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G E N E T I C S

Likelihood-based Mendelian randomization analysis 
with automated instrument selection and horizontal 
pleiotropic modeling
Zhongshang Yuan1,2, Lu Liu1,2, Ping Guo1,2, Ran Yan1,2, Fuzhong Xue1,2, Xiang Zhou3,4*

Mendelian randomization (MR) is a common tool for identifying causal risk factors underlying diseases. Here, we 
present a method, MR with automated instrument determination (MRAID), for effective MR analysis. MRAID borrows 
ideas from fine-mapping analysis to model an initial set of candidate single-nucleotide polymorphisms that are in 
potentially high linkage disequilibrium with each other and automatically selects among them the suitable instru-
ments for causal inference. MRAID also explicitly models both uncorrelated and correlated horizontal pleiotropic 
effects that are widespread for complex trait analysis. MRAID achieves both tasks through a joint likelihood frame-
work and relies on a scalable sampling–based algorithm to compute calibrated P values. Comprehensive and realistic 
simulations show that MRAID can provide calibrated type I error control and reduce false positives while being 
more powerful than existing approaches. We illustrate the benefits of MRAID for an MR screening analysis across 
645 trait pairs in U.K. Biobank, identifying multiple lifestyle causal risk factors of cardiovascular disease–related traits.

INTRODUCTION
Investigating causal relationship among complex traits and identify-
ing causal risk factors are an important first step toward under-
standing the biology of diseases. A common statistical tool for 
performing this causal inference in observational studies is Mendelian 
randomization (MR). MR is a form of instrumental variable analysis 
that uses single-nucleotide polymorphisms (SNPs) to serve as instru-
ments for inferring the causal effect of an exposure on an outcome 
(1). MR requires only summary statistics from genome-wide associa-
tion studies (GWASs) and is often performed in a two-sample study 
setting where the exposure and the outcome are measured in two 
separate studies (2). With the abundant availability of GWAS sum-
mary statistics, numerous MR analyses are being carried out, iden-
tifying important causal risk factors for various diseases. These MR 
studies are facilitated by many recently developed MR methods, 
which include the inverse variance weighted (IVW) method, 
MR-Egger (3), median-based regression (4), Bayesian weighted MR 
(BWMR) (5), robust adjusted profile score (RAPS) (6), MRMix (7), 
and Causal Analysis Using Summary Effect estimates (CAUSE) (8), 
to name a few. However, most of the current MR methods encounter 
two important modeling and algorithmic challenges that have so far 
limited the effectiveness of MR analysis.

First, almost all existing MR methods rely on a preselected set of 
independent SNPs to serve as instruments for MR analysis. The in-
struments are selected to be independent from each other to ensure 
the validity of the statistical inference framework used in many 
common MR methods such as IVW. The independent SNPs are often 
selected through linkage disequilibrium (LD) clumping, a procedure 
that first ranks SNPs on the basis of their marginal association evi-
dence with the exposure and then retains SNPs that are not in high 

LD with the SNPs on top of the ranking list. Using LD clumping to 
select SNPs may be suboptimal, however, as the selected SNPs only rep-
resent tagging SNPs that often explain a smaller phenotypic variance 
than the causal ones and only contain independent SNPs that may 
be unable to capture additional variance explained from the other 
regional variants (9–12). The parallel field of GWAS fine mapping 
highlights the benefits of performing SNP selection through formal 
modeling–based approaches (9, 10, 13–16). Consequently, using a 
formal SNP selection procedure for identifying instruments instead 
of directly using the tagging SNPs may help increase the power of MR 
analysis. In addition, complex traits can be influenced by multiple 
causal SNPs residing in the same local region that are in potential 
LD with each other. Consequently, selecting independent SNPs may 
only capture a small proportion of the phenotypic variance in the 
exposure variable (17, 18), again leading to a loss of power in the sub-
sequent MR analysis (1, 2, 19, 20). In the parallel field of transcriptome- 
wide association studies (TWASs), it has been well documented that 
incorporating correlated SNPs can substantially improve gene ex-
pression prediction accuracy (21) and, consequently, the power of 
TWASs (17, 22–24). Therefore, incorporating correlated SNPs and 
developing effective approaches to select instruments among them 
are important to fully captivate the potential of MR.

Second, only a limited number of MR methods model horizontal 
pleiotropy, and even fewer can effectively control for it (17, 25). 
Horizontal pleiotropy occurs when the SNP instruments exhibit 
effects on the outcome through pathways other than the exposure. 
Horizontal pleiotropy often comes in two distinct types: The first type 
arises through paths independent of the exposure with horizontal 
pleiotropic effects independent of the SNP effects on the exposure; 
the second type arises through unobserved exposure-outcome con-
founders and induces correlation between the horizontal pleotropic 
effects and the SNP effects on the exposure. For example, insulin 
resistance (IR) occurs when excess glucose in the blood reduces the 
ability of the cells to absorb and use blood sugar for energy. IR is an 
important cause of type II diabetes (T2D) (26) and also has pro-
found effects on lipoproteins, such as low-density lipoprotein (LDL) 
(27). When investigating the causal effect of LDL on T2D, the selected 
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candidate instrumental SNPs may include IR-associated SNPs. These 
IR-associated SNPs are likely to be associated with both LDL and 
T2D, leading to correlated pleiotropy in the MR analysis. The pres-
ence of either type of horizontal pleiotropy violates standard MR 
modeling assumptions and can lead to biased causal effect estimates 
and increased false discoveries. Early MR analyses control for hori-
zontal pleiotropy by simply removing instrumental SNPs that are 
potentially associated with the outcome variable (25, 28–30). Re-
moving SNPs associated with the outcome would result in a conser-
vative set of selected instruments and lead to a loss of MR power. 
Recent MR methods explicitly model horizontal pleiotropic effects. 
For example, the Egger assumption assumes the same horizontal 
pleiotropic effect across SNP instruments (3, 17), while Probabilistic 
Mendelian randomization with Variance Component (PMR-VC) (17) 
and BWMR (5) assume the horizontal pleiotropic effects to follow a 
normal distribution; all these methods model the first type of horizontal 
pleiotropy. MRMix (7) and CAUSE (8), by contrast, use a normal- 
mixture model to control for both types of horizontal pleiotropy. 
Unfortunately, modeling both types of horizontal pleiotropy has been 
technically challenging, as the resulting likelihood function of the MR 
model often consists of an integration that cannot be solved analytically. 
Consequently, both MRMix and CAUSE rely on non-likelihood–based 
approaches to perform inference. Specifically, MRMix searches on 
a grid of causal effect candidates to identify the one that maximizes 
the proportion of GWAS summary statistics residing in the expected 
submodel without horizontal pleiotropy. CAUSE contrasts the out-
of-sample prediction accuracy between two different models, one 
with the causal effect and the other without, by computing the ex-
pected log pointwise posterior density between the two, for causal 

inference. Non-likelihood–based causal inference, however, can lead 
to a loss of power and/or uncalibrated test statistics that are essen-
tial for large-scale screening of causal risk factors underlying diseases. 
As we will show here, MRMix is not robust to modeling misspecifi-
cations on the instrumental effect sizes and is prone to estimation 
bias, while CAUSE yields overly conservative P values.

