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Abstract

Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for 

every combination of speed and incline that the device is designed for. Because ambulation 

occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a 

potentially prohibitively large number of parameters. This limitation motivates an alternative 

control framework that enables walking over a range of speeds and inclines while requiring 

only a limited number of tunable parameters. In this work, we present the implementation of 

a continuously varying kinematic controller on a custom powered knee-ankle prosthesis. The 

controller uses a phase variable derived from the residual thigh angle, along with real-time 

estimates of ground inclination and walking speed, to compute the appropriate knee and ankle 

joint angles from a continuous model of able-bodied kinematic data. We modify an existing phase 

variable architecture to allow for changes in speeds and inclines, quantify the closed-loop accuracy 

of the speed and incline estimation algorithms for various references, and experimentally validate 

the controller by observing that it replicates kinematic trends seen in able-bodied gait as speed and 

incline vary.

I. INTRODUCTION

Many activities of daily living require that the knee and ankle joints perform net positive 

work during the gait cycle, such as walking up stairs or inclines [1]. This presents a 
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challenge for many people with transfemoral (i.e., above knee) amputations, as most use 

passive or quasi-passive prosthetic legs that can only store or dissipate energy [2]. Lack of 

net positive work in the gait cycle can lead to the development of compensatory behaviors 

[2]–[4], often resulting in fatigue, lower back pain [5] and osteoarthritis [6]. The limitations 

of conventional prostheses motivate the development of powered prosthetic legs that can 

perform net positive work and are able to replicate the biomechanical features of normative 

gait, especially for activities such as stair ascent or incline walking [7].

Despite the potential benefits, there are no fully powered knee-ankle prostheses 

commercially available today [2], [8]. While advances in actuator technology, energy 

storage, and robotic limb design have produced systems that are nearly ready for take-home 

use [9]–[11], the lack of robust and versatile control strategies still limits the viability of 

these devices leaving the laboratory. State of the art control paradigms [7], [12] typically 

use discrete controllers for each speed and incline combination (task) and switch between 

these controllers using a finite state machine (FSM). Each controller requires individually 

tuned parameter sets for specific periods in the gait cycle (e.g., flat foot, midstance, swing), 

as well as time or signal thresholds to control transitions between them. In this discrete 

paradigm, the number of parameters grows quickly as tasks are added to the prosthesis’s 

repertoire. Tuning these parameters is a lengthy process that requires experts in the field 

[13], making this control architecture potentially less viable for widespread use. In addition, 

each switching rule introduces an opportunity for the controller to make an incorrect 

decision, which may increase fall risk for the wearer. Therefore, minimizing the number 

of switching rules may lead to safer and more clinically viable control methods for powered 

prosthetic legs.

Recent work has demonstrated promise in transitioning from discrete to continuous 

control paradigms [14]–[19]. Continuous controllers modulate prosthesis behavior based 

on analytical rules or models, frequently parameterized by a phase variable. A phase 

variable represents the user’s location in the gait cycle, growing monotonically from 0 

to 1 between ipsilateral heelstrikes. It is often defined by a physical kinematic value 

(e.g., global thigh angle, shank angle) that is readily measured on-board the prosthesis. 

Many advantages of phase variable parameterizations have been shown, such as an inherent 

ability to parameterize non-steady gait, robustness against disturbances [20], and backwards 

walking [16]. Further, continuous controllers have demonstrated the potential to decrease 

tuning time relative to discrete paradigms, as user gait preferences can be tuned for one 

task and automatically propagated over the entire task space [21]. The proposed control 

approach expands upon existing continuous frameworks by adding two more dimensions 

to the kinematic parameterization: walking speed and ground inclination. This allows a 

single controller to perform a range of tasks without requiring numerous switching rules and 

tunable parameters.

It is important to consider whether or not the additional complexity introduced by new 

parameterization dimensions is offset by a functional benefit for the user. Previous work 

has shown that while phase variable approaches enable walking over a range of speeds 

with a single set of kinematic trajectories, biomechanics and energetics are improved when 

using speed specific kinematics [15]. Further, the joint angles that ensure that the foot 
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clears the ground during swing and is flat on the ground during midstance depend on the 

ground incline, suggesting that the kinematic changes in response to incline seen in [22] are 

important to emulate. Therefore, varying the joint trajectories along task dimensions should 

produce a more natural gait.

