form
functional ABC transporters. By binding with different partners, one half-size protein can form various functional
transporters that translocate different substrates (see Box 2 Figure). The many half-size ABC proteins in plants
further enrich the repertoire of functional transporters.

Box 2 Figure. A. thaliana ABCG11 homodimerizes or heterodimerizes with AtABCG5, AtABCG9, AtABCG12, or
AtABCG14.

1884 | PLANT PHYSIOLOGY 2021: 187; 1876–1892 Do et al.



ABC transporter activity in many ways, such as turning its
activity on/off, altering its protein stability, and binding with
other proteins. TWISTED DWARF1 (TWD1), an immunophi-
lin-like FKBP42, physically interacts with auxin-transporting
ABCBs (Geisler and Heged}us, 2020). TWD1 is a multidomain
protein containing the conserved peptidylprolyl cis–trans
isomerase (PPIase/FKBP) domain. Both twd1 and abcb1
abcb19 plants show reduced polar auxin transport, as well
as dwarfism and twisted organs, suggesting that TWD1
plays an important role in ABCB-mediated auxin transport
(Bouchard et al., 2006; Bailly et al., 2008). Extensive studies
on TWD1 have suggested that it is important for protein
biogenesis at the ER, trafficking to the PM, and transport-
ing activity at the PM of auxin-transporting ABCBs (Aryal
et al., 2016; Geisler and Heged}us, 2020). In twd1
Arabidopsis plants, ABCB1, ABCB4, and ABCB19 are
trapped in the ER and then degraded (Wu et al., 2010;
Wang et al., 2013; Aryal et al., 2016). Recently, a surface-ex-
posed and conserved D/E-P motif has been identified in
auxin-transporting ABCB proteins (Hao et al., 2020), which
is located in the NBD in close proximity to the 12th TM
helix involved in IAA binding (Bailly et al., 2011).
Substitutions of either E1007 with A or P1008 with G in
AtABCB1 significantly reduced the IAA transport activity
in planta, the interaction with TWD1, and the TWD1-me-
diated regulation of transport activity, but not the basal
ATPase activity or the PM localization of AtABCB1 (Hao
et al., 2020). Therefore, a plausible scenario is that the con-
served D/E-P motif may be an essential part of the TWD1
docking site on ABCBs and that the P residue of the D/E-P
motif might be used to regulate ABCBs by PPIase activity,
but this awaits experimental verification.

AtABCB19 and AtABCB1 are regulated by phosphoryla-
tion via the AGC kinases PHOTOTROPIN1 (phot1) and
PINOID (PID), respectively (Christie et al., 2011; Henrichs et
al., 2012). Phot1 kinase induces phosphorylation of
AtABCB19, inhibiting the auxin transport activity of the
ABCB, and thereby redirects auxin flow, leading to hypocotyl
phototropism (Christie et al., 2011). The PID kinase affects
the auxin transport activity of ABCB1 in a complex manner
that depends on the presence of TWD1 (Henrichs et al.,
2012; Wang et al., 2012). Co-expression of PID and AtABCB1
in the absence of TWD1 induced phosphorylation of
AtABCB1 and enhanced AtABCB1-mediated auxin efflux,
whereas, in the presence of TWD1, co-expression of PID and
AtABCB1 abolished the auxin efflux activity of AtABCB1
(Henrichs et al., 2012).

Phosphorylation also regulates AtABCG36 activity. During
plant responses to pathogens (pattern-triggered immunity
and effector-triggered immunity), AtABCG36 (AtPDR8) is
phosphorylated at multiple serine and threonine residues,
which are clustered in its N terminus and central loop.
Among these residues, the phosphorylation of Ser40 and
Ser45 is critical for preventing penetration and subsequent
haustorium formation in Arabidopsis leaves by the non-host
barley powdery mildew pathogen Blumeria graminis f. sp.
hordei. This phosphorylation does not affect the targeting of