Here, we present a likelihood-based two-sample MR method for 
causal inference that overcomes the above two challenges. Specifi-
cally, our method models an initial set of candidate SNP instruments 
that are in high LD with each other and automatically selects among 
them the suitable instruments for MR analysis. In addition, our 
method accounts for both types of horizontal pleiotropy in a likeli-
hood framework and relies on a scalable sampling–based algorithm 
for calibrated P values computation. We refer to our method as the 
two-sample MR with automated instrument determination (MRAID). 
We demonstrate the effectiveness of MRAID through comprehen-
sive and realistic simulations. We also apply MRAID for an MR 
screening analysis across 645 trait pairs in the U.K. Biobank (31), 
identifying lifestyle risk factors that may causally influence cardio-
vascular disease–related traits.

RESULTS
Method overview and simple illustrative simulations
MRAID is described in Materials and Methods, with its technical 
details provided in Supplementary Text and a method schematic 
shown in Fig. 1. Briefly, MRAID is a two-sample MR method that 
aims to infer the causal effect of an exposure variable on an outcome 
variable using GWAS summary statistics. MRAID models jointly all 
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Fig. 1. Schematic of MRAID. MRAID is an MR method that infers the causal effect of an exposure on an outcome in the presence of unmeasured confounder by using 
SNPs as instrumental variables. MRAID first obtains an initial set of candidate SNP instruments that are marginally associated with the exposure (SNP1, …, SNPp) and that 
are in potential LD with each other (LD plot on left). MRAID imposes a sparsity assumption on the instrumental effects of the candidate SNPs to divide instruments with 
nonzero effects (SNP set 1) and zero effects (SNP set 2) on the exposure. Among the selected instruments (SNP set 1), MRAID assumes that a proportion of them display 
horizontal pleiotropic effects that are uncorrelated with instrumental effects (blue path) and that another proportion of them display horizontal pleiotropic effects that 
are correlated with instrumental effects (orange path). Among the nonselected instrument candidates (SNP set 2), MRAID also assumes that a proportion of them display 
horizontal pleiotropic effects that are uncorrelated with instrumental effects (blue path). Overall, MRAID models jointly all genome-wide significant SNPs that are in po-
tential LD with each other and performs automated instrument selection among them to identify suitable instruments. MRAID explicitly accounts for both correlated and 
uncorrelated horizontal pleiotropy and relies on a likelihood framework for effective and scalable inference.
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genome-wide significant SNPs that are in potential LD with each 
other and performs automated instrument selection among them to 
identify suitable instruments for MR analysis. In addition, MRAID 
explicitly accounts for two types of horizontal pleiotropic effects 
through a maximum likelihood–based inference framework and is 
scalable to biobank datasets (Table 1). We carried out both simple 
and comprehensive simulations with a total of 46 null and 80 alter-
native scenarios (table S1).

We first performed simple simulations to help build intuition 
and illustrate the benefits of modeling multiple correlated SNPs 
(details in Materials and Methods). Here, we only compared MRAID 
with the Wald ratio estimator, which is the MR method that uses 
only the top exposure-associated SNP as instrument (details in 
Materials and Methods). Consistent with the fine-mapping literature 
(9, 10, 13, 32), we found that the top variant is the casual SNP in 
only 53.6% of the simulation replicates. Because the top variant is 
not necessary the causal one, the Wald ratio estimator produces 
slightly deflated P values as documented in previous studies (fig. S1) 
(33). In contrast, MRAID produces calibrated type I error control 
due to its ability to perform automated instrumental selection (fig. S1). 
Because the same P value from different methods may correspond 
to different type I errors, we computed power on the basis of a false 
discovery rate (FDR) of 0.05 instead of a nominal P value threshold 
to allow for fair comparison among methods. In the power compar-
ison, we found that MRAID is more powerful than the Wald ratio 
estimator regardless of the number of causal SNPs, the LD structure 
among different SNPs, and the presence or absence of the causal 
SNPs (fig. S2). Similar results are observed when comparing MRAID 
that uses the top two SNPs obtained from a stepwise regression with 
MRAID that uses only the lead SNP (fig. S3). These results highlight 
the benefits of modeling correlated SNPs and performing SNP se-
lection for MR analysis.

Simulations: Type I error control
We performed comprehensive and realistic simulations to evaluate 
the performance of MRAID and compare it with seven existing MR 
methods (details in Materials and Methods). Different from the 
above simple illustrative simulations, we incorporated multiple 
complications that would occur in real data analysis into the com-
prehensive simulations. These complications include the presence 
of multiple variants and the presence of horizontal pleiotropy along 
with two distinct types of horizontal pleiotropy. In the comprehen-
sive simulations, we also examined the benefits of instrumental se-
lection in MRAID by comparing it to an oracle version where we 

assumed that the true instruments are known. These multiple com-
plications introduced in the comprehensive simulations are import-
ant for consideration for real data MR analysis.

We first examined type I error control of different methods in 
different scenarios. In the absence of both correlated and uncor-
related horizontal pleiotropic effects, most methods—including 
MRAID, random effect version of the inverse variance-weighted 
method (IVW-R), Robust, RAPS, Weighted median, and MRMix—
all yield reasonably calibrated type I error control (Fig. 2A). Weighted 
mode and CAUSE, on the other hand, display overly conservative 
type I error control, which is consistent with the original studies 
(7, 8, 34). The null P value distributions from different methods re-
main largely similar regardless of the number of SNPs that affect the 
exposure (fig. S4A) and their total effects on the exposure (fig. S4B). 
We further examined the robustness of different methods in settings 
where the SNP effects on the exposure do not follow a simple nor-
mal distribution but with some SNPs displaying larger effects than 
the others. In these settings, MRAID, IVW-R, and RAPS remain 
calibrated, while both MRMix and Robust methods show inflated 
type I errors, presumably due to their restricted normality assump-
tions on the SNP effect sizes (Fig. 2B). Note that we directly used 
correlated SNPs for MRAID but performed clumping to select 
independent SNPs for the other methods. Without clumping, all 
other MR methods produce overly inflated type I errors (fig. S5).