To implement a phase-based controller that generalizes across tasks, we require real-time 

estimation of walking speed and ground inclination. A previous study [23] used methods 

similar to [7], [24] to demonstrate that phase, walking speed, and ground inclination can 

be estimated with sufficient accuracy using only sensors on-board our prosthesis. This 

work demonstrated speed estimation with 0.06 m/s root mean squared error (RMSE) and 

incline estimation with 0.52 deg RMSE, which resulted in insignificant errors in the desired 

kinematic trajectories. However, this previous study did not use the estimated speed and 

incline values to modify the behavior of the prosthesis in real-time. As shown in Figure 

1, the task estimates are part of a feedback loop involving the kinematic model, the 

joint position controllers, and the user/prosthesis system. To fully understand the online 

task estimation accuracy and to elucidate any hidden dynamics between the controller 

components, the full closed-loop system must be tested.

In this work, we present the online implementation of the task estimation algorithms 

in a continuous, phase-based kinematic controller. We perform human subject treadmill 

experiments to demonstrate the overall, closed-loop functionality of the task estimators 

with an adaptive phase variable and a continuous kinematic model. Specifically, this work 

presents three main contributions: 1) We present modifications to a previous phase variable 

framework that enables parameterization of the gait cycle over a range of speeds and 

inclines. 2) We quantify the closed-loop accuracy of the speed and incline estimation 

algorithms in both steady-state and continuously varying walking activities. 3) We detail 

and experimentally validate the continuous kinematic control scheme by demonstrating that 

it produces kinematic trends in response to speed and incline variation that are similar to 

trends seen in able-bodied gait.

II. CONTROL METHOD

A. Kinematic Model

Embry et al. [22] created a predictive model that represents inter-subject mean kinematics as 

continuous functions of gait phase s and task χ = (ν, α), where ν is the subject’s walking 

speed and α is the ground inclination. This model provides the knee and ankle reference 

positions for our kinematic controller based on the real-time phase and task estimates. We 

present a high level overview of the model’s construction, but refer the interested reader to 

[22] for full detail.

Gait kinematics are modeled as the weighted summation of N basis functions of phase, 

bk(s). The weight of each basis function changes for each unique task, as determined by 

the task functions ck(χ). This yields the following separable expression for the desired joint 

angle θd of the knee or ankle:
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θd(s, χ) = ∑
k = 1

N
bk(s)ck(χ), (1)

where the number of basis functions is N, indexed by k. The basis functions are 

parameterized as finite Fourier series of degree F = 10, and the task functions are modeled as 

2nd or 3rd degree Bernstein basis polynomials. Together, these basis and task functions create 

a kinematic model θd(s, χ) that parameterizes how gait cycle phase, speed, and slope affect 

the joint kinematics.

The model was trained using a kinematic dataset of able-bodied walking with thigh, knee, 

and ankle angular positions at a variety of phases and tasks. Normalized stride time was 

used for the phase calculation. The training was formulated as an optimization problem, 

which was solved using a convex optimization solver like [25] and had a guaranteed globally 

optimal solution. Able-bodied joint trajectories were chosen for the model because we 

assume they will produce a more natural gait. We note however that the same method could 

be used to model any desired kinematic data.

B. Phase Calculation

1) Background: The phase variable is calculated as a piecewise linear function of the 

residual limb’s thigh angle θth, which can be measured with an inertial measurement unit 

(IMU) attached to the top of the prosthetic knee hinge as in [16], [17]. The thigh angle 

trajectory during the gait cycle can be broken into two roughly monotonic sections, where 

the point of maximum thigh extension defines the transition between sections. We will term 

the portion of the thigh trajectory between heelstrike and this maximum extension point the 

descending portion, and the remainder of the trajectory the ascending portion. For context, 

the stance to swing transition occurs near the beginning of the ascending portion. A finite 

state machine controls the transitions between portions, detailed in [16]. The phase variable 

s is defined as

s =

θth
0 − θth

θth
0 − θth

min ⋅ c for θth descending,

1 + 1 − sm
θth

0 − θth
m ⋅ θth − θth

0 for θth ascending,
(2)

where θth
0  and θth

min are the initial and minimum expected thigh angles, respectively. When 

the phase variable switches from the descending to ascending definition, the current phase 

sm and the current residual thigh angle θth
m are recorded. The constant c defines the phase 

value at maximum thigh extension and it is tunable based on user preference. We found that 

our subject’s preference for a particular value of c was invariant across speeds and inclines. 

