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P H Y S I C S

Realization of a discrete time crystal on  
57 qubits of a quantum computer
Philipp Frey and Stephan Rachel*

Unconventional dynamical phases that violate ergodicity have been a subject of extensive research in recent 
years. A periodically driven system is naively expected to lose all memory of its initial state due to thermalization, 
yet this can be avoided in the presence of many-body localization. A discrete time crystal represents a driven system 
whose local observables spontaneously break time translation symmetry and retain memory of the initial state 
indefinitely. Here, we report the observation of a discrete time crystal on a chain consisting of 57 superconducting 
qubits on a state-of-the-art quantum computer. We probe random initial states and compare the cases of vanishing 
and finite disorder to distinguish many-body localization from prethermal dynamics. We further report results on 
the dynamical phase transition between the discrete time crystal and a thermal regime, which is observed via critical 
fluctuations in the system’s subharmonic frequency response and a substantial speedup of spin depolarization.

INTRODUCTION
The phenomenon of spontaneous symmetry breaking is common 
in nature and characterizes a large class of phases in materials. For 
instance, the crystal lattice of a solid formed by the nuclei breaks 
the continuous spatial translation symmetry of the underlying 
Hamiltonian, as indicated by the mere discrete translation symme-
try of the local density operator. In 2012, Wilczek proposed the ex-
istence of phases of matter that break continuous time translation 
symmetry (1), dubbed time crystals. Later, their existence in thermal 
equilibrium was ruled out (2). However, time crystals can be stabi-
lized as out-of-equilibrium matter such as periodically driven sys-
tems (3–5), where the dynamical symmetry corresponds to discrete 
time translations only. Such discrete time crystals (DTCs) (6–10) 
exhibit period doubling, tripling, etc., with respect to the periodic 
driving Hamiltonian. That is, the system returns to its initial state 
only after some integer multiple of the driving period. Ergodicity 
predicts that driving heats the system, causing it to thermalize after 
a certain number of periods. Instead, a DTC is not ergodic and 
“remembers” its initial state even at late times, in violation of the 
eigenstate thermalization hypothesis (11).

To escape ergodicity, a DTC must be many-body localized (MBL). 
MBL has been a subject of extensive research in recent years, both 
theoretical and experimental (12–18). It can be understood as an 
emergent integrability through localized integrals of motion. In their 
presence, the system is prevented from heating to a state that locally 
resembles thermal equilibrium. For comprehensive reviews on 
MBL, see (19–23).

Early and previous experiments have provided important insights 
into DTCs in a variety of different platforms such as trapped ions 
(18, 24, 25), dipolar spin systems (9, 26–29), and superfluid quan-
tum gases (30–32). Most of these experiments fail, however, to 
satisfy all experimental requirements for realizing DTC spatio-
temporal order (33): The systems need to be truly many-body, and 
coherence times must be sufficiently long to be able to distinguish a 
DTC from short-time transients; the implemented Hamiltonian 
must contain disordered spin-spin couplings and sufficiently short-
ranged interactions. Firmly establishing DTC dynamics requires 

the ability to prepare arbitrary initial states and perform site-resolved 
measurements. Present-day quantum computers, so-called noisy 
intermediate-scale quantum (NISQ) devices, have been suggested 
as the only platform that currently meets all the requirements above 
(33). Comparatively short coherence times due to noise in the system 
pose the predominant challenge.

Here, we report the observation of a DTC over a 57-qubit chain 
on IBM’s quantum computers ibmq_manhattan and ibmq_brooklyn. 
The best-studied instance is the one-dimensional spin-1/2 chain 
with disordered nearest-neighbor Ising interactions, driven by an 
imperfect periodic spin flip (5, 24, 34).

Prethermal dynamics (25, 35) can mimic the DTC phenomenon 
for initial states that lie at the edge of the many-body spectrum, 
whereas true MBL applies to the entire spectrum. Therefore, it is 
essential to probe random bit strings as initial states. By preparing 
both fully polarized and random-bit states and varying the simulated 
disorder, we are able to distinguish between prethermal and the 
long-sought DTC regime. We further present results on the dynam-
ical phase transition between MBL-DTC and thermal phase.