We examined the effects of horizontal pleiotropy on type I error 
control for different methods. When horizontal pleiotropic effects are 
present but are uncorrelated with the instrumental effects, MRAID 
maintains type I error control (Fig. 2C). In contrast, both Weighted 
mode and CAUSE remain overly conservative, while MRMix, 
Robust, IVW-R, Weighted median, and RAPS yield inflated P values 
(Fig. 2C). Similar conclusion holds regardless of the effect size for 
the uncorrelated horizontal pleiotropy or the proportion of SNPs 
that display uncorrelated pleiotropic effects (fig. S6). The P value 
inflation problem of MRMix and Weighted median relieves when 
the proportion of SNPs that display uncorrelated horizontal pleio-
tropic effects decreases. When correlated horizontal pleiotropic 
effects are also present in addition to the uncorrelated horizontal 
pleiotropic effects, MRAID maintains effective type I error control 
(Fig. 2D). In contrast, both Weighted mode and CAUSE remain 
overly conservative, while MRMix, Robust, IVW-R, Weighted me-
dian, and RAPS produce inflated P values. Similar conclusion holds 
regardless of the effect size of the correlated horizontal pleiotropy 
(fig. S7, A versus C), the proportion of SNPs that display uncor-
related horizontal pleiotropic effects (fig. S7, A versus B), the 

Table 1. Mean computational time (in min) of various two-sample MR methods. Computation is carried out on a single thread of a Xeon Gold 6138 
CPU. The computation time is averaged across 20 replicates, with values inside parentheses denoting the SD. #SNPs denotes the number of instrumental 
variables included in the model. The computational time for MRAID is based on 1000 Gibbs sampling iterations with the first 200 as burn-in. 

#SNPs MRAID CAUSE MRMix IVW-R Weighted 
mode

Weighted 
median RAPS Robust

1000 0.31(0.07) 2.63(1.90) 0.12(0.03) 0.0001(0.00001) 0.17(0.04) 0.011(0.003) 0.0004(0.0003) 0.0004(0.0001)

2000 1.57(0.26) 2.99(2.24) 0.13(0.03) 0.0001(0.00001) 0.18(0.03) 0.012(0.002) 0.0004(0.0006) 0.0004(0.0001)

3000 3.91(0.75) 3.66(2.36) 0.14(0.02) 0.0001(0.00002) 0.18(0.03) 0.012(0.003) 0.0004(0.0003) 0.0004(0.0001)

4000 6.82(1.35) 4.24(1.62) 0.15(0.04) 0.0001(0.00003) 0.18(0.04) 0.013(0.003) 0.0004(0.0001) 0.0004(0.0002)

5000 10.80(2.69) 4.92(2.29) 0.18(0.05) 0.0001(0.00004) 0.18(0.04) 0.013(0.002) 0.0004(0.0001) 0.0005(0.0003)
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proportion of SNPs that display correlated horizontal pleiotropic 
effects (fig. S7, A versus D), or how the correlated horizontal pleio-
tropic effects are created (fig. S8).

Simulations: Power comparison
We examined the power of different MR methods to detect nonzero 
causal effect. Because the same P value from different methods may 
correspond to different type I errors, we again computed power on 
the basis of an FDR of 0.05 instead of a nominal P value threshold to 
allow for fair comparison among methods. In the absence of both 
uncorrelated and correlated horizontal pleiotropic effects, MRAID, 
IVW-R, and RAPS all have high power across different scenarios. 
Among these three methods, MRAID is slightly more powerful than 

the other two when the instrumental effects are small or when the 
causal effect is small (Fig. 3, A and B), presumably due to the auto-
mated instrument selection procedure used in MRAID. MRAID is 
slightly less powerful than the other two when the instrumental 
effects are large and the causal effect is large (fig. S9), as the simple 
instrumental selection approaches used in the other methods can be 
effective in these lesser challenging settings. The performance of 
these three methods is generally followed by Robust, while Weighted 
mode, MRMix, and, to a lesser extent, CAUSE have low power.

We examined the influence of horizontal pleiotropy on the power 
of different methods. When horizontal pleiotropic effects are present 
but are uncorrelated with the instrumental effects, MRAID is more 
powerful than the other MR methods (Fig. 3C). The power gain 
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Fig. 2. Type I error control of different MR methods in simulations. Type I error is evaluated by quantile-quantile plots of −log10 P values from different MR methods 
on testing the causal effect under the null simulations. Compared methods include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), RAPS (deep pink), Robust 
(deep sky blue), Weighted median (light salmon), and Weighted mode (green). Four null simulation scenarios are examined. (A) Null simulations in the absence of both 
correlated and uncorrelated horizontal pleiotropic effects. We simulated 100 instrumental SNPs with their effect sizes drawing from a normal distribution. (B) Null simu-
lations in the absence of both correlated and uncorrelated horizontal pleiotropic effects. We simulated 1000 instrumental SNPs with their effect sizes drawing from a 
Bayesian sparse linear mixed model (BSLMM) distribution with 1% SNPs having large effects and 99% SNPs having small effects. (C) Null simulations in the absence of 
correlated horizontal pleiotropic effect but in the presence of uncorrelated horizontal pleiotropic effect (PVEu = 5%). We simulated 100 instrumental SNPs and set the 
proportion of instrumental SNPs having uncorrelated horizontal pleiotropy to be 20%. (D) Null simulations in the presence of both correlated (c = 5%,   =  √ 

_
 0.05   ) and 

uncorrelated horizontal pleiotropic effects (PVEu = 5%). We simulated 100 instrumental SNPs and set the proportion of instrumental SNPs having the uncorrelated hori-
zontal pleiotropy effect to be 20%.
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brought by MRAID becomes more apparent with increasing 
horizontal pleiotropy, which is characterized by increased horizontal 
pleiotropic effect sizes and/or increased proportion of SNPs that 
display horizontal pleiotropic effects (fig. S10). The performance of 
MRAID is often followed by RAPS, Robust, CAUSE, IVW-R, and 
Weighted median, while MRMix and Weighted mode generally 
have low power (fig. S10). Among these methods, the performance 
of IVW-R is particularly sensitive to the horizontal pleiotropic effect 
sizes or the proportion of SNPs that display horizontal pleiotropic 
effects. When correlated horizontal pleiotropic effects are also pres-
ent in addition to the uncorrelated horizontal pleiotropic effects, 
the power of MRAID remains higher than the other methods. The 
higher power of MRAID maintains regardless of the correlated hor-
izontal pleiotropic effect sizes, the proportion of instrumental SNPs 

that display correlated horizontal pleiotropic effects (Fig. 3D and 
fig. S10D-F), or how the correlated horizontal pleiotropic effects are 
created (fig. S11). The power gain brought by MRAID is particularly 
apparent with increased proportion of instrumental SNPs that dis-
play uncorrelated horizontal pleiotropic effects (Fig. 3D versus 
fig. S10F and fig. S10, E versus D). The power of MRAID is close to 
an oracle MR approach that uses the actual set of instrumental SNPs 
for MR inference, especially when the casual effect size is large, sup-
porting the effectiveness of the automatic instrument selection pro-
cedure in MRAID (fig. S12).