However if it was found to vary with future subjects, c could likely be estimated in a similar 

manner as the other phase parameters.

Best et al. Page 4

Rep U S. Author manuscript; available in PMC 2022 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Modifications for Varying Tasks: Studies of able-bodied human walking over 

varying inclines [22] have shown that the maximum and minimum thigh angles during the 

gait cycle vary significantly with ground inclination. Incorrect estimates of θth
0  and θth

min skew 

the mapping from θth and s, which results in s arriving at a value other than s = 1 at the 

end of the stride. In these cases, the reference joint angle trajectories produced by the model 

become unsynchronized with the user’s gait, which is undesirable and may result in a fall. 

Therefore, new algorithms were written to update θth
0  and θth

min in real-time as task varies.

During each stride k, the thigh angle at heel strike θth
HS[k] and the minimum thigh angle 

observed during stance θth* [k] were recorded. The value of θth
0  for the upcoming stride was 

estimated at toe-off as the average of the previous three values of θth
HS:

θth
0 [k + 1] = ∑

j = 0

2 θth
HS[k − j]

3 . (3)

Initial testing with varying tasks showed that this method converged to a steady state value 

in under five strides and that the user was able to continue a comfortable gait during the 

convergence period.

However, θth
min was less straightforward to estimate because it is a function of both the user’s 

intent and the kinematic response of the prosthetic leg. In typical human gait, plantarflexion 

at the ankle during late stance causes the thigh angle trajectory to reverse directions [26]. 

Therefore, the timing and value of θth*  depends on ankle pushoff timing. Because ankle 

plantarflexion is controlled by the phase measurement, increasing the magnitude of θth
min

shifts pushoff, and thus θth* , to occur at larger magnitude hip extensions (2). If a simple 

average was used to calculate θth
min, the system would diverge, as each stride would require 

recursively more hip extension before the ankle would provide pushoff. To prevent this 

behavior, we instead estimated θth
min as the maximum (smallest magnitude) of the previous 

observed values of θth* :

θth
min[k + 1] = max θth*[k − j] , 0 ≤ j ≤ 2 . (4)

This method proved more effective than an average because it required consecutive strides of 

increased thigh displacement before decreasing the expected value. Further, in the event that 

θth
min was too low, the user could correct it in a single stride by limiting thigh extension.

Finally, the phase estimate was low pass filtered to prevent high frequency changes in the 

commanded joint positions due to thigh angle measurement noise. A lower cutoff frequency 

was used during swing (fc, sw = 4.08 Hz) than in stance (fc, st = 13.26 Hz) because the 

system is more susceptible to unstable feedback loops (primarily between the thigh IMU and 

high-bandwidth knee actuator) when the leg is unloaded. The phase filtering had negligible 
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effect on the kinematics during swing, as toe clearance and an appropriate foot position at 

heelstrike were still provided.

C. Task Estimation

In addition to the phase measurement, the kinematic model requires knowledge of the user’s 

desired walking speed and the ground inclination, which we term the current task. The 

current task was estimated using on-board sensor information from recent previous strides. 

The estimates were updated at each toe-off event and filtered with a three-sample moving 

average to reduce noise.

1) Steady Gait Determination: The task estimation algorithms’ objective is to predict 

the walking speed and ground inclination of the upcoming stride based on information 

gathered during previous strides. Therefore, we restricted the task estimators to only update 

during periods of steady gait, as non-steady periods are by definition not representative of 

the expected task in upcoming strides.

Gait was considered steady if it satisfied the following criteria: 1) The position of the foot 

relative to the hip was significantly different (20 cm) between each change in ground 

contact. The foot position was calculated based on known link lengths and forward 

kinematics. This criteria was intended to discard periods of weight shifting during standing 

and mid-stride pauses. 2) Heelstrikes occurred at least 0.25 s apart. Any consecutive 

heelstrikes temporally closer together were discarded, again likely an indicator of standing 

weight shifting. 3) Heelstrikes occurred no more than 3.0 s apart. This criteria detected when 

the user had stopped walking. When any of the criteria were not met, the task estimators 

retained their previous values.

