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E L E C T R O C H E M I S T R Y

Single-site Pt-doped RuO2 hollow nanospheres 
with interstitial C for high-performance acidic overall 
water splitting
Juan Wang1,2†, Hao Yang3†, Fan Li4†, Leigang Li1, Jianbo Wu4,5,6, Shangheng Liu1, Tao Cheng3, 
Yong Xu7*, Qi Shao3, Xiaoqing Huang1*

Realizing stable and efficient overall water splitting is highly desirable for sustainable and efficient hydrogen 
production yet challenging because of the rapid deactivation of electrocatalysts during the acidic oxygen evolu-
tion process. Here, we report that the single-site Pt-doped RuO2 hollow nanospheres (SS Pt-RuO2 HNSs) with 
interstitial C can serve as highly active and stable electrocatalysts for overall water splitting in 0.5 M H2SO4. The 
performance toward overall water splitting have surpassed most of the reported catalysts. Impressively, the SS 
Pt-RuO2 HNSs exhibit promising stability in polymer electrolyte membrane electrolyzer at 100 mA cm−2 during 
continuous operation for 100 hours. Detailed experiments reveal that the interstitial C can elongate Ru-O and 
Pt-O bonds, and the presence of SS Pt can readily vary the electronic properties of RuO2 and improve the OER 
activity by reducing the energy barriers and enhancing the dissociation energy of *O species.

INTRODUCTION
Electrocatalytic water splitting, which couples hydrogen evolution 
reaction (HER) at cathode and oxygen evolution reaction (OER) at 
anode, has been widely accepted as an important process for the 
production of hydrogen and the conversion of intermittent energy 
(1–5). Generally, the electrocatalytic water splitting can be operated 
in acidic, alkaline, and neutral conditions, and therefore, the perform­
ance is strongly dependent on the electrocatalysts (6–11). Com­
pared to alkaline water splitting, water splitting in acidic media is 
critical for polymer electrolyte membrane (PEM) electrolyzer (12–15), 
which presents advantages including high gas purity and proton con­
ductivity and small gas crossover, and therefore attracts great attention 
(16, 17). However, a highly efficient water splitting in acidic media is 
limited by the disadvantages of sluggish reaction kinetics and harsh 
acidic and oxidative environments of OER (18–20). It is thus highly 
desired to develop robust electrocatalysts for acidic water splitting.

Despite the widespread applications of RuO2 and IrO2 for acidic 
OER (21–23), RuO2 has been regarded as a promising catalyst for 
acidic OER because of its cheaper price and higher activity com­
pared with IrO2 (24, 25). However, RuO2 suffers from the drawback 
of poor stability in acidic media at high potential (26). Over the past 
decades, substantial efforts have been devoted to the modifications 

of RuO2 to improve its stability for acidic OER (27–29). For exam­
ple, it has been reported that Cu doping into RuO2 hollow porous 
polyhedra can substantially improve the OER performance, and the 
catalyst displays excellent stability within 10,000 cyclic voltammetry 
(CV) cycles and 8-hour chronopotentiometric test (30). Shan et al. 
(31) demonstrated that the heterostructured Ru@IrOx with a strong 
charge redistribution between strained Ru core and IrOx shell can 
serve as a stable catalyst for acidic OER. Despite the fact that great 
progress has been achieved, the stability of RuO2 in acidic conditions 
is still far away from the satisfaction for practical application. Therefore, 
the development of robust RuO2-based catalysts for acidic OER is of 
great importance.

Here, we report that the single-site Pt-doped RuO2 hollow nano­
spheres (SS Pt-RuO2 HNSs) can be applied as high-performance 
electrocatalysts for overall acidic water splitting, in which the inter­
stitial C is trapped in the gap while Pt replaces partial Ru sites in the 
form of single site. In particular, when SS Pt-RuO2 HNSs were used 
as catalyst for water splitting in 0.5 M H2SO4, the required cell voltages 
are as low as 1.49, 1.59, and 1.65 V for reaching current densities of 
10, 50, and 100 mA cm−2, respectively, and their catalytic perform­
ance have surpassed most of the reported catalysts for overall water 
splitting. Detailed characterizations reveal that the presence of in­
terstitial C can elongate Ru-O and Pt-O bonds in SS Pt-RuO2 HNSs, 
and the introduced SS Pt strongly affects the electronic properties of 
RuO2. Density functional theory (DFT) calculations show that the 
RuO2 with SS Pt can significantly enhance the stability and reduce 
energy barriers for boosting OER activities. This work not only 
may provide a facile strategy for the modification of RuO2 by doping 
SS Pt but also sheds new light on the industrial application of overall 
water splitting.