Next, we examined the ability of different MR methods in distin-
guishing the causal effect direction through reverse causality analysis. 
In particular, we tested the causal effect of the outcome on the expo-
sure in the alternative simulations where the exposure had casual 
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Fig. 3. Power of different MR methods in simulations. Power (y axis) at an FDR of 0.05 to detect the causal effect is plotted against different causal effect size characterized 
by PVE (x axis). Compared methods include CAUSE (blue), IVW-R (gold), MRAID (purple), MRMix (black), RAPS (deep pink), Robust (deep sky blue), Weighted median (light 
salmon), and Weighted mode (green). Four alternative simulation scenarios are examined. (A) Simulations in the absence of both correlated and uncorrelated horizontal 
pleiotropic effects. We simulated 100 instrumental SNPs with their effects size drawing from a normal distribution. (B) Simulations in the absence of both correlated and 
uncorrelated horizontal pleiotropic effects. We simulated 1000 instrumental SNPs with their effects size drawing from a BSLMM distribution with 1% SNPs having large 
effects and 99% SNPs having small effects. (C) Simulations in the absence of correlated horizontal pleiotropic effect but in the presence of uncorrelated horizontal pleio-
tropic effect (PVEu = 5%). We simulated 100 instrumental SNPs and set the proportion of instrumental SNPs having the uncorrelated horizontal pleiotropy effect to be 
30%. (D) Simulations in the presence of both correlated (c = 5%,   =  √ 

_
 0.05   ) and uncorrelated horizontal pleiotropic effects (PVEu = 5%). We simulated 100 causal instru-

mental SNPs and set the proportion of instrumental SNPs having the uncorrelated horizontal pleiotropy effect to be 20%.
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effect on the outcome but not vice versa. In the presence of horizontal 
pleiotropy, the SNP instruments obtained for the outcome in the 
reverse MR analysis would contain two sets of SNPs: a set of expo-
sure SNP instruments that are indirectly associated with the outcome 
through the exposure and a set of SNPs that are directly associated 
with the outcome thought their horizontal pleiotropic effects on the 
outcome. Because the two sets of SNPs displayed heterogeneous ef-
fects on the exposure, we would fail to detect a nonzero causal effect 
of the outcome on the exposure. Therefore, the reverse causality 
analysis in the presence of horizontal pleiotropy effectively served 
as analysis on null simulations. We found that MRAID provides 
effective type I error control and calibrated P values in the reverse 
causality analysis across a range of simulation scenarios (figs. S13 
and S14). In contrast, the type I error control of the other methods 
is highly dependent on the extent of the horizontal pleiotropy. 
Specifically, when a small proportion of exposure instrumental SNPs 
display horizontal pleiotropy on the outcome, most of the candidate 
instrumental SNPs for the outcome in the reverse causality analysis 
would not display horizontal pleiotropic effects on the exposure. In 
this case, both CAUSE and Weighted mode remain overly conser-
vative, while IVW-R, MRMix, RAPS, and Robust yield slightly in-
flated P values (figs. S13, A and C, and S14, A and C). By contrast, 
when a large proportion of instrumental SNPs for the exposure dis-
play horizontal pleiotropic effects on the outcome, most of the can-
didate instrumental SNPs for the outcome in the reverse causality 
analysis would display horizontal pleiotropic effects on the expo-
sure. In this case, MRMix, Robust, IVW-R, Weighted median, and 
RAPS all start to produce inflated P values (figs. S13B and S14B) as 
we have shown in the corresponding null scenarios. The P value 

inflation of these methods becomes more prominent with smaller 
horizontal pleiotropic effect sizes, where it becomes increasingly 
hard to select the second set of SNPs to serve as outcome instru-
ments (figs. S13D and S14D). The comparison results hold when we 
force multiple causal SNPs to be in the same LD block (fig. S15).

MRAID also produces reasonably unbiased causal effect estimates 
under the null (fig. S16A) and under various alternatives (fig. S16, B 
to D) and produces reasonably well-estimated proportional estimates 
(fig. S17). In addition, MRAID is reasonably robust when the uncor-
related horizontal pleiotropic effects from the instrumental SNPs are 
either larger or smaller than that from the noninstrumental SNPs (fig. S18).

Real data applications
We applied MRAID and the other MR methods to analyze 38 life-
style risk factors and 11 cardiovascular disease (CVD)-related traits 
in the U.K. Biobank (details in Materials and Methods). Specifically, 
we divided the U.K. Biobank data into two separate, equal-sized sub-
sets, representing an exposure GWAS and an outcome GWAS. We 
performed two sets of analysis. First, we focused on the eight CVD- 
related traits and examined the causal effect of each trait in the ex-
posure GWAS on the same trait in the outcome GWAS, effectively 
examining the causal effect of the trait on itself. The true causal effect 
in this analysis is nonzero and equals exactly to one, with the scatter-
plots displayed in fig. S19. We found that all methods were able to 
detect a nonzero causal effect for the trait on itself across all eight 
CVD- related traits (Fig. 4). However, only MRAID and CAUSE were 
able to produce 95% confidence intervals (CIs) that cover the true 
causal effects for all eight trait pairs, with CAUSE producing CIs that 
are 2.39 to 5.69 times larger than MRAID (Fig. 4). For example, in 
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Fig. 4. Point estimates and 95% CIs from different MR methods in the trait on itself analysis in the real data. Compared methods include CAUSE (blue), IVW-R (gold), 
MRAID (purple), MRMix (black), RAPS (deep pink), Robust (deep sky blue), Weighted median (light salmon), and Weighted mode (green). Analyzed trait pairs include 
SBP-SBP (A), BMI-BMI (B), DBP-DBP (C), pulse rate-pulse rate (D), TC-TC (E), LDL-LDL (F), TG-TG (G), and HDL-HDL (H). The horizontal black dashed line in each panel rep-
resents the true causal effect size of  = 1. Both MRAID and CAUSE can produce 95% CIs that cover the true causal effects of all trait pairs, with CAUSE producing much 
larger CIs than MRAID.