2) Speed Estimation: Speed estimates were based on a double-pendulum model of 

human walking and utilized measurements of the thigh angle θth (from the thigh IMU), knee 

angle θk (from the joint encoder), and a priori measurements of the subject’s thigh length 

Lth and tibia length Lti, in a manner similar to [24]. Joint angles were defined positively 

in flexion, relative to the proximal link, and the zero configuration corresponded to quiet 

vertical stance. The model assumed symmetry and that the distance travelled by the subject 

during one stride was equal to the summation of the foot’s anterior/posterior displacement 

with respect to the hip during stance and swing. The foot’s saggital-plane position with 

respect to the hip joint center pfh is given by

pfh(t) = Lth
cos θth(t)
sin θth(t) + Lti

cos θth(t) + θk(t)
sin θth(t) + θk(t) . (5)

The displacements during stance and swing were calculated at every ipsilateral heel strike 

(HS) or toe-off (TO) event:

dstance = pfh tTO − pfh tHS
−

2, if t = tTO,

dswing = pfh tHS − pfh tTO
−

2, if t = tHS,
(6)

Best et al. Page 6

Rep U S. Author manuscript; available in PMC 2022 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where tTO−  and tHS−  are the times of the previous TO or HS event, respectively. Then at every 

TO event, the average speed of the stride was updated:

ν(t) = dstance + dswing / tHS − tHS
− , if t = tHS,

ν(t − 1) otherwise.
(7)

3) Incline Estimation: The ground inclination α was estimated by measuring the angle 

of the foot with respect to gravity when the foot was flat on the ground (midstance). A 

similar incline estimation algorithm was presented in [7] on a knee-ankle prosthesis using an 

accelerometer at the foot and force sensors placed at the heel and the toe. We modified this 

approach to use the sensors already present on our prosthesis, namely a thigh mounted IMU 

instead of the foot accelerometer and a load cell mounted to the distal end of the ankle joint 

in place of force sensors for midstance detection. The global foot angle θf was calculated 

based on the global thigh orientation θth measured by the IMU and forward kinematics:

θf = θth − θk + θa + θf
0, (8)

where θf
0 represents the angle between the prosthetic foot and the sole of the shoe. The 

constant value of θf
0 was experimentally determined during quiet stance on level ground.

The sagittal-plane component of the center of pressure ℓcop was used to determine when the 

user was in midstance. It was calculated using the on-board load cell as

ℓcop = My + Fx ℓx
−Fz

, (9)

where My, Fx, and Fz are the y moment, x force, and z force, respectively, and ℓx is the 

distance from the load cell to the bottom of the shoe. The load cell reference frame is 

oriented such that the x axis is defined positively from the heel to the toes of the prosthetic 

foot and the y axis is aligned with the ankle axis of rotation (Figure 2). The calculation for 

ℓcop was only performed during stance.

The center of pressure location is a reliable indicator of midstance because it generally 

increases monotonically and continuously throughout the gait cycle [27] and it encodes 

information about the foot’s interaction with the ground. Preliminary experiments 

demonstrated that regardless of ground inclination, the foot was flat on the ground when 

3.5 ≤ ℓcop ≤ 6.0 cm. Therefore, to estimate the ground inclination, we simply averaged the 

measured foot angle θf for all time steps during a stride in which the midstance condition 

was met.

D. Joint Position Controllers

The desired joint angles from the kinematic model were enforced using a modified 

Proportional-Integral-Derivative (PID) controller. The joint torques at the knee τk and ankle 
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τa were calculated as functions of the respective joint’s desired position (θk
d or θa

d) and 

velocity (θ̇k
d or θ̇a

d), with a general equation for the ith joint’s torque given by

τi = kp
i θi

d − θi + ki
i∫ θi

d − θi dt + kd
i θ̇i

d − θ̇i − biθ̇i, (10)

where kp
i , ki

i, and kd
i  are each joint’s unique proportional, integral, and derivative gains. The 

desired joint velocities θ̇k
d and θ̇a

d were calculated by numerical differentiation of the position 

references using Savitzky-Golay filters. An additional viscous damping term was added 

to help stabilize the controller, with damping coefficient bi. This term helped eliminate 

vibrations and oscillatory behavior that naturally arose due to the prosthesis’s minimal 

inherent viscous losses [28]. The integral term was included because it allowed for a more 

compliant heelstrike while still providing adequate pushoff torque. An anti-windup limit of 