AtABCG36 to the penetration sites (Underwood and
Somerville, 2017). Instead, it may regulate the transporter
activity of AtABCG36, as these phosphorylation sites are
located in the linker region, which is often the target of ac-
tivity regulation in animal ABC proteins (Stolarczyk et al.,
2011; Aryal et al., 2016). AtABCC1, another ABC member
regulated by phosphorylation, detoxifies arsenic (As) by se-
questering PC-As conjugates into the vacuole (Song et al.,
2010; Zhang et al., 2017). Budding yeast expressing AtABCC1
in which Ser846 in the linker region between NBD1 and
TMD2 was substituted with alanine exhibited reduced
ABCC1-mediated resistance to As and decreased intracellu-
lar As content (Zhang et al., 2017). A phosphomimetic mu-
tant study supported the notion that the phosphorylation
of Ser846 is required for the role of AtABCC1 in As
resistance.

Localization of ABC transporters to specific
membrane regions
The polar localization of some ABC transporters to particu-
lar PM regions allows for the directional flow of phytohor-
mones and the secretion of secondary metabolites. In
petunia, the SL transporter PaPDR1 is polarly localized to
the apical side of the PM in root tip cortex cells and to the
outer lateral PM of hypodermal passage cells, facilitating the
shootward movement, and secretion of synthesized SL, re-
spectively (Kretzschmar et al., 2012; Sasse et al., 2015).
Various Arabidopsis PDRs are specifically localized to the
side of the PM facing outside the epidermal cells, where
they likely function in secretion of cutin precursors
(AtABCG32), the secondary metabolite camalexin for patho-
gen defense (AtABCG34 and AtABCG36), hormone precur-
sors (AtABCG36), and root exudates for nutrient uptake
(AtABCG37) into the environment (Strader and Bartel, 2009;
Langowski et al., 2010; Bessire et al., 2011; Khare et al., 2017;
Ziegler et al., 2017). The polar targeting of newly synthesized
PDR proteins to a specific site of the PM is thought to un-
derlie the asymmetric PM localization of PDRs, a process
that involves actin cytoskeleton-dependent vesicle traffick-
ing, Exo84b-mediated tethering, and vesicle fusion mediated
by syntaxins such as PEN1 (Langowski et al., 2010; Mao et
al., 2016). This mechanism involving the polar localization of
PDRs differs from that of PIN auxin transporters, which are
evenly targeted to the PM and subsequently recycled from
specific sites of the PM.

Two rice ABCG transporters that are expressed in the
tapetum appear to play different roles in the formation of
surface protective layers due to their different localization
patterns (Zhao et al., 2015). OsABCG26 is evenly localized at
all sides of the PM of tapetal cells and is thought to be re-
sponsible for the transport of lipidic molecules from tapetal
cells to anther wall layers. By contrast, OsABCG15 is polarly
localized only to the locule side of the tapetal cell mem-
brane and is responsible for the export of lipidic molecules
for pollen exine development (Niu et al., 2013; Zhao et al.,
2015; Chang et al., 2016).
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Additional domains
The functional diversity of plant ABC transporters might be
enhanced by the presence of extra domains. We recently
reported a group of ABCG transporters with an extra do-
main at the N terminus that is enriched with cysteines
(Cyss): NAP12-like ABCGs including AtABCG28 contain a
long stretch at their N termini composed of a Cys-rich exo-
plasmic domain and an additional transmembrane segment
next to the NBD (Do et al., 2019; Figure 1). These abundant
Cyss might function in detecting the redox status of the en-
vironment and regulating the activity of NAP12-like ABCGs.
It is tempting to speculate that, during the long evolution of
ABC proteins, multiple gene fusion events added various ex-
tra domains to the basic skeleton of ABC proteins, thereby
contributing to the diversity of their functions. This possibil-
ity is further discussed in the section “Evolution of ABC
transporters in plants” of this review.