RESULTS
DTC on a quantum computer
We implement a periodically driven Ising chain with quenched 
disorder and imperfect drive. This is an instance of Floquet evolu-
tion, i.e., time evolution defined in terms of a unitary U instead 
of a Hamiltonian H. We make use of the ability to directly pro-
gram any unitary operator acting on a set of qubits, which, due to 
their nearest-neighbor connectivity, is equivalent to a one-dimensional 
spin chain. The periodic driving can also be thought of as time evo-
lution under a piecewise-defined Hamiltonian, resulting in discrete 
time translation symmetry or periodicity. As we will show, the state 
of this system itself spontaneously breaks this symmetry through 
period doubling and therefore represents a DTC. The time evolution 
operator U of the Floquet system is defined in terms of two unitaries 
U = U2U1: One represents an imperfect global spin flip

	​​ ​U​ 1​​ = exp ​(​​i ​  ─ 2 ​(1 − ϵ ) ​∑ 
i
​ ​​ ​ X​ i​​​)​​ ​​	 (1)School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
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where Xi is the Pauli X-gate on the ith qubit. The parameter ϵ ac-
counts for a deviation from an ideal spin flip, because qualitatively 
novel behavior needs to be robust against small perturbations to be 
considered a true phase of the system. The other unitary corre-
sponds to nearest-neighbor Ising interactions

	​​ U​ 2​​ = exp (− i​∑ 
i
​ ​ ​ ​J​ i​​ ​Z​ i​​ ​Z​ i+1​​)​	 (2)

with the Ising couplings Ji containing the quenched local disorder. 
The second unitary can be varied by adjusting the Ising interaction 
couplings {Ji}. We generate disordered sets of couplings by picking 
each one randomly from an interval Jiϵ [/8,3/8] centered around 
the mean /4. While the model defined by the unitaries Eqs. 1 and 2 
is integrable and noninteracting, the finite gate errors on the quan-
tum computer introduce effective terms such as longitudinal fields 
∼ exp (i∑ibiZi); these additional terms make the model nonintegra-
ble and truly many-body (see Discussion).

A different random bit string as the initial state and a different 
disorder realization are used for each run of the time evolution. We 
use a trotterized time evolution, which, for this model, is an exact 
representation of the unitary U. In Fig. 1, we show the circuit de-
composition in terms of basis gates for a Trotter step on four qubits. 
We then measure each qubit in the computational basis correspond-
ing to Z. The error rates on current NISQ devices limits the number 
of Floquet periods to ∼50. By making use of the heavy hex topology 
of ibmq_brooklyn and ibmq_manhattan (see Fig. 2), we are able to 
simulate an N = 57 site chain and to thereby go far beyond current 
numerical calculations on any classical computer. These machines 
have stated average CNOT error rates between 1.1 × 10−2 and 3 × 
10−2 and average readout error rates between 2.5 × 10−2 and 3.7 × 
10−2. The circuit for each time step is run 32,768 times to minimize 
shot noise.

The realization of the DTC can be observed by site-resolved 
measurement of the spin-spin autocorrelators across time, 
〈Zi(0)Zi(t)〉. It is convenient to consider the averaged autocorrelator 
​​‾  < ​Z​ i​​(0 ) ​Z​ i​​(t ) >​ = ​∑ i​ ​​ 〈 ​Z​ i​​(0 ) ​Z​ i​​(t ) 〉 / ​N​ q​​​, where Nq is the number of 
qubits. Rapid decay of these correlators is expected for the thermal 
regime; in contrast, the oscillations in theory persist indefinitely for 
the DTC because of MBL. The inherent noise of NISQ devices causes 
depolarization of the qubits and represents the main challenge for 
distinguishing between DTC and thermal regime. Even in the ideal 
case of ϵ = 0, where U should not generate any entanglement for an 
initial product state, we observe a finite rate of decay. Figure 3A 
shows the averaged autocorrelator after correcting for measurement 
errors. For ϵ = 0.05, we observe persistent oscillations as a hallmark of 