170 Nm was implemented on the integral terms. The joint torque commands were scaled by 

the transmission ratio and sent to the low-level torque controllers implemented on the motor 

drives. The controller gains were tuned once at the beginning of the experiment and held 

constant thereafter.

III. EXPERIMENTAL TESTING

A. Hardware Implementation

The proposed control method was implemented on the powered knee-ankle prosthesis 

designed in [28] (Figure 2). The prosthesis features high torque, low impedance actuators 

(ILM 85 × 26 motor kit, RoboDrive, Seefeld, Germany) with custom 22:1 single-stage 

stepped-planet compound planetary gear transmissions. The motors are driven by G-SOLO 

Twitter R80A/80VDC drives (Elmo Motion Control, Petah Tikva, Israel). A prosthetic 

foot (Ottobock Lo Rider, 1E57) is mounted below a 6-axis load cell (Sunrise Instruments, 

Nanning, China), which mounts to the distal end of the ankle joint. The control and signal 

processing code is implemented on a myRIO 1900 (National Instruments, Austin, TX) 

mounted on the front of the prosthesis. All control code is executed at 500 Hz. Four 

on-board LiPo batteries (TP870–3SR70, Thunder Power, Las Vegas, NV) connected in 

series power the prosthesis. The global orientation of the residual thigh is measured using 

a 3DM-CX5–25 IMU (LORD Microstrain, Williston, VT) affixed to the proximal end 

of the knee actuator. Motor positions are measured by E5, 3600 cpr optical quadrature 

encoders (US Digital, Vancouver, WA). Joint velocities are estimated using second-order 

Savitzky-Golay filters. Finally, an instrumented treadmill (Bertec, Columbus, OH) measures 

belt speed and ground inclination.

B. Experimental Protocol

The experimental protocol was approved by the Institutional Review Board of the University 

of Michigan (HUM00166976). An able-bodied subject was fit with the prosthesis and a 

bypass adapter. A shoe lift was worn on the contralateral leg to ensure equal leg lengths. The 

subject was an experienced user of the prosthesis and wore a ceiling mounted safety harness. 

Before trials began, the subject walked at a self selected pace with a 0.0 deg incline while 
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the control parameters were tuned, including the position controller gains and the phase 

variable constant c (Table I). Leg segment lengths were measured on the prosthesis side 

using a tape measure. Note that Lth was reduced by 0.10 m to remove a constant bias in the 

speed estimates observed during initial testing. We hypothesize that this bias was a result of 

more complex leg geometry introduced by the bypass adapter that was not well captured by 

the double pendulum walking model. We assume that this modification will be unnecessary 

when not using a bypass adapter, and plan to verify this assumption in future trials.

The proposed control strategy was tested over a range of speeds and inclines, both at 

steady-state and during transient task changes. During each trial, the signals on-board the 

prosthesis were recorded, as well as the true speed and incline measured by the instrumented 

treadmill. We tested a range of inclines between ±6.0 deg and a range of speeds between 

0.7 and 1.3 m/s. This range was chosen to explore the majority of the task space without 

approaching the limits of the kinematic model. During all tests, the parameters from the 

adaptive phase variable algorithm were used in the phase calculation and the online task 

estimates were used as inputs to the kinematic model, thus providing insight into the full 

system’s closed-loop behavior. A supplemental video of these experiments is available for 

download.