RESULTS
Morphological and structural characterizations
The PtRuSe HNSs was initially synthesized via a hydrothermal method, in 
which hydrazine hydrate aqueous solution and H2O were used as 
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reducing agent and solvent, respectively. The obtained PtRuSe HNSs 
exhibit a morphology of HNS with a Pt/Ru/Se ratio of 4.7:31.6:63.7, as 
revealed by transmission electron microscopy (TEM) image and 
scanning electron microscopy–energy dispersive spectrometer (SEM-
EDS) profile (fig. S1). The PtRuSe HNSs were then loaded onto the 
VC-X72 carbon powder (fig. S2). No obvious x-ray diffraction (XRD) 
peaks except for some typical bread-shaped diffraction peaks are ob­
served, suggesting the amorphous nature of PtRuSe HNSs (fig. S3). 
Afterward, the carbon-supported PtRuSe HNSs were treated in air at 
300°C for 10 hours to obtain SS Pt-RuO2 HNSs. No obvious changes 
in the morphology were observed after this thermal treatment despite 
the fact that partial carbon was removed, as revealed by the high-angle 
annular dark-field scanning TEM (HAADF-STEM) (Fig. 1A) and 
TEM images (Fig. 1B). Results from SEM-EDS spectrum show that 
the atomic ratio of O/Ru/Pt/Se is 74.9:23.0:1.1:1.0 in SS Pt-RuO2 
HNSs, while the significant decrease of Se in SS Pt-RuO2 HNSs is as­
cribed to the evaporation of Se during thermal treatment (fig. S4). The 
appearance of RuO2 peaks and the absence of Pt peaks in the XRD 
pattern of SS Pt-RuO2 HNSs indicate that Pt atoms are well dispersed 
on RuO2 (Fig. 1C). In Raman spectra, the features of Eg, A1g, and B2g 
of RuO2 are observed, and the disappearance of D-band and G-band 
of graphite carbon further confirms that the graphite structure is 

destroyed and RuO2 is formed during the heat treatment process (fig. 
S5) (32). Spherical aberration–corrected HAADF-STEM measurement 
was performed to study the distributions of Pt atoms in SS Pt-RuO2 
HNSs. It is found that Ru atoms are partially replaced by Pt atoms in 
the form of isolated state (bright dots in Fig. 1D) (33, 34). We further 
enlarged the selected area in Fig. 1D, and the details of the atomic line 
profiles further confirm the isolated state of Pt atoms in SS Pt-RuO2 
HNSs (Fig. 1, E to J). The corresponding fast Fourier transform (FFT) 
pattern of SS Pt-RuO2 HNSs identifies the exposed (110) and (​​

_
 1​​01) 

planes of RuO2 along [​​
_

 1​1​
_

 1​​] zone axis (Fig. 1F), which suggests that Ru 
and O atoms are arranged with a tetragonal structure (P42/mnm) and 
Pt atoms are exclusively located at Ru position in the manner of single 
site (Fig. 1G). Moreover, STEM-EDS elemental mapping images sug­
gest that all the elements are evenly distributed in SS Pt-RuO2 HNSs 
(Fig. 1K). The absence of carbon shell in the high-resolution TEM 
(HRTEM) image implies that C has entered into RuO2 (fig. S6). In 
addition, PtRuSe HNSs with different Pt atomic ratios were synthe­
sized (denoted as RuO2 HNSs, 2% Pt-RuO2 HNSs, and 10% Pt-RuO2 
HNSs, respectively) (figs. S7 to S10). Similarly, the typical peaks of 
RuO2 were observed in the XRD patterns and the Raman spectra of all 
samples. The presence of diffraction peaks of Pt in the XRD pattern of 
10% Pt-RuO2 HNSs suggests that Pt atoms present as nanoparticles 