the realized DTC. Deviations from ±1 are attributed to a combination 
of noise and the fact that the conserved operators of the effective 
MBL Hamiltonian do not exactly coincide with the set of operators 
{Zi}; hence, the Zi are only partly conserved at late times. Nonethe-
less, the oscillators are stable over 50 Floquet periods and are clearly 
distinct from prethermal dynamics (25, 33). Even with finite coher-
ence time, one can still clearly distinguish between the rapid decay 
of a thermal system for ϵ = 0.5 and the DTC for ϵ = 0.05. In addi-
tion, we show the latter for a fully polarized initial state with almost 
identical results. Using reference data obtained for ϵ = 0 allows us to 
rescale the autocorrelations because, in this case, any deviation 
from a perfect oscillation between −1 and 1 is caused by noise. The 
precise error mitigation scheme is more involved and has been de-
tailed in Methods. In Fig.  3B, we show the fully error-mitigated 
data, corresponding to the data shown in Fig. 3A, including the cor-
rection for noise-induced depolarization. The data for ϵ = 0.5 lead 
to immediate thermalization; for ϵ = 0.05, we observe the persistent 
oscillations of a DTC, irrespective of which initial state we choose 
(see the Supplementary Materials). We note that the error mitiga-
tion scheme does not boost the observed signal beyond factoring 
out the baseline decay rate, as described in Methods.

The DTC phase can also be observed through a pronounced 
peak in the Fourier spectrum of <Zi(0)Zi(t)> at half the driving fre-
quency D = 2T−1 for each spin. We show the qubit-averaged Fourier 
spectrum in Fig. 3C (D) that corresponds to the measurement 
error–mitigated (fully error-mitigated) data. Even in the absence of 
any error mitigation, the peak at D/2 is pronounced; the mitigation 
scheme almost doubles the peak height.

In Fig. 3 (E and F), we show site-resolved measurements for rep-
resentative data points within the DTC phase and the thermal phase, 
respectively, for different initial states. Displayed are the 40 qubits 
that fulfill the criteria for sufficiently low error rates as defined in 
Methods. The former displays, to varying degree, staggered spin po-
larizations across time for each individual qubit, while the latter 
shows rapid depolarization across the entire system. This shows a 
clear distinction between two different dynamical phases. One phase 
is characterized by the breaking of ergodicity through MBL and, 
furthermore, the spontaneous breaking of an emergent Ising sym-
metry, resulting in period doubling and therefore time crystalline 
dynamics. The other phase exhibits standard ergodicity and thus 
rapidly evolves toward a thermal state.

Dynamical phase transition
In the following, we focus on the dynamical phase transition from 
the DTC regime to the thermal phase. It can be shown (5) that time 

Fig. 1. Illustrative four-qubit circuit for one Floquet period. Ry and Rz represent single-qubit rotations around the y and z axes, respectively. Vertical lines connecting 
small and large open circles represent CNOT gates. The first part to the left of the vertical dotted line implements the imperfect spin flip, while the latter part to the right 
of this line implements the nearest-neighbor Ising interactions.
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evolution under the above Floquet unitary over an even integer 
number of periods is unitarily equivalent to time evolution with an 
effective Hamiltonian

	​ VU(2nT) ​V​​ †​ ≈ ​e​​ −i2​nH​ TFIM​​T​​	

The approximate sign indicates that the representation in terms 
of a conserved Hamiltonian is not correct out to temporal infinity 
and that the effective Hamiltonian itself contains higher-order 
terms that we neglect (36). V is a finite depth unitary operator that 
depends on the particular disorder, and the random transverse field 
Ising model (TFIM) Hamiltonian is given by

	​​ H​ TFIM​​ = ​∑ 
i
​ ​ ​ ​​   J ​​ i​​ ​Z​ i​​ ​Z​ i+1​​ + ​​   B ​​i​ 

x​ ​X​ i​​​	

The parameters ​​​ ~ J ​​i​ 
z​​ and ​​​ ~ B ​​i​ 

x​​ are disordered, and varying ϵ essen-
tially translates into varying the mean ​​‾ ​​ ~ B ​​i​ 

x​​​. The random TFIM exhib-
its an Ising symmetry that its eigenstates either share or spontaneously 
break, depending on the magnitude of ​​‾ ​​ ~ B ​​i​ 

x​​​. The latter case corre-
sponds to the DTC phase of the Floquet system.