1. Steady-State Task Trials: Five trials were performed to test the incline 

estimator’s closed-loop steady-state accuracy at different inclines. The subject 

performed two minutes of steady walking at inclines of −6.0, −3.0, 0.0, 3.0, 

and 6.0 deg. Each test was performed at a walking speed of 1.0 m/s. Once 

the incline estimator, speed estimator, and phase variable parameters reached 

steady-state at each incline, which typically required 2–6 strides depending on 

the previous task, two minutes of data were recorded. In a similar manner, the 

speed estimator’s steady-state accuracy was tested at a range of five walking 

speeds. The subject performed two minutes of steady walking at speeds of 0.7, 

0.85, 1.0, 1.15, and 1.3 m/s. Each test was performed with a treadmill incline of 

0.0 deg. The two minute data collection period again began when the task and 

phase parameters reached steady-state.

2. Transient Task Trials: The transient closed-loop accuracy of the incline estimator 

was evaluated in four trials of time-varying inclines. All trials were performed 

at 1.0 m/s walking speed. Once the subject was comfortable at steady-state, 

data collection began and the incline was increased from 0.0 deg at a rate of 

approximately 0.18 deg/s to 6.0 deg. The subject continued walking at the new 

incline for 30 seconds following the ramp. The trial was repeated for incline 

transitions from 6.0 deg to 0.0 deg, 0.0 deg to −6.0 deg, and −6.0 deg to 0.0 

deg. The transient performance of the speed estimate was evaluated in a similar 

manner. In the first of four trials, the subject walked at 1.0 m/s on a 0.0 deg 

incline. Once steady-state was reached, data collection began and the treadmill 

accelerated to 1.3 m/s at a rate of 0.025 m/s2. The subject continued walking at 

the new speed for 30 seconds following the transient. The trial was repeated for 

speed transitions from 1.3 m/s to 1.0 m/s, 1.0 m/s to 0.7 m/s and 0.7 m/s to 1.0 

m/s.
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3. Discontinuous Task Trials: Four trials were performed to test the robustness of 

the system to discontinuous changes in task, as well as to characterize the step 

response of the task estimators. Although the system is not designed to handle 

discrete changes in task, it is important that it responds safely and converges to 

the correct state.

In a first test to simulate discontinuous inclines, the subject began walking at 1.0 m/s on a 

0.0 degree incline. Once steady-state was reached, the belt speed was quickly stopped and 

the subject remained stationary while the treadmill was set to a 6.0 degree incline. Once the 

treadmill reached the correct incline, the belt speed accelerated from 0.0 m/s to 1.0 m/s at 

a rate of 0.25 m/s2 and the subject resumed walking for 30 seconds. The trial was repeated 

a second time, but instead with a transition to a 6.0 deg decline. Next, to test the system 

response to discontinuous changes in walking speed, the subject walked at steady-state at 1.0 

m/s on a 0.0 degree incline. The treadmill then accelerated to 1.3 m/s at a rate of 15 m/s2 

to simulate a discontinuous change in speed. The subject continued walking for 30 seconds 

after the transient change concluded. The trial was repeated a second time, with the treadmill 

instead decelerating to 0.7 m/s at −15 m/s2.

IV. RESULTS AND DISCUSSION

A. Comparisons to Able-Bodied Gait

The proposed control strategy produced kinematic trends in response to task changes that 

are similar to trends seen in able-bodied gait. First, the phase variable parameter algorithm’s 

output varied as expected with changes in incline (Figure 3), as θth
0  increased significantly 

with increasing incline while θth
min remained relatively constant [22]. This resulted in a 

consistent phase calculation across inclines.

Next in Figure 4, the average observed joint trajectories for different tasks are plotted 

as functions of normalized stride time T0. The dashed lines show nominal able-bodied 

trajectories generated from the kinematic model using ideal phase and task estimates. 

Similar trends appear in both sets of data, such as earlier knee flexion at lower inclines, 

increased knee and ankle flexion at heelstrike for steep inclines, and increased ankle 

plantarflexion with increased speed. Further, the observed kinematic trajectories for tasks in 

the middle of the task space (shallow slopes, moderate speeds) are bounded by the observed 

kinematic trajectories for the tasks near the edges of the task space (steep slopes, slow and 

fast speeds), which is also a trend seen in the able-bodied data.