Fig. 1. Morphological and structural characterizations. (A) HAADF-STEM image, (B) TEM image, (C) XRD pattern, and (D) high-resolution HAADF-STEM image of SS 
Pt-RuO2 HNSs. (E) High-resolution HAADF-STEM image obtained from the area highlighted with red rectangles in (D). (F) FFT pattern and (G) crystal structure model of SS 
Pt-RuO2 HNSs. (H to J) Line-scanning intensity profile obtained from the area highlighted with white lines in (E). (K) STEM image and STEM-EDS elemental mapping images 
of SS Pt-RuO2 HNSs.
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(figs. S11 and S12). The lattice fringes in the HRTEM of 2% Pt-RuO2 
HNSs are ascribed to RuO2 (101) and (110) planes, respectively (fig. 
S13). In addition to the lattice distances of RuO2 (101) and (210) fac­
ets, the presences of Pt (111) and Pt (200) lattice distances in the 
HRTEM image of 10% Pt-RuO2 HNSs further confirm the existence 
of Pt nanoparticles (fig. S14).

Catalytic performance
The OER and HER performance of various catalysts were evaluated 
in 0.5 M H2SO4 with standard three-electrode system. As shown in 
Fig. 2A, SS Pt-RuO2 HNSs display small overpotentials of 228, 262, and 
282 mV for achieving current densities of 10, 50, and 100 mA cm−2, 
respectively, during OER. In contrast, the overpotentials are 325, 
405, and 489 mV at the current densities of 10, 50, and 100 mA cm−2 

when commercial RuO2 was used as catalyst (table S1). Moreover, 
SS Pt-RuO2 HNSs exhibit the smallest Tafel slope compared to 
RuO2 HNSs and commercial RuO2, suggesting the fastest reaction 
kinetics of SS Pt-RuO2 HNSs for OER (Fig. 2B). To evaluate the 
OER activity, the overpotentials and Tafel slopes of various catalysts 
were summarized. It is found that SS Pt-RuO2 HNSs exhibit signifi­
cantly superior OER performance to RuO2 HNSs and commercial 
RuO2 (Fig. 2C). Moreover, when SS Pt-RuO2 HNSs was used as cat­
alyst for HER, the overpotentials are 26, 47, and 67 mV at the current 
densities of 10, 50, and 100 mA cm−2, respectively, which are close 
to those values of the state-of-the-art Pt/C catalyst (Fig. 2D and 
table S2). By contrast, the overpotentials of RuO2 HNSs are 68, 109, 
and 142 mV for achieving current densities of 10, 50, and 100 mA cm−2, 
respectively. On the other hand, SS Pt-RuO2 HNSs display a similar 