This leads us to the first indicator of the phase transition, namely, 
critical fluctuations at the transition between the DTC and the thermal 
phase in the order parameter that spontaneously breaks the Ising 
symmetry in one phase but not in the other. The order parameter of 
the random Ising transition is the z magnetization, and a finite value 
will result in stable oscillations at  = D/2 due to the periodic flip 
operation. Defining hi = ∣ℱ{〈Zi(t)〉}(D/2)∣, with ℱ{ · } represent-
ing the Fourier transform, one can conclude that the variance across 
the chain Var({hi}) should vanish in the DTC phase and in the ther-
mal phase. At the transition, we instead expect critical fluctuations 
to produce a finite value. For short chains (N ∼ 10), one has to aver-
age over several disorder realizations to obtain a clear signal because 
the behavior at the transition is sensitive to the particular choice of 
disorder. Our system of N = 57 sites seems to produce a rather clear 
signal without this averaging process, as one might expect. Figure 4A 
shows the variance as a function of ϵ after we have reduced the noise 

by applying error mitigation (see Methods). A pronounced peak in-
dicates the phase transition and allows us to extract ϵc ≈ 0.075 (the 
peak’s maximum) as an estimate for the phase transition. Finite values 
at very small values of ϵ may be attributed to the aforementioned 
fact that only part of Zi is actually conserved at late times.

The second indicator of the transition is the average decay con-
stant ​​

_
 ​​ of the local polarization across the chain. With every spin 

roughly following an exponential decay (barring initial transients), 
i.e., ∣ < Zi > ∣ (t) ∝ exp ( − it), we define ​​

_
 ​  = ​ ∑ i​ ​​ ​​ i​​ / ​N​ q​​​. While finite 

even in the ideal case of ϵ = 0 due to noise, ​​
_

 ​​ is expected to increase 
substantially when transitioning into the thermal phase. The transi-
tion found in Fig. 4B nicely agrees with ϵc ≈ 0.075.

DISCUSSION
The model as defined in Eqs. 1 and 2 is noninteracting. However, 
using process tomography, we were able to analyze the systematic 
error contributions to the effective Hamiltonian associated with the 
Ising interaction. The dominant terms generated correspond to 
longitudinal fields and effectively contribute a third unitary U3 = 
exp {(−i∑ibiZi)}, where the random amplitudes bi can be at least as 
large as /25. In addition, further spin-spin interactions are generated 
(see the Supplementary Materials for details). We therefore argue 
that the actual model, as implemented on the quantum computer, is 
truly interacting and thus qualifies as MBL. This is in line with the 
reasoning and numerical evidence put forward in (33). As we do not 
explicitly add an additional longitudinal field unitary U3 by hand, 
our circuit depths are significantly reduced. This allows us to mini-
mize the noise in our signal while taking advantage of the ubiquitous 
gate errors to meet one of the requirements for MBL.

It is well known that special states at the edge of the spectrum, 
such as a fully polarized chain or a Neel state, can exhibit prether-
mal dynamics that resembles DTC even if the full spectrum is not 
MBL. In that case, one expects a strong dependence of the observed 
dynamics on the initial state. Random bit strings would show a much 
faster rate of depolarization than any of these special states. By com-
paring the data obtained for a fully polarized chain with the generic 
random bit string (see Fig. 3), we conclude that there seems to be no 
such strong dependence, especially when noise is taken into account. 
In the Supplementary Materials, we also show a fully polarized chain 
as well as a random bit string as initial states without any disorder in 
the Ising couplings in the driving Hamiltonian, leading to a notable 
reduction in the oscillation amplitude as expected.

The DTC phase and the transition to the thermal phase could be 
observed for a substantially larger system size than in previous ex-
periments, and we were able to make a first step toward establishing 
a dynamical phase diagram for this system. With increasing fidelity 
of NISQ devices in the near-term future, we can expect to shine light 
on some of the open problems in MBL, such as finite-size scal-
ing and the transition between the thermal phase and the MBL 
paramagnet.

Note added: After being informed about (33), we have updated 
the manuscript accordingly. During completion of this work, we 
became aware of two related works. In (37), a DTC phase using an 
array of eight capacitively coupled transmon qubits is demon-
strated experimentally. In (38), the observation of a DTC on a 
quantum computer with 20 qubits was reported. Our main results 
in Fig. 3 and Fig. S1 are in agreement with (38) but were derived 
independently.

Fig. 2. Qubit layout on ibmq_manhattan and ibmq_brooklyn chips with its 
65 qubits [for the former, whole-device entanglement was demonstrated re-
cently (43)]. The 57 black qubits are used for the simulations of DTC.
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METHODS
Error mitigation
For current NISQ devices, error mitigation is crucial. Notably, 
there has been tremendous progress in developing error mitigation 
schemes and demonstrating stability of quantum circuits against 

quantum gate errors and shot noise (39–42). For this work, we 
have developed a scheme based on our understanding of the 
dominant contributions to the total error. Our error mitigation 
scheme is tailored to deal with measurement errors and the de-
polarization due to the environment.