The differences between the observed and nominal kinematics are the net effects of errors 

in the phase, incline, and speed estimates, imperfect joint position control, and differences 

in the user’s preferred thigh progression relative to the average able-bodied gait. Errors in 

the phase estimate are the primary contributors to the kinematic discrepancies, manifested as 

relative time scaling of the trajectories. As seen in Figure 3, the average phase variable does 

not have a perfectly linear relationship with normalized stride time. Because the kinematic 

model was fit using normalized stride time, this results in some portions of the observed 

trajectories appearing faster or slower relative to the nominal trajectories. This problem can 

be mitigated by re-parameterizing the able-bodied joint trajectories in terms of the average 
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phase variable instead of normalized time prior to fitting the kinematic model, similar to 

methods used in [23].

Further, a prominent difference that is notable across all tasks is a slight pause in the 

kinematic trajectories around 65% of the gait cycle. The pause is due to the phase rate ṡ
approaching 0 as the thigh reverses directions (Figure 3). Applying the chain rule to (1) and 

assuming a locally constant task, we can see that θ̇d is proportional to ṡ:

θ̇d(s, χ) = ṡ ∑
k = 1

N dbk(s)
ds ck(χ), (11)

and that as ṡ 0,θ̇d 0. Improving the phase calculation to eliminate this point of zero 

phase rate would prevent the observed kinematic pause.

Based on these two artifacts, we believe that improving the phase estimates would greatly 

improve the observed joint trajectories. We plan to investigate modifications to that phase 

variable that would improve linearity and strict monotonicity while still providing the user 

with strong volitional control over gait progression.

B. Task Estimator Closed-Loop Accuracy

The closed-loop task estimators were evaluated for their overall steady-state accuracy, low-

frequency ramp response, and step response for various task combinations. The steady-state 

trials demonstrated closed-loop RMSE of 0.041 m/s for the speed estimator and 0.91 deg 

for the incline estimator during the combined 18 minutes of steady-state walking, shown as 

functions of task in Figure 5 with error distributions in Figure 6. In addition, the accuracy of 

the low-frequency ramp response was calculated from the transient task trials (Figure 7) and 

the errors were similar to the steady-state values. Namely, the speed estimator ramp RMSE 

was 0.054 m/s and the incline estimator ramp RMSE was 1.36 deg. This modest increase 

in average error suggests that low-frequency, continuous changes in task do not have an 

appreciable impact on the task estimators’ performance.

We calculated the average error in the commanded joint trajectories that the model would 

output if the task estimates were biased by their average errors for various task combinations 

(Table II). The resulting errors of 1 to 2 deg are negligible, especially when compared to the 

average stride to stride kinematic variation seen in able-bodied subjects [23]. This suggests 

that task estimators are sufficiently accurate for the purposes of using the kinematic model, 

and it affirms the prior conclusion that kinematic trajectory discrepancies in Figure 4 are 

most likely due to phase estimation errors.

Next using the discontinuous task trials, we quantified the task estimate response time, 

defined as the number of strides required for the estimate to arrive within the bounds of its 

steady-state accuracy around the true value. For step changes of magnitudes equal to half of 

the tested task range, the incline algorithm required three strides to converge and the speed 

algorithm required four strides, on average (Figure 8).
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For the discontinuous task changes tested in this study, both estimators converged to the true 

value in a stable manner and the user was able to continue walking during the convergence 

period. While this demonstrates that the system is robust to discontinuous changes, it does 

not however imply that the user would be comfortable or even always be able to continue 

walking during the transient. For example, is likely that if the change in task is substantial 

enough, such as −6 deg to 6 deg, the abrupt change in required kinematics for toe clearance 

during swing may prevent the user from being able to continue while the task estimator 

updated. In these cases, a higher-level classifier may be helpful in order to override the task 

estimates if a discontinuous change was detected.

V. CONCLUSION

This work detailed a continuous, phase-variable control strategy that operated over a 

continuum of speeds and inclines. The data-driven controller required only a minimal set 

of tunable parameters that were configured once at level ground walking. We presented an 

extension to a previous phase variable that allowed it to parameterize the gait cycle over 

the full task space. We then validated the controller by demonstrating that it replicated 

kinematic trends seen in able-bodied gait in response to changes in speed and incline. We 

also quantified the closed-loop accuracy of the task estimators, demonstrating sufficient 

accuracy for the purposes of using the kinematic model. Further, we demonstrated that the 

system was robust to discontinuous task changes and that it converged to the true values in 

less than 5 strides. Finally, we concluded that limitations in the phase variable calculation 

were the primary cause of discrepancies between the observed and nominal kinematics, 

suggesting that future work should focus on improving phase estimation.