Yuan et al., Sci. Adv. 8, eabl5744 (2022)     2 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 15

the high-density lipoprotein (HDL)–HDL analysis, MRAID (estimate = 
0.98; 95% CI, 0.96 to 1.01), CAUSE (estimate = 0.95; 95% CI, 0.82 to 
1.09), and MRMix (estimate = 0.96; 95% CI, 0.90 to 1.02) correctly 
inferred the causal effect, with MRAID providing the smallest CI 
(Fig. 4H). In contrast, the CIs from the other five methods did not 
cover the true causal effect of one. In the LDL-LDL analysis, MRAID 
(0.97; 0.94 to 1.01) and CAUSE (0.96; 0.84 to 1.08) correctly inferred 
the causal effect, with MRAID providing a smaller CI (Fig. 4F), 
while the CIs from the other six methods also did not cover the true 
causal effect of one. The results suggest that both MRAID and CAUSE 
can produce accurate causal effect estimates and calibrated CIs for 
the trait on itself analysis, with MRAID being more powerful than 
CAUSE. We applied similar analysis for investigating the causal ef-
fect of each of the four blood lipid traits in the global lipid genomic 
consortium (35) on the same trait in U.K. Biobank and found simi-
lar results (fig. S20). Certainly, while the above experiment is simple 
and straightforward and has been used for MR method comparison 
in the previous literature (6), we caution that some forms of bias such 
as weak instrument biases and/or winner’s curse may occur in this 
experiment just like in any other real data analysis experiments.

Next, we investigated the causal relationship between 38 lifestyle 
risk factors and 11 CVD-related traits. The association of lifestyle 
risk factors on CVD-related traits has been extensively documented 
(36, 37). However, it remains controversial on whether the detected 
associations are causal as some of the association effects were esti-
mated to have different signs in different studies (38, 39). We per-
formed both forward causality analysis examining the causal effects 
of lifestyle factors on CVD-related traits and reverse causality anal-
ysis examining the causal effects of CVD-related traits on lifestyle 
factors. The distribution of P values for the analyzed trait pairs from 
different methods are shown in Fig. 5A. Consistent with the simu-
lations, we found that the P values from MRAID [genomic inflation 
factor (GIF) = 0.90)] and, to a lesser extent, MRMix (GIF = 0.78) are 
generally well behaved and slightly conservative across analyzed 
trait pairs, more so than the other methods (Fig. 5A). In addition, 
consistent with the simulations, we found that the P values from 

CAUSE are overly conservative (GIF = 0.12), while the P values 
from RAPS (GIF = 1.96), Weighted mode (GIF = 1.70), IVW-R 
(GIF = 2.12), Weighted median (GIF = 1.80), and Robust (GIF = 2.00) 
all show appreciable inflation (Fig. 5A). Only MRAID produces 
calibrated P values in the permutation analysis where we permuted 
the outcome trait (Fig. 5B).

On the basis of a Bonferroni-corrected P value threshold (7.75 × 
10−5), MRAID detected eight causal associations (table S2), all of 
which have strong biological support. For example, MRAID detected 
a negative causal effect of smoking on body mass index (BMI). The 
negative association between smoking and obesity has been well 
documented in observational studies (40, 41) and MR studies (42). 
Specifically, nicotine intake during smoking decreases resting met-
abolic rate (43, 44) and inhibits lipoprotein lipase activity and other 
kinase pathways to reduce lipolysis (41), all of which lead to a re-
duction in the net energy storage in adipose tissues and subsequent 
weight loss (45). Nicotine also activates acetylcholine receptors in 
the hypothalamus and subsequently anorexigenic neurons (46, 47), 
which leads to suppressed appetite and food intake. As another ex-
ample, MRAID detected an effect of age started smoking in the 
former smokers on HDL, suggesting a negative effect of smoking 
behavior on HDL. Smoking behavior, in general, is well known to 
be causally associated with HDL (48). In particular, smoking can 
modify the activity of critical enzymes for lipid transport, lower 
lecithin-cholesterol acyltransferase activity, and alter cholesterol 
ester transfer protein and hepatic lipase activity, all of which can 
reduce HDL metabolism. In addition, smoking induces oxida-
tive modifications that render HDL dysfunctional and deprive its 
atheroprotective properties (49, 50).

MRAID did not mistakenly detect many false causal associations 
that were detected by the other methods. A well-known example of 
a potential false causal association is the effect of smoking on blood 
pressure. A negative association between smoking and blood pressure 
has been observed in observational studies (37). However, multiple 
subsequent MR studies on large datasets did not support a causal 
relationship between the two traits (48, 51). The association between 
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Fig. 5. Quantile-quantile plot of −log10 P values from different MR methods on testing the causal relationship between lifestyle risk factors and CVD-related 
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smoking and blood pressure in observational studies is likely con-
founded by factors that include, but not limited to, age, BMI, social 
class, salt intake, drinking habits, and unmeasured confounders (52). 
Consistent with these previous MR studies, MRAID did not detect 
a significant causal effect from any of the eight smoking related 
traits on either systolic blood pressure (SBP) or diastolic blood pres-
sure (DBP). In contrast, almost all other methods falsely detected 
causal effects of some of the smoking-related traits on blood pres-
sure. For example, the causal effect of the number of unsuccessful 
stop-smoking attempts on SBP is not detected by MRAID (P = 0.44), 
CAUSE (P = 0.01), nor Weighted mode (P = 1.3 × 10−4) but falsely 
identified by IVW-R (P = 1.4 × 10−6), Robust (P = 4.1 × 10−34), 
RAPS (P = 5.5 × 10−6), MRMix (P = 2.8 × 10−6), and Weighted me-
dian (P = 2.4 × 10−5). Similarly, the causal effect of age started smok-
ing in former smokers on SBP is not detected by MRAID (P = 0.06) 
nor CAUSE (P = 1.3 × 10−3) but falsely detected by IVW-R (P = 7.8 × 
10−5), Robust (P = 1.5 × 10−30), RAPS (P = 8.9 × 10−7), Weighted 
median (P = 1.0 × 10−6), Weighted mode (P = 1.7 × 10−6), and 
MRMix (P = 4.1 × 10−7). As another false example, BMI is unlikely 
to causally influence the time spent driving, at least not positively. 
MRAID (P = 0.01), along with MRMix (P = 0.12), CAUSE (P = 0.02), 
Weighted median (P = 0.04), and Weighted mode (P = 0.04), did 
not detect any causal effect of BMI on time spent driving. However, 
both IVW-R (P = 2.5 × 10−6) and RAPS (P = 3.1 × 10−5) detected a 
false-positive effect of BMI on time spent driving.