Fig. 2. Electrochemical OER and HER studies. (A) OER polarization curves and (B) corresponding Tafel slopes of SS Pt-RuO2 HNS, RuO2 HNSs, and commercial 
RuO2. (C) Histogram of overpotentials at 10 mA cm−2 and Tafel slopes of various catalysts. (D) HER polarization curves and (E) corresponding Tafel slopes of SS Pt-RuO2 
HNS, RuO2 HNSs, and commercial Pt/C. (F) Histogram of overpotentials at 10 mA cm−2 and Tafel slopes of various catalysts. (G) OER and HER polarization curves of SS Pt-
RuO2 HNS before (orange) and after (green) 1000 CV cycles. (H) Chronopotentiometry tests of SS Pt-RuO2 HNS for OER and HER in 0.5 M H2SO4 at 10 mA cm−2. RHE, reversible 
hydrogen electrode
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Tafel slope to that of commercial Pt/C, further confirming the ex­
cellent HER activity of SS Pt-RuO2 HNSs (Fig. 2, E and F). More­
over, the electrochemical active surface area of SS Pt-RuO2 HNSs 
was evaluated by the double-layer capacitance (Cdl) from CV curves 
in the non-Faradaic region. It is found that the SS Pt-RuO2 HNSs 
expose more active sites and therefore exhibit higher activity in 
comparison to RuO2 HNSs (fig. S15). Furthermore, Pt-RuO2 HNSs 
with different contents of Pt (e.g., 2 and 10%) were used as catalysts 
for OER and HER. It is noted that both 2% Pt-RuO2 HNSs and 10% 
Pt-RuO2 HNSs exhibit inferior activity and/or stability to SS Pt-
RuO2 HNSs (figs. S16 and S17). In addition, the slight decays in the 
OER and HER polarization curves after 1000 CV cycles imply the 
excellent electrocatalytic stability of SS Pt-RuO2 HNSs (Fig. 2G). 
Chronopotentiometry tests for HER and OER were carried out at a 
constant current density of 10 mA cm−2 in 0.5 M H2SO4 to further 
investigate the stability of SS Pt-RuO2 HNSs. For OER, the over­
potential of SS Pt-RuO2 HNSs remains stable for at least 100 hours, 
while the overpotential of commercial RuO2 increases sharply after 
only ~2 hours, indicating the superior stability of SS Pt-RuO2 HNSs 
to commercial RuO2 (Fig. 2H and fig. S18). To demonstrate the sig­
nificance of the interstitial C on the stability of SS Pt-RuO2 HNSs, 
the PtRuSe HNSs were directly treated in air at 300°C for 10 hours 
without loading on VC-X72 carbon powder. It is noted that the hol­
low structure of PtRuSe HNSs is completely collapsed (fig. S19A), as 
a result of poor stability for OER (fig. S19B). The above results sug­
gest the significance of interstitial C on the structural stability. In 
addition, we further investigated the influence of Se on both the 
structure and the stability for OER. In the absence of Se precursor 
(H2SeO3), only solid nanoparticles and amorphous carbon were ob­
served after calcination in air at 300°C for 10 hours (fig. S20), indi­
cating that Se plays a crucial role for the formation of SS Pt-RuO2 
HNSs. Besides, we further evaluated the effects of residual Se on the 
stability for OER through an electrochemical leaching process. As 
shown in fig. S21A, the atomic ratio of Se significantly decreases to 
0.3% after the electrochemical leaching process. No obvious change 
of potential within 100 hours was observed (fig. S21B) compared to 
the SS Pt-RuO2 HNSs without the electrochemical leaching process 
(Fig. 2H), indicating that the residual Se displays negligible effects 
on the durability test for OER. With respect to HER, the SS Pt-RuO2 
HNSs exhibits significantly improved stability in 100 hours com­
pared to the commercial Pt/C (fig. S22).

Inspired by the excellent activity and long-term stability, the SS 
Pt-RuO2 HNSs were simultaneously used as both cathode and 
anode catalysts in a two-electrode system for acidic overall water 
splitting (Fig. 3A). Notably, the SS Pt-RuO2 HNSs show promising 
activity for overall water splitting, and the cell voltages are as low as 
1.49, 1.59, and 1.65 V for achieving current densities of 10, 50, and 
100 mA cm−2, respectively (Fig.  3B). By contrast, the benchmark 
catalysts of commercial Pt/C for cathode and commercial RuO2 for 
anode require a much larger cell voltage of 1.56, 1.67, and 1.77 V for 
reaching the same current densities. Moreover, the chronopotentio­
metry tests of SS Pt-RuO2 HNSs||SS Pt-RuO2 HNSs and commercial 
RuO2||commercial Pt/C were performed in 0.5 M H2SO4 to evalu­
ate their stability (Fig. 3C). The required cell voltage for commercial 
RuO2||commercial Pt/C at 10 mA cm−2 significantly increases after 
a short period, indicating a sharp decrease of activity. In contrast, SS 
Pt-RuO2 HNSs||SS Pt-RuO2 HNSs shows excellent stability with a 
small cell voltage increase within 100 hours (table S3). Note that SS 
Pt-RuO2 HNSs||SS Pt-RuO2 HNSs exhibit superior stability to the 

reported catalysts for overall water splitting in acidic media (Fig. 3D). 
Furthermore, the morphology and structure of SS Pt-RuO2 HNSs 
are largely maintained after water splitting for 100-hour continuous 
operation (figs. S23 and S24). In sharp contrast, severe Pt agglomer­
ation was observed for commercial Pt/C (note that commercial 
RuO2/C generally suffers from poor stability for OER because of Ru 
dissolution in acidic conditions; fig. S25). In addition, we used SS 
Pt-RuO2 HNSs as both cathode and anode catalysts in PEM electro­
lyzer in pure water to mimic the industrial water splitting operating 
systems. As shown in Fig. 3E, the chronopotentiometry tests of SS 
Pt-RuO2 HNSs||SS Pt-RuO2 HNSs show high stability without sig­
nificant cell voltage increase over 100 hours at the current density of 
100 mA cm−2, indicating the great potential of SS Pt-RuO2 HNSs for 
practical applications (Fig. 3F). In sharp contrast, commercial IrO2||com­
mercial Pt/C displays obviously inferior stability even in 4 hours at 
the same conditions (fig. S26).