E F

A C

B D

Fig. 3. Signatures of DTC and thermal dynamics. (A) Averaged spin-spin autocorrelators across time with measurement error mitigation (see Methods) applied to the 
raw data. (B) Same as in (A) but with additional correction of overall decay due to noise. (C and D) Corresponding frequency spectra. (E and F) Site-resolved polarizations 
across time for ϵ = 0.05 (DTC) and ϵ = 0.05 (thermal phase), respectively. Of the total 57 qubits, we show those 40 qubits that operate within reasonable bounds on error 
rates, as judged by our mitigation algorithm (see Methods).

Fig. 4. Dynamical phase transition. (A) Critical fluctuations in the subharmonic frequency response. Filling and dotted lines are a guide to the eye. (B) Average decay 
constant ​​

_
 ​​ across qubits. The transition from DTC to the thermal phase is indicated by the rather sudden increase in ​​

_
 ​​. The dashed vertical lines in (A) and (B) indicate the 

dynamical phase transition at ϵc ≈ 0.075.
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Measurement error
The first major contribution is the error associated with measure-
ment of the individual qubit’s state. For a small set of n qubits, one 
can calibrate and correct for this error by initializing the register in 
each of the 2n possible computational basis states and measuring 
<Z> on every qubit. However, for a large register, this is not feasible, 
and so, we assume that the measurement errors on different qubits 
are approximately uncorrelated. Because the measurement errors 
are not consistent across different runs over the course of hours or 
days, one would have to recalibrate before every experiment and 
assume that the drift is minimal in between calibration and the ac-
tual simulation. Systematic errors that offset the polarization might 
also be introduced by gate errors resulting from the application of 
trotterized time evolution. To tackle both of these effects, we use an 
empirical approach. Along with every simulation run for a given 
finite ϵ and fixed disorder and initial state, we also perform a refer-
ence simulation with ϵ = 0 and otherwise unchanged conditions. 
Any bit string is an eigenstate for the unperturbed unitary. This al-
lows us to conclude that any deviation from a constant local polar-
ization is due to noise and errors. The combination of measurement 
errors and systematic gate errors at late times is characterized by a 
pair of effective error parameters 0 and 1 for each qubit. 0 de-
notes the effective probability of erroneously measuring a 1 given 
that the qubit is in state 0, and 1 denotes the effective probability of 
obtaining a 0 from a 1 state. We are interested in the expectation 
value <Z>, and with ​​ ̄ ​  ≔  (​​ 0​​ + ​​ 1​​ ) / 2​ and  ≔ 0 − 1, one can 
easily show that the corrected expectation value <Z>corr can be ob-
tained from the measured one <Z>meas via

	​​ 〈Z〉​ corr​​  = ​  ​〈Z〉​ meas​​ +  ─ 1 − 2​_ ​  ​​	 (3)

This empirical approach requires the input of at least two data 
points at different times. To not overcorrect the measurements at 
early times, where systematic gate errors have not yet accumulated 
to the same extent as for late times, we choose to normalize the po-
larizations to ∣< Z > (t = 0)∣ = 1

	​​ 〈Z〉​ corr​​  = ​   ​〈Z〉​ meas​​ − ​〈Z〉​ final​​  ────────────────  ∣​〈Z〉​ meas​​(t = 0 ) − ​〈Z〉​ final​​∣
 ​​	 (4)

<Z>final represents an average over a few data points at the latest 
simulated times. The average is taken to avoid the effects of chang-
ing conditions over the course of the simulation. From this, one 
can, in principle, extract the effective empirical error parameters

	​​ ​ 0​​ = (1 − ∣​〈Z〉​ meas​​(t = 0 ) − ​〈Z〉​ final​​∣− ​〈Z〉​ final​​ ) / 2​	 (5)

	​​ ​ 1​​ = (1 − ∣​〈Z〉​ meas​​(t = 0 ) − ​〈Z〉​ final​​∣+ ​〈Z〉​ final​​ ) / 2​	 (6)

Depolarization due to environment
In addition to the measurement and gate errors, one can also ob-
serve an overall exponential decay of polarization due to the qubits 
thermalizing with their environment. To compensate for this decay, 
we would like to rescale the data accordingly. We use the following 
algorithm to distinguish between a qubit being nonpolarized at late 
times due to internal thermalization versus due to erroneous spin flips:

1. Introduce a cutoff parameter W0 ∈ [0,1], where 1 corresponds 
to the maximal polarization of a qubit. Qubits whose average polar-
ization over 5 time steps drops below W0 after the initial 13 time 

steps for ϵ = 0 are excluded from the evaluation (further justifica-
tion below).