Last, we note that an important feature of MRAID is its ability to 
effectively decompose the SNP effects on the outcome into three dis-
tinct paths: One directly acts from SNPs to the outcome, one mediated 
through the exposure, and the other acts through a hidden con-
founding factor that influences both exposure and outcome. Conse-
quently, MRAID can be used to estimate the proportion of SNPs in 
different categories, including the proportion of SNPs that are asso-
ciated with the exposure among the genome-wide significant ones 
(), the proportion of SNPs that exhibit correlated horizontal 
pleiotropy (c), the proportion of SNPs that exhibit uncorrelated 
horizontal pleiotropy among the selected instruments (1), and the 
proportion of SNPs that exhibit uncorrelated horizontal pleiotropy 
among the remaining candidate instruments (0). In the real data 
applications, we estimated the mean of , c, 1, and 0 across the 
645 analyzed trait pairs to be 14.6, 6.4, 16.4, and 5%, respectively 
(fig. S21). Note that these percentages were calculated on the basis 
of the number of candidate instruments; thus, a value of 14.6% cor-
responds to an average of 107 variants per trait. Additional analysis 
illustrated that the P values of MRAID remains consistent with each 
other regardless of the prior distribution of  (fig. S22). In addition, 
we estimated their means in the eight significant trait pairs to be 6.2, 
5.7, 11.4, and 0.1%, respectively. The proportion of SNPs displaying 
correlated pleiotropy is also highly correlated with the proportion 
of SNPs displaying uncorrelated pleiotropy, with the latter generally 
being larger than the former (fig. S23). These proportion estimates 
support the widespread horizontal pleiotropy previously identified 
in complex trait analysis (25) and provide detailed quantifications 
on the extent to which the two types of horizontal pleiotropy influ-
ence MR analysis.

DISCUSSION
We have presented MRAID, a two-sample MR method that can 
automatically select suitable instruments from a candidate set of 

correlated SNPs and that can control for both correlated and uncor-
related horizontal pleiotropy in a likelihood-based inference frame-
work. Overall, by automatically selecting instrumental SNPs and 
performing inference under a likelihood-based framework, MRAID 
yields calibrated P values across a wide range of scenarios and 
improves power of MR analysis over existing approaches. We have 
illustrated the benefits of MRAID through simulations and applica-
tions to complex trait analysis.

We have primarily focused on modeling quantitative traits with 
MRAID in the present study. For binary exposures and outcomes, 
one could treat them as continuous variables and directly applied 
MRAID for MR analysis. Treating binary exposures and outcomes 
as continuous variables can be justified by recognizing the linear 
model as a first-order Taylor approximation to a generalized linear 
model such as the logistic regression (53). However, this approxi-
mation is accurate only when the SNP effects on the exposure and 
outcome are relatively small. While similar approaches have been 
applied in many previous MR studies (54–56), we caution that the 
interpretation of the causal effect estimate can be challenging when 
the linear models are used to fit binary exposures and outcomes, 
especially when a two-stage inference procedure is used for MR 
analysis (57, 58). For example, when a binary exposure is a dichoto-
mization of a continuous risk factor, the causal effect estimation 
through modeling the binary exposure without the underlying con-
tinuous risk factor may require additional modeling assumptions, 
even when the main MR assumptions are satisfied. In addition, 
modeling binary exposure without the underlying continuous risk 
factor can lead to violation of the exclusion restriction assumption, 
as the instruments can influence the outcome via the continuous 
risk factor even if the binary exposure does not change.

Therefore, extending MRAID to explicitly model data types be-
yond quantitative traits is important to ensure its wide applicability. 
Because MRAID builds upon a data generative model and performs 
inference on the SNP-exposure model and the SNP-outcome model 
jointly through a maximum likelihood–based framework, it can be 
naturally extended toward modeling binary outcome through a lia-
bility threshold model (59) and binary and other types of exposure 
or outcome data through a generalized linear model framework. To 
the best of our knowledge, the only likelihood-based MR method that 
accommodates both binary risk factors and outcome is IV-MVB 
(60). IV-MVB, however, requires individual-level data, applies to 
the one-sample analysis setting, and cannot easily handle multiple 
instruments in a computationally efficient fashion, especially for those 
that are correlated. Therefore, exploring the benefits of MRAID 
extensions toward modeling generalized data types while keeping com-
putation in check will be an important direction for future research.

Another important future direction is to extend MRAID to in-
corporate SNP functional annotations. Specifically, we could model 
the probability of a SNP exhibiting instrumental effects as a func-
tion of a given set of SNP annotations through a logistic function, 
similar to what was used in many SNP fine-mapping methods (61–63). 
In addition, we could also model the probability of a SNP exhibiting 
horizontal pleiotropic effects as a function of its functional annota-
tions through a logistic function. Because the biological function 
and importance of a SNP can be predicted in certain degree by its 
functional annotations, incorporating SNP functional annotations 
can potentially improve the performance of MRAID. Certainly, 
incorporating functional annotations would inevitably increase the 
number of parameters, making it challenging to carry out powerful 
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MR inference given the small instrumental effects. Therefore, it would 
be important to incorporate informative functional annotations 
while mitigating the impact by the increased number of parameters 
to ensure optimal MR inference power.

MRAID is not without limitations. First, while MRAID performs 
automated selection on SNP instruments, this selection builds upon 
a sparsity inducing modeling assumption specified on the SNP ef-
fect sizes. The sparse modeling assumption contains multiple hyper-
parameters that rely on a sampling-based algorithm for inference. 
Accurate and robust inference of the hyperparameters will likely 
require at least a moderate number of candidate instruments. While 
the significance of the trait pairs evaluated by MRAID in our real 
data application does not appear to be dependent on the number of 
candidate instruments selected for the trait pair (fig. S24), we cau-
tion that MRAID may incur low power when the instrumental effect 
size is small and the number of candidate instruments is low, which 
can happen in GWAS with small sample sizes and for exposure 
traits with a nonpolygenic architecture. Second, MRAID primarily 
follows the approach of CAUSE to model correlated horizontal 
pleiotropy by introducing a single latent variable to serve as the 
confounder for both the exposure and the outcome. Because of its 
limitation in modeling only a single unobserved confounding factor, 
MRAID may not be fully effective in settings where multiple or other 
types of shared genetic components are present between the exposure 
and the outcome. Last, the summary statistics version of MRAID 
requires as input two LD matrices, one from the exposure GWAS 
and another from the outcome GWAS. In the present study, we 
have estimated both LD matrices using individual level data. In the 
absence of individual level data, both LD matrices may be estimated 
from a reference panel with the same genetic ancestry (e.g., from the 
1000 Genomes Project). However, care needs to be taken when the 
exposure and outcome GWASs are carried out on two populations 
with distinct genetic ancestries or when the genetic ancestry of the 
reference panel does not match that of the GWAS (fig. S25).