Alternative splicing
Alternative splicing is one of the many post-transcriptional
regulatory mechanisms that enhance the plasticity and com-
plexity of the transcriptome and proteome. Multiple splice
variants have been reported for many plant ABC transport-
ers. The Arabidopsis genome possesses 127 genes encoding
ABC proteins, but 253 different alternatively spliced tran-
scripts have been reported (TAIR annotated). A high per-
centage of alternatively spliced transcripts of ABC
transporter genes contain premature termination codons.
Most of these transcripts are degraded by nonsense-medi-
ated mRNA decay and are not translated to produce pro-
teins. Thus, alternative splicing might represent a
mechanism to regulate the amounts of functional tran-
scripts (Filichkin et al., 2010). However, some splice variants
are predicted to introduce variations in the TM helixes or
cytosolic parts of ABC proteins, thereby altering their bind-
ing partners, cellular localization, protein stability, activity
level, or substrate selectivity (Chutkow et al., 1999; Ikeda et
al., 2003; Gökirmak et al., 2016; Rehman et al., 2016; Seong
et al., 2016; Zhang et al., 2020).

Evolution of ABC transporters in plants
ABC proteins are ancient and found in all organisms. These
proteins evolved a dazzling array of structures and functions.
Two key questions about the evolution of plant ABC pro-
teins remain to be answered: How and why have plants
evolved many more ABC proteins than other organisms;
and how have plant ABC proteins evolved to transport such
diverse molecules? The recent availability of the genome
sequences of many plants has enabled the phylogenetic and
evolutionary analysis of plant ABC genes. Such studies con-
firmed the previous observation that plant genomes gener-
ally contain many more ABC proteins, especially proteins in
the ABCB and ABCG subfamilies (Andolfo et al., 2015), than
most other organisms. Only a few species, including the spi-
der mite Tetranychus urticae (103), the ciliate Tetrahymena
thermophila (165), and some water molds (Phytophthora
ramorun, 135, and Phytophthora sojae, 136), contain similar

numbers of ABC proteins as plants. Perhaps this resulted
from the many whole-genome multiplication (WGM) events
in plant genomes and the preferential retention of ABC
genes thereafter. Such preferential retention of ABC genes
over other genes during gene loss after WGM might have
been due to the strong connections of ABCs with other pro-
teins. For example, in Brassica rapa, ABCGs function in the
center of an interaction network and were therefore prefer-
entially retained (Yan et al., 2017). According to the gene
balance hypothesis, a gene encoding a component of a large
protein complex, signaling network, or transcription network
is more likely to be retained than a singleton, as its loss will
lead to dangerous network imbalances. ABC genes might
have evolved rapidly to acquire new functions to help plants
to adjust to their new diverse environment on land (Yan et
al., 2017). This idea is supported by the diverse functions
performed by ABC proteins. These functions appear to help
plants tolerate and proliferate in the land environment,
which fluctuates more than the aqueous environment
(Hwang et al., 2016). The usefulness of ABC proteins during
the long history of evolution may lie in the fact that they
use energy from ATP hydrolysis directly without requiring
any other intervening steps. Thus, these proteins can func-
tion by themselves without the need for accompanying fac-
tors and can generate steeper concentration gradients
compared with symporters and antiporters.

Our recent analysis of ABCG subfamily members in repre-
sentative phyla of all organisms revealed that the full-size
ABCG transporters explosively multiplied and differentiated
in land plants and in the major plant pathogens oomycetes
in a similar manner (Cho et al., 2019). Further analysis using
systematic methods and laboratory experiments supported
our idea that the ABCGs of these two interacting organisms
coevolved: Plant ABCGs secrete secondary metabolites that
protect them from pathogens, and pathogen ABCGs detox-
ify the secondary metabolites that permeate their cytosol. It
is particularly interesting that the same ABCG subfamily
transporters are used by both the host and its pathogens in
this arms race. These transporters might have been selected
because they are suitable for this type of chemical warfare.
The internal needs of plants might also have contributed to
the expansion of ABC transporters. For example, AtABCC10
has eight orthologs in grapevine, likely because this diversity
facilitates the vacuolar transport of the large variety of
anthocyanins produced by this plant (Francisco et al., 2013).