Mechanism studies
In view of the excellent acidic water splitting activity, the electronic 
structure of SS Pt-RuO2 HNSs was investigated by x-ray absorption 
spectroscopy measurement. The x-ray absorption near-edge struc­
ture (XANES) spectra at Pt L3-edge indicate that Pt species are pre­
sented as oxidation state in the SS Pt-RuO2 HNSs (Fig.  4A). The 
Fourier transforms of Pt L3-edge extended x-ray absorption fine 
structure (EXAFS) spectra reveal that the Pt-O interatomic distance 
of SS Pt-RuO2 HNSs is ~1.68 Å, which is larger than that of PtO2 
(Fig.  4B) (35). The absence of Pt-Pt coordination in the EXAFS 
spectrum of SS Pt-RuO2 HNSs implies that Pt atoms present as iso­
lated state. On the basis of the EXAFS spectra of Se mesh and SeO2, 
we can conclude that Se species present as oxidation state in SS Pt-
RuO2 HNSs (Fig. 4C). For Ru, the K-edge XANES spectrum of SS 
Pt-RuO2 HNSs displays similar features to those of RuO2, indicat­
ing that Ru species in SS Pt-RuO2 HNSs are in oxidation state. The 
intensity of the while line for the K-edge XANES spectrum of SS Pt-
RuO2 HNSs is slightly higher than that of RuO2, suggesting the ex­
istence of electron transfer between Pt and RuO2 (Fig. 4D), which is 
further validated by x-ray photoelectron spectroscopy (XPS) mea­
surement (fig. S27). Compared to RuO2, the interatomic distance of 
Ru-O bond in SS Pt-RuO2 HNSs is expanded, which might be at­
tributed to the formation of C-O bonds with the assistance of inter­
stitial C (Fig. 4E) (36). Compared to commercial RuO2/C, the 
strengthened intensity for C-O and positive shift of the binding en­
ergy in the C 1s XPS spectrum of SS Pt-RuO2 HNSs suggest a much 
stronger interaction (fig. S27D). Moreover, the intensity of Ru-O 
bonds of SS Pt-RuO2 HNSs is slightly weaker than that of RuO2, 
indicating that the coordination environment of Ru is unsaturated, 
which may be attributed to the formation of oxygen vacancies (OV) 
after Se evaporation (37–39). The formation of OV in SS Pt-RuO2 
HNSs is further confirmed by O 1s XPS result (fig. S27E). To further 
study the local structure of O in SS Pt-RuO2 HNSs, the O K-edge 
XANES spectra were collected. As shown in Fig. 4F, two sharp char­
acteristic peaks at 528.7 and 531.9 eV, which are caused by the influ­
ence of crystal field, are assigned to the excitation of O 1s core 
electrons into hybridized states between O 2p and Ru 4d t2g and eg 
states (40), while the broad peak at 542.2 eV is attributed to the hy­
bridization of the O 2p orbital with Ru 5sp states (41). The wavelet 
transform analysis further confirms results from EXAFS measure­
ment (Fig. 4, G and H, and fig. S28). On the basis of the above re­
sults, the crystal structure of SS Pt-RuO2 HNSs are provided, in 
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which Ru and O atoms are alternatively arrayed to form octahedral 
structure with Ru at the center and O at the vertex, while partial Ru 
atoms are replaced by Pt or Se atoms (Fig. 4I). In addition, C atoms 
insert into the gap to form interstitial atoms, and the existing interstitial 
C elongates the Ru-O and Pt-O bonds. Consequently, the strong 
interactions between SS Pt and RuO2 significantly vary the electronic 
properties of catalysts and then improve the catalytic performance.