In future work, we plan to enroll participants with transfemoral amputations to validate this 

controller’s efficacy for a range of individuals. We also plan to explore other applications 

of the continuous modeling framework, potentially modeling joint impedance and force 

trajectories as functions of phase and task. Finally, we plan to extend the framework by 

adding additional dimensions in the task space such as running, stair climbing, and sit-to-

stand tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A block diagram of the proposed control architecture. A phase estimate s and task estimate 

χ feed a kinematic model that produces desired knee and ankle reference angles θk
d and θa

d. 

A position controller commands knee and ankle joint torques τk and τa, which interact with 

the user/prosthesis system to produce thigh, knee, and ankle angles θth, θk, θa, and ground 

contact forces Fxyz and moments Mxyz.
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Fig. 2. 
A photo of the experimental setup, including the custom powered knee-ankle prosthesis 

attached to the able-bodied subject with a bypass adapter. The load cell x, y, and z 
coordinate axes are indicated by the red, blue, and green arrows, respectively.
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Fig. 3. 
The initial (left) and minimum (middle) expected thigh angles produced by the adaptive 

phase variable parameter algorithm as functions of incline for 1.0 m/s walking. The 

parameter trends align with observations of able-bodied walking, where θth
0  increases with 

incline and θth
min remains relatively constant for the range of inclines tested. The average 

phase variable trajectory with respect to normalized stride time T0 (right), with shading 

representing one standard deviation, shows that modulating these parameters results in a 

consistent phase calculation that is independent of incline.
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Fig. 4. 
The mean knee and ankle joint angles produced by the prosthesis during the steady-state 

trials (solid) plotted against the ideal joint angles (dashed) for varying tasks as functions of 

normalized stride time T0. The shaded regions represent one standard deviation on either 

side of the mean. The changes in kinematics in response to changes in task show trends that 

resemble trends seen in able-bodied gait. Differences between kinematics are the net result 

of phase and task estimate errors, and imperfect position control, and user gait individuality.
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Fig. 5. 
The RMSE observed in the task estimates during all steady-state walking trials as functions 

of speed and incline. The average errors over all 18 minutes of steady-state test data were 

0.91 deg for the incline estimator and 0.041 m/s for the speed estimator.
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Fig. 6. 
Normal distributions representing the task estimate errors for different inclines (top) and 

walking speeds (bottom). The distributions were fit using all 18 minutes of steady-state 

walking data.
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Fig. 7. 
Example ramp responses of the task estimators during the transient task trials. The left 

plot shows an incline ramp from 0.0° to 6.0° at 1.0 m/s and the right plot shows a speed 

ramp from 1.3 to 1.0 m/s at 0.0 deg. These trials indicate that the task estimators can 

track task ramps in real-time with an accuracy that is similar to steady-state. Note that the 

piecewise-continuous nature of these plots is due to the estimates updating only once per 

stride.
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Fig. 8. 
The step responses of the task estimators during two discontinuous task trials, demonstrating 

a reasonable response time and robustness to discontinuous changes in task. The left plot 

shows an instantaneous incline increase from 0.0 deg to 6.0 deg and the right plot shows an 

instantaneous decrease in walking speed from 1.0 m/s to 0.7 m/s.
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TABLE I

Tuned or measured parameters used in all experiments

Parameter Knee Value Ankle Value

kp (Nm/deg) 7.0 15.0

ki (Nm/deg·s) 0.0 90.0

kd (Nm·s/deg) 0.05 0.019

b (Nm·s/deg) 0.15 0.056

c 0.58

θf
0

 (deg) 0.0

Lth (m) 0.460

Lti (m) 0.328
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TABLE II

Potential joint position errors due to task estimate inaccuracies

Task RMSE Error (deg)

True Potential Estimate Knee Ankle

0.0 deg, 1.0 m/s 0.91 deg, 1.041 m/s 0.80 0.74

6.0 deg, 1.3 m/s 5.09 deg, 1.341 m/s 1.51 1.00

−6.0 deg, 0.7 m/s −6.91 deg, 0.659 m/s 1.56 0.79
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