MATERIALS AND METHODS
MRAID for individual level data
We provide an overview of our method here, with its inference and 
technical details provided in Supplementary Text and an illustrative 
diagram displayed in Fig. 1. Our goal is to estimate and test the 
causal effect of an exposure variable on an outcome variable in the 
two-sample MR setting where the exposure and outcome variables 
are measured in two separate GWASs with no sample overlap. We 
refer to the two separate GWASs as the exposure GWAS and the 
outcome GWAS, respectively. To set up the notations, we denote x 
as an n1-vector of the exposure variable measured on n1 individuals 
in the exposure GWAS. We denote y as an n2-vector of the outcome 
variable measured on n2 individuals in the outcome GWAS. We 
scale both x and y to have zero mean and unit SD. In the exposure 
GWAS, we perform an initial screening to select SNPs that are asso-
ciated with the exposure variable with a marginal P value below the 
genome-wide significance threshold of 5 × 10−8. These SNPs are 
likely in LD with each other and are selected to serve as the initial set 
of candidate instruments. We denote Zx as the resulting n1 by p geno-
type matrix for the p-selected candidate instrumental SNPs in the 
exposure GWAS. We also denote Zy as an n2 by p genotype matrix 
for the same p candidate instrumental SNPs in the outcome GWAS.  
We scale each column of the two genotype matrices to have mean 

zero and an SD of one. We model the relationship among the expo-
sure, outcome, and genotypes through the following three linear 
regressions

  x =  Z  x    +    x    (1)

     ~ x  =  Z  y    +    ~    x    (2)

  y =   ~ x  +  Z  y      0   +  Z  y      1   +    y    (3)

Above, Eq. 1 describes the relationship between the genotypes Zx 
and the exposure variable x in the exposure GWAS; Eq. 2 describes 
the relationship between the genotypes Zy and the unobserved ex-
posure    ~ x   in the outcome GWAS; Eq. 3 describes the relationship 
among the genotypes Zy, the outcome y, and the unobserved expo-
sure    ~ x   in the outcome GWAS;  is a p-vector of SNP effects on the 
exposure; both 0 and 1 are p-vectors of horizontal pleiotropy ef-
fects on the outcome;  is a scalar that represents the causal effect of 
the exposure on the outcome; x is an n1-vector of residual error 
with each element independently and identically distributed from 
a normal distribution  N(0,   x  2 ) ;     ~    x    is an n2-vector of residual error 
with each element distributed from the same normal distribution 
 N(0,   x  2 ) ; and y is an n2-vector of residual error with each element 
distributed from a normal distribution  N(0,   y  2 ) . We note that, while 
the above three equations are specified on the basis of two separate 
GWASs, they are connected to each other by the common parameter 
. We carefully consider the modeling assumptions on the SNP 
effects on the exposure variable  and the horizontal pleiotropic 
effects 0 and 1 as follows.

The p SNPs included in the above model represent an initial set 
of candidate instruments. While all the candidate instruments are 
marginally associated with the exposure, most of them are unlikely 
the causal SNPs for the exposure variable. Instead, most candidate 
instruments likely represent tagging SNPs that are associated with 
the exposure variable due to LD with the truly causal ones underly-
ing the exposure. Therefore, it would be beneficial to perform addi-
tional selections on the candidate instruments to identify SNPs that 
are causal for the exposure and treat them as the instruments to 
maximize the power of MR analysis. To do so, we borrow ideas 
from fine-mapping approaches developed in the research field of 
GWAS and specify a sparsity inducing modeling assumption on the 
SNP effects on the exposure () to perform automated instrument 
selection. In particular, we assume that     j  ~      N(0,     

2   ) + (1 −       )    0   , 
where 0 is the Dirac function that represents a point mass at zero. 
That is, with probability 1 − , the j-th SNP has zero effect on the 
exposure; while with probability , the j-th SNP has a nonzero effect 
on the exposure, and its effect size follows a normal distribution 
with mean zero and variance      

2   , where the variance parameter      
2    

determines the magnitude of the effect sizes. The sparse assumption 
on  allows us to select SNPs with nonzero effects on the exposure 
to serve as the instruments in the MR model.

In addition, the p SNPs included in the above model can also 
exhibit horizontal pleiotropic effects and influence the outcome 
variable through pathways other than the exposure. To control for 
the potential horizontal pleiotropic effects and improve causal effect 
inference, we introduce two sets of parameters, 0 and 1, to model 
horizontal pleiotropic effects. The two sets of parameters are placed 
separately for the two SNP groups—the group of selected instrumental 



Yuan et al., Sci. Adv. 8, eabl5744 (2022)     2 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 15

SNPs and the group of unselected noninstrumental SNPs—which 
are categorized by the sparse modeling assumption on . In partic-
ular, 1 represents the horizontal pleiotropic effects exhibited by the 
selected SNPs instruments with nonzero , while 0 represents the 
horizontal pleiotropic effects exhibited by the unselected non-
instrumental SNPs with zero . Controlling for 1 can help mitigate 
the bias in causal effect estimation induced by horizontal pleiotropic 
effects from the instrumental SNPs, while controlling for 0 can 
reduce residual error variance in Eq. 3 and thus help improve the 
statistical efficiency of causal effect estimation.

To effectively control for the horizontal pleiotropic effects ex-
hibited from both SNP groups, we specify separate modeling assump-
tions on 0 and 1. Specifically, for the selected SNP instruments, 
we assume that they can exhibit horizontal pleiotropic effects in 
two different ways: They can affect the outcome through a common 
confounder that is associated with both the exposure and outcome, 
and they can affect the outcome through paths independent of the 
exposure. For the first type of horizontal pleiotropy, we assume that 
each selected SNP instrument has a probability of c to induce 
pleiotropy through the confounder. Following (8), we assume that 
the confounder effect on the outcome is  times its effect on the 
exposure. Consequently, the effect of the selected SNP instrument 
acted through the confounder on the outcome becomes j if the 
SNP effect on the exposure is j. Thus, our assumption on    1j  c   , which 
represents the first type of horizontal pleiotropy as a part of 1 for the 
j-th SNP, is    1j  c  ∣   j   ≠ 0~   c   I(   1j   =     j   ) + (1 −    c   )    0   , where I(·) 
is an indicator function that sets the horizontal pleiotropic effect 
to be j. For the second type of horizontal pleiotropy, we assume 
that each selected SNP instrument has a probability of 1 to exhib-
it a horizontal pleiotropic effect on the outcome directly, bypass-
ing the exposure. We use    1j  u    to represent the second type of 
horizontal pleiotropy as a part of 1 for the j-th SNP. Our assump-
tion on    1j  u    is thus    1j  u  ∣   j   ≠ 0~   1   N(0,     2   ) + (1 −    1   )    0   , where the 
variance      2    determines the strength of the horizontal pleiotropic 
effect. Note that the first type of horizontal pleiotropic effects are 
correlated with the instrumental effects on the exposure due to the 
confounder, while the second type of horizontal pleiotropic effects 
are uncorrelated with the instrumental effects on the exposure. The 
total horizontal pleiotropy is the summation of the two, with     1j   =  
 1j  c   +   1j  u   . Certainly, because 1 are the horizontal pleiotropic effects 
for the selected SNP instruments, we have 1j = 0 if j = 0. For the 
unselected noninstrumental SNPs with a zero j, we assume that     0j  
∣   j   = 0~   0   N(0,     2   ) + (1 −    0   )    0   . That is, with probability 0, the 
noninstrumental SNPs display horizontal pleiotropic effects 
characterized by the same variance parameter      2   . We use the same 
variance parameter      2    for modeling the uncorrelated horizontal 
pleiotropic effects from both instrumental and noninstrumental 
SNPs because we often do not have enough number of SNPs to 
estimate two separate parameters accurately. Since 0  are the 
horizontal pleiotropic effects for the noninstruments, we also have 
0j = 0 if j ≠ 0.