DFT calculations were performed to deepen the insight of en­
hanced OER performance on SS Pt-RuO2 HNSs. Because of strong­
ly oxidative conditions and corrosive electrolytes during operation, 
the catalyst stability in acidic electrolytes thus plays an important 
role in electrocatalysis (42). Theoretically, the dissociation energy 
for lattice O directly coordinated to the Ru core is a critical factor 
for the modeled RuO2 system in determining the catalyst stability 

under acidic conditions (43). As shown in Fig. 5A, the dissociation 
energy of *O (i.e., GO) on SS Pt-RuO2 HNSs is 1.22 eV higher than 
that on pure RuO2, indicating the lattice O atom in SS Pt-RuO2 
HNSs is much more difficult to dissociate in the electrolyte solution. 
This will be effectively beneficial to enhance the stability of RuO2 
during electrocatalysis. Moreover, the superior reaction activity for 
SS Pt-RuO2 HNSs to that of pure RuO2 can be understood by using 
the energy change of potential determining step (PDS), that is, the 
formation of *OOH during OER reaction (44). As shown in Fig. 5B, 
the calculated G for PDS on RuO2 and SS Pt-RuO2 HNSs are 2.02 
and 1.738 eV, respectively, indicating that the doping of isolated Pt 
atoms can reduce energy barriers for OER, being consistent with 
the experimental observations. To deeply understand the origin of 
the enhanced OER activity for Pt-RuO2, the Bader charge analysis 

Fig. 3. Catalytic performance of overall water splitting. (A) Scheme of the two-electrode cell electrolyzer using SS Pt-RuO2 HNSs as both the anode and cathode cata-
lyst. (B) Polarization curves of SS Pt-RuO2 HNSs||SS Pt-RuO2 HNSs and commercial RuO2||Pt/C in 0.5 M H2SO4 for water splitting. (C) Chronopotentiometry tests of SS Pt-
RuO2 HNSs||SS Pt-RuO2 HNSs and commercial RuO2||Pt/C at 10 mA cm−2. (D) Comparison of the voltage and stability between SS Pt-RuO2 HNSs and other reported 
catalysts for water splitting in acidic media. (E) Schematic diagram of the PEM electrolyzer. (F) Chronopotentiometry tests of SS Pt-RuO2 HNSs||SS Pt-RuO2 HNSs at 
100 mA cm−2 in the PEM electrolyzer.
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for pure RuO2 and RuO2 decorated with Pt single atom (Pt-RuO2) 
were performed. We defined the SD () of the charge numbers of O 
atoms as the descriptor to quantify the asymmetry degree. We 
found that the  value in Pt-RuO2 increases to 0.20 after loading Pt 
single atom, which is much larger than that of pure RuO2 (0.16), 
indicating that the charge redistribution and charge density difference 
are attributed to the introduction of Pt single atom (Fig. 5C and fig. 
S29A). Moreover, the different electronic distribution will further affect 
the density of states (DOS). Hence, the Projected density of states 
(PDOS) for surface-active Ru atoms in pure RuO2 and Pt-RuO2 were 
calculated. As shown in Fig. 5D and fig. S29B, the 4d orbitals of active 
Ru atoms in Pt-RuO2 are much closer to Fermi level than pure RuO2, 
leading to the improved OER activity. On the basis of experimental 
and computational analysis, a possible acidic OER mechanism is 
proposed in Fig. 5E. At the beginning, water molecules will be readily 

adsorbed on the surface of SS Pt-RuO2 HNSs. Hydrogen will be 
removed, and the electrons will be simultaneously generated to form 
M-O* species. With the participation of water molecules, M-O* will 
further evolve into M-OOH* and then to form O2 after electron 
generation and dehydrogenation.