2. Introduce a fixed threshold Wf < W0 for finite values of ϵ. Qubits 
that lie within the interval [ −Wf, Wf] after the initial time evolution 
are assumed to approach vanishing magnetization due to thermal-
ization, in which case, the accumulated gate error in the magnetiza-
tion is less relevant (<z > = 0 is a fixed point as far as the Trotter 
gate errors are concerned). Therefore, we do not rescale the subse-
quent data points for these qubits.

3. For qubits outside of this interval, one can assume that most of 
the damping is due to the same depolarizing noise that was ob-
served previously for ϵ = 0. We rescale the subsequent data points 
with an exponential fit obtained from the ϵ = 0 data for this qubit 
but adjusted by the ratio of average polarization for a given finite ϵ 
to the corresponding average polarization for vanishing ϵ. With ​​
m​i​ 

(ϵ)​(t)​ denoting the magnetization of the ith qubit at time t as mea-
sured on the quantum computer and corrected for measurement errors, 
the exponential fit of the reference data at ϵ = 0 takes the form

	​​ ​ 1 ─ 2 ​​[​​ ​m​i​ 
(0)​(t ) + sign​(​​ ​m​i​ 

(0)​(t )​)​​​]​​ = ​a​i​ 
(0)​ ​e​​ −​b​i​ 

(0)​t​ + ​c​i​ 
(0)​​​	 (7)

with fit parameters ​​a​i​ 
(0)​​, ​​b​i​ 

(0)​​, and ​​c​i​ 
(0)​​. We define the rescaled magne-

tization ​​M​i​ 
(B)​(t)​ via

	​​ M​i​ 
(ϵ)​(t ) = ​ 

​‾ ​m​i​ 
(ϵ)​​
 ─ 

​‾ ​m ​i​ 
(0)​​

 ​ ​ 
​m​i​ 

(ϵ)​(t ) + sign(​m​i​ 
(ϵ)​(t ))
  ─────────────  

​a​i​ 
(0)​ ​e​​ −​b​i​ 

(0)​t​ + ​c​i​ 
(0)​

  ​ − sign(​m​i​ 
(on)​(t ))​	 (8)

The bar denotes an average over 5 time steps after the initial 
13 time steps. Omitting the first few iterations serves to avoid the 
influence of initial transients on the observed signature. On the basis 
of numerical simulations for smaller chains, one expects the indi-
vidual spins to approach an almost steady state after initial, short-
lived transients. One therefore predicts that most spins would exhibit 
an exponential decay even for finite ϵ. Because not all the 57 qubits 
seem to operate within the margins given by the stated error rates, 
we additionally remove those few ones that deviate substantially 
from the exponential decay model as judged by convergence of our 
fit. The above procedure requires us to omit qubits whose error 
rates are sufficiently high to move their absolute value polarization 
into the interval [0, W0] even for ϵ = 0, because we would otherwise 
confuse them for ones that are thermal. This justifies step 1 in the 
above error mitigation scheme.

The same error mitigation algorithm was applied to all the data 
in Fig. 3B. Rescaling of the late-time data points only occurs if every 
one of the abovementioned criteria is met. This ensures that in-
stances of markedly dampened time evolution, as displayed by the 
yellow curve in Fig. 3, remain dominated by the increased rate of 
depolarization.

To ensure that the arbitrary threshold W0 does not crucially 
affect the results, we process the data using a range of different val-
ues. The peak associated with critical fluctuations and the signature 
of increased damping remain quite stable across a wide range. The 
same applies to the choice of Wf that enters in the definition of the 
interval. Here, values very close to 1 produce an algorithm that is 
too sensitive to fluctuations in the error rates, while values close to 
0 suppress the signal. The results presented in this paper were eval-
uated using W0 = 0.15 and Wf/W0 = 2/3. We find that typically ∼40 
to 45 qubits enter the evaluation.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7652
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