In addition to clarifying the roles of the many ABC pro-
teins in plants, an equally challenging question is how the
ABC proteins evolved different structures that allow them
to transport multiple, diverse substrates with no apparent
chemical similarities. Multiple gene fusion events might
have led to the evolution of ABC proteins from the simple
structures found in prokaryotes to the more complex and
complete structures found in eukaryotes (Xiong et al., 2015).
During such fusion events, various combinations of ABC
domains might have mixed and matched, which might have
contributed to their diverse functions. However, this con-
cept is currently merely a speculation. The recent
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development of cryo-EM technology will allow the struc-
tures of many ABCs to be determined, which could allow us
to begin to answer this question. This new area of research
on the evolution of ABC proteins should progress rapidly as
many more genome sequences and advanced tools soon be-
come available to facilitate the structural analysis of these
large, complex proteins.
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Deppe JP, Rabbat R, Hörtensteiner S, Keller B, Martinoia E,
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T, Hamberg M, Castresana C (2018) Arabidopsis nonresponding
to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that
mediates noncanonical translation regulation and stress adapta-
tion. Plant Cell Environ 41: 1438–1452

Jasi�nski M, Stukkens Y, Degand H, Purnelle B, Marchand-
Brynaert J, Boutry M (2001) A plant plasma membrane ATP
binding cassette-type transporter is involved in antifungal terpe-
noid secretion. Plant Cell 13: 1095–1107

Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C,
Chen X, Tang D, et al. (2017) Plants transfer lipids to sustain colo-
nization by mutualistic mycorrhizal and parasitic fungi. Science
356: 1172–1175

Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S,
Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B, et al.
(2012) Arabidopsis ABCB21 is a facultative auxin

importer/exporter regulated by cytoplasmic auxin concentration.
Plant Cell Physiol 53: 2090–2100

Kaneda M, Schuetz M, Lin BS, Chanis C, Hamberger B, Western
TL, Ehlting J, Samuels AL (2011) ABC transporters coordinately
expressed during lignification of Arabidopsis stems include a set of
ABCBs associated with auxin transport. J Exp Bot 62: 2063–2077

Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y
(2010) PDR-type ABC transporter mediates cellular uptake of the
phytohormone abscisic acid. Proc Natl Acad Sci USA 107: 2355–2360

Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin trans-
porters: GO and STOP in signaling. Trends Plant Sci 22:
455–461

Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia
E (2011) Plant ABC transporters. Arabidopsis Book 9: e0153

Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia
E, Lee Y (2015) Abscisic acid transporters cooperate to control
seed germination. Nat Commun 6: 8113

Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM,
Senthil-Kumar M, Mysore KS (2017) GENERAL CONTROL
NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to reg-
ulate stomatal aperture with implications on nonhost disease resis-
tance and drought tolerance. Plant Cell 29: 2233–2248

Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoia E, Sohn KH,
Paek KH, Lee Y (2017) Arabidopsis ABCG34 contributes to de-
fense against necrotrophic pathogens by mediating the secretion
of camalexin. Proc Natl Acad Sci USA 114: E5712–E5720

Kim A, Chen J, Khare D, Jin JY, Yamaoka Y, Maeshima M, Zhao
Y, Martinoia E, Hwang JU, Lee Y (2020) Non-intrinsic
ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modu-
late cytokinin response at the endoplasmic reticulum in
Arabidopsis thaliana. Plant Cell Rep 39: 473–487

Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The
ABC transporter AtPDR8 is a cadmium extrusion pump conferring
heavy metal resistance. Plant J 50: 207–218

Kim S, Yamaoka Y, Ono H, Kim H, Shim D, Maeshima M,
Martinoia E, Cahoon EB, Nishida I, Lee Y (2013) AtABCA9 trans-
porter supplies fatty acids for lipid synthesis to the endoplasmic
reticulum. Proc Natl Acad Sci USA 110: 773–778

Klein M, Geisler M, Suh SJ, Kolukisaoglu HU, Azevedo L, Plaza S,
Curtis MD, Richter A, Weder B, Schulz B, et al. (2004)
Disruption of AtMRP4, a guard cell plasma membrane ABCC-type
ABC transporter, leads to deregulation of stomatal opening and in-
creased drought susceptibility. Plant J 39: 219–236
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Amrhein N, Martinoia E (1998) An ABC-transporter of
Arabidopsis thaliana has both glutathione-conjugate and chloro-
phyll catabolite transport activity. Plant J 13: 773–780

Underwood W, Somerville SC (2017) Phosphorylation is required
for the pathogen defense function of the Arabidopsis PEN3 ABC
transporter. Plant Signal Behav 12: e1379644
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