DISCUSSION
In summary, an ultrastable acidic water splitting electrocatalyst has 
been successfully created by doping SS Pt into RuO2. The SS Pt-
RuO2 HNSs not only exhibit excellent OER and HER activity and 
stability but also show promising acidic water splitting performance 
in 0.5 M H2SO4. The required cell voltages of SS Pt-RuO2 HNSs are 
1.49, 1.59, and 1.65 V for reaching current densities of 10, 50, and 
100 mA cm−2, respectively, and their catalytic performance have 

Fig. 4. Structural analysis of the catalysts. (A) Pt L3-edge XANES and (B) Pt L3-edge EXAFS spectra of SS Pt-RuO2 HNSs, PtO2, and Pt foil. (C) Se K-edge XANES spectra of 
SS Pt-RuO2 HNSs, SeO2, and Se mesh. (D) Ru K-edge XANES and (E) Ru K-edge EXAFS spectra of SS Pt-RuO2 HNSs, commercial RuO2, and Ru foil. (F) O K-edge XANES spec-
tra of SS Pt-RuO2 HNSs and commercial RuO2. Wavelet transform of Ru K-edge EXAFS data of (G) SS Pt-RuO2 HNSs and (H) commercial RuO2. (I) Structural illustration of SS 
Pt-RuO2 HNSs.
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surpassed most reported catalysts. The SS Pt-RuO2 HNSs exhibit excel­
lent stability in 100 hours of continuous operation at 10 mA cm−2 
and 100 hours in PEM electrolyzer at the current density of 100 mA cm−2. 
Detailed experiments reveal that the presence of interstitial C can 
elongate the Ru-O and Pt-O bonds, and the introduced SS Pt sig­
nificantly influences the electronic interaction of RuO2. Theoretical 
calculations indicate that the strong synergy readily improves the 
OER activity by reducing the energy barriers and enhancing the dis­
sociation energy of *O species. This work not only may provide a 
facile strategy for the modification of RuO2 by doping SS Pt but also 
sheds new light on the practical application of overall water splitting.

MATERIALS AND METHODS
Chemicals
Hexaammineruthenium (III) chloride (Cl3H18N6Ru, Ru 32.1%) was 
purchased from Alfa Aesar. Tetraammineplatinum (II) nitrate 
(H12N6O6Pt, Pt 50%) was purchased from Beijing Hwrk Chemical 

Co. Ltd. Selenious acid (H2SeO3, 98%) was purchased from Sigma-
Aldrich. Hydrazine hydrate aqueous solution (N2H4·H2O, AR) and 
isopropanol (IPA; AR) were purchased from Sinopharm Chemical Reagent 
Co. Ltd. Poly(vinylpyrrolidone) (PVP; average molecular weight 58,000, 
K15-19) was purchased from J&K Scientific Ltd.

Preparation of PtRuSe HNSs
For the preparation of PtRuSe HNSs, 7.7 mg of Cl3H18N6Ru, 6.5 mg of 
H2SeO3, 0.5 mg of H12N6O6Pt, and 50.0 mg of PVP were added into 
a mixture solution containing 10.0 ml of H2O and 0.12 ml of N2H4 
with ultrasonic treatment for 20 min. Then, the mixture solution 
was transferred into Teflon-sealed autoclave and heated at 180°C 
for 12 hours. Subsequently, the mixed solution was centrifuged and 
washed with ethanol/acetone.

Preparation of SS Pt-RuO2 HNSs
The PtRuSe HNSs were added into a suspension consisting of car­
bon powders (VC-X72) and ethanol, and then, the above suspension 

Fig. 5. DFT calculations. (A) The calculated dissociation energy of *O in RuO2 and Pt-RuO2, respectively. (B) The free energy profiles of OER process on RuO2 and SS Pt-
RuO2 HNSs under the applied overpotential of 0 and 1.23 V (RHE), respectively. (C) The Bader charge numbers of atoms in Pt-RuO2. Note that the negative value is referred 
to lose electrons, while the positive value mains to obtain electrons. (D) The PDOS of 4d orbitals of surface Ru atoms in Pt-RuO2. (E) Schematic illustration of the mecha-
nism for acidic OER on SS Pt-RuO2 HNSs.
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was sonicated for 30 min. Subsequently, the carbon-supported 
PtRuSe HNSs were centrifuged and dried at 60°C in a vacuum oven. 
Last, the carbon-supported PtRuSe HNSs were placed in a tube fur­
nace and annealed at 300°C in air for 10 hours to obtain SS Pt-RuO2 
HNSs. Other PtRuSe HNSs synthesized by controlling the amount 
of H12N6O6Pt were selected for the preparation of pure RuO2 HNSs, 
2% Pt-RuO2 HNSs, and 10% Pt-RuO2 HNSs, respectively.

Characterizations
A Hitachi HT7700 TEM with an accelerating voltage of 120 kV was 
used to conduct low-magnification TEM analysis. The atomic struc­
tures of the SS Pt-RuO2 HNSs images were taken on JEM-ARM200F 
with a cold-field emission gun and a spherical aberration corrector. 
HAADF-STEMs were conducted on a FEI Tecnai F20 TEM with 
an acceleration voltage of 200 kV. XRD analysis was carried out on 
X'Pert-Pro MPD diffractometer (PANalytical, Netherlands) with 
Cu K radiation. Raman spectra were carried out on a Raman spec­
trometer (LabRam HR 800) using 633-nm laser.

Electrochemical measurements
All the electrochemical tests were carried out on CHI660 workstation 
(CHI Instruments Inc., Shanghai) in 0.5 M H2SO4. HER and OER 
measurements were conducted with a standard three-electrode sys­
tem. The overall water splitting measurements were carried out with a 
two-electrode setup. The ink was prepared by dispersing the cata­
lyst to be tested homogeneously into the solution including 195 l 
of IPA and 5 l of Nafion (5%), followed by sonication for 30 min. 
The work electrode was prepared by dropping the ink (loading amount 
about 60 gRu) onto the surface of the glassy carbon electrode (di­
ameter, 5 mm). Graphite rod and saturated calomel electrode are 
used as counter and reference electrode, respectively. All polariza­
tion curves are the average of the stable polarization curves scanned 
in three experiments with 95% iR compensation.

DFT calculations
The quantum mechanics calculations were carried out using the 
VASP software at the version of 5.4.4, with the Perdew, Burke, and 
Ernzerhof flavor of DFT (45). The projector augmented wave meth­
od was used to account for core-valence interactions (46–48). The 
kinetic energy cutoff for plane wave expansions was set to 400 eV, 
and reciprocal space was sampled by the gamma-centered k-mesh 
with a grid of 3 × 3 × 1. The vacuum layer is at least 15 Å in the 
z direction to minimize possible interactions between the replicated 
cells. The convergence criteria are 1 × 10−5 eV energy differences for 
solving the electronic wave function. The Methfessel-Paxton smear­
ing of second order with a width of 0.1 eV was applied. All geome­
tries (atomic coordinates) were converged to within 1 × 10−2 eV Å−1 
for maximal components of forces. A post-stage Van der Waals 
DFT-D3 method with Becke-Johnson damping was applied (49).

Our simulation model was taken from the experimental RuO2 
structure with lattice parameters of a = b = 4.54 Å, c = 3.13 Å, 
respectively. For pure RuO2, A 3 × 3 × 4 RuO2 (110) surface slab 
model was constructed, with the bottom two layers fixed and 
the top two layers relaxed. Note that the (110) surface has two 
kinds of Ru site; one site is saturated with six oxygen atoms, and 
another site was cooperated with five oxygen atoms, which is the 
active site. For SS Pt-RuO2 HNSs, one surface Ru atom near the 
active site was replaced by Pt to mimic the experimental observed 
structure.

Adsorption behavior of *O, *OH, and *OOH intermediates for 
each catalyst and each model was optimized to convergence. The 
G for each OER step was calculated through the model of compu­
tational hydrogen electrode along with the equation as follows

	​ G  =   ​E​ DFT​​ + ZPE − TS​	

where EDFT, ZPE, S, and T are the changes in DFT total energy, 
zero-point energy, entropy from the initial state to the final state, 
and temperature, respectively. ZPE and S can be obtained by the 
NIST-JANAF thermodynamics table for gaseous molecules and by 
calculating the vibrational frequencies for the reactive intermediates, 
respectively (50). The entropy of the chemisorbed intermediates 
only takes the vibrational entropy into account. The formula for 
calculating the dissociation energy of *O (GO) is given as follows

	​  ​G​ O​​  = ​ G​ sur​​ + (​G​ H2O​​ – ​G​ H2​​ ) –G(​*​ O​​)​	

where Gsur, G(*O) GH2O, and GH2 represent the surface energy with­
out absorbate, the energy that adsorbs the structure of *O interme­
diate, the energy for water molecules, and the energy for hydrogen 
molecules, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl9271
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