The above parameterization of the horizontal pleiotropic effects 
is based on the selection of SNP instruments. An equivalent and 
alternative parametrization of the horizontal pleiotropic effects is to 
partition them into a correlated horizontal pleiotropic component 
c and an uncorrelated horizontal pleiotropic component u. Spe-
cifically, the correlated horizontal pleiotropy occurs only for the 
selected SNP instruments with cj∣j ≠ 0~cI(1j = j) + (1 − c)0 
and cj = 0 if j = 0. The uncorrelated horizontal pleiotropy, on the 

other hand, occurs for both instrumental and noninstrumental SNPs 
with     uj  ∣   j   ≠ 0~   1   N(0,     2   ) + (1 −    1   )    0    and     uj  ∣   j   = 0~   0   N(0,  
   2   ) + (1 −    0   )    0   . In other words,     cj   =   1j  c    and     uj   =   1j  u   +    0j   .

Overall, the SNP effects on the outcome in our model are exhib-
ited through three different paths: via the exposure on outcome 
causal effect , via the correlated horizontal pleiotropic effects 
mediated by an unobserved confounder, and via the uncorrelated 
horizontal pleiotropic effects. SNPs in the model can exhibit none, 
one, or multiple types of these effects. Note that the SNP effects on 
the outcome through the causal effect and through the correlated 
horizontal pleiotropy are not distinguishable from each other unless 
we make further modeling assumptions. Here, following (8), we 
assume c to be small. Thus, among the selected SNP instruments 
with nonzero effects on the exposure, only a fraction of them exhibit 
correlated horizontal pleiotropic effects on the outcome.

Our key parameter of interest is the causal effect . The causal 
interpretation of  in a standard MR model requires the selected 
SNP instruments to satisfy three conditions: (i) Instruments are 
associated with the exposure (relevance condition); (ii) instruments 
are not associated with any other confounder that may be associated 
with both exposure and outcome (independence condition); and 
(iii) instruments only influence the outcome through the path of 
exposure (exclusion restriction condition). Our modeling assump-
tion on  allows us to select SNPs to satisfy the relevance condition. 
Our modeling assumptions on 0 and 1 allow us to explicitly 
model the violation of the independence and exclusion restriction 
conditions. Therefore, our model effectively replaces the general 
conditions (ii) and (iii) with specific modeling assumptions on , 
0, and 1. In addition, through explicit modeling of the correlation 
between the instrument-exposure effects and instrument-outcome 
effects through , our model no longer requires the Instrument 
Strength Independent of Direct Effect (InSIDE) assumption, which 
is sometimes referred to as the weak exclusion restriction condition 
(3). Consequently, the causal effect interpretation of  in our model 
only depends on the explicit assumptions made in the model.

We are interested in estimating the causal effect  and testing the 
null hypothesis H0:  = 0. Performing inference on , however, is 
computationally challenging, as the likelihood defined on the basis 
of the above modeling assumptions is in a complicated form and 
involves integrations that cannot be obtained analytically. Here, we 
develop an approximate inference algorithm under the maximum 
likelihood framework to perform numerical integration of the like-
lihood and obtain an approximate P value for testing . Our algo-
rithm is based on the observation that the likelihood function of  
can be expressed as a ratio between the posterior and the prior. 
Because the posterior of  is asymptotically normally distributed 
(64, 65), we can use Gibbs sampling to obtain posterior samples of 
 and use the sample mean and sample SD to summarize this pos-
terior distribution. In addition, we can also specify a normal prior 
on  and obtain the prior mean and SD. Because the likelihood of  
is expressed as the posterior divided by the prior and is itself asymp-
totically normally distributed (64, 65), we can rely on the method of 
moments to obtain the approximate maximum likelihood estimate 
  ̂     and its  SE ( ̂   )  based on the mean and SD from both the posterior 
and the prior. Afterward, we can construct an approximate Wald test 
statistic and obtain a P value for hypothesis testing. Details of the 
algorithm is provided in Supplementary Text. As a unique feature 
of our algorithm, we introduce a set of binary indicator variables to 
effectively explore the joint parameter space to alleviate the issue 
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from the interdependence among the parameters 1, 0, and  
(details in Supplementary Text). Note that, while our algorithm 
relies on Gibbs sampling, we do not perform a Bayesian analysis; 
rather, we treat the Gibbs sampling as a convenient and accurate 
numerical approximation tool to obtain the marginal likelihood 
of , which is otherwise infeasible or inaccurate to obtain under 
various frequentist approaches.

We refer to our model and algorithm together as the two-sample 
MRAID. The MRAID part highlights the desirable feature of our 
model in automatically selecting instrumental variables from a set 
of candidate—ones that are in potentially high LD with each other. 
Compared with existing two-sample MR approaches, MRAID relies 
on a likelihood inference framework, is capable of modeling 
correlated instruments, performs automated instrument selection, 
controls for both correlated and uncorrelated horizontal pleiotropy, 
and is computationally scalable. MRAID is implemented in an 
R package freely available at www.xzlab.org/software.html.

MRAID for summary statistics
While we have described MRAID using individual-level data, MRAID 
can be extended to make use of only summary statistics. Details for 
the summary statistics version of MRAID are provided in Supple-
mentary Text. Briefly, the summary statistics version of MRAID 
requires two types of input: the SNP marginal effect size estimates 
on the exposure and outcome and the SNP correlation matrices in 
the exposure and outcome GWASs. Both input types are obtained 
on the basis of standardized genotype data where the genotypes for 
each SNP have been standardized to have zero mean and unit 
SD. Here, we denote the p-vector of the SNP marginal effect size 
estimates on the exposure as    ̂     x    and the corresponding vector of 
marginal effect size estimates on the outcome as    ̂     y   . We denote the 
p by p SNP correlation matrix in the exposure GWAS as Σ1 and the 
corresponding matrix in the outcome GWAS as Σ2. Both Σ1 and Σ2 
are positive semidefinite and can be estimated from the same LD 
reference panel (e.g., individuals with the same ancestry in the 1000 
Genomes Project). The MRAID model for summary statistics can 
be constructed on the basis of the following two equations

     ̂     x   =  Σ  1    +  e  x    (4)

    ̂     y   =   Σ  2    +  Σ  2      0   +  Σ  2      1   +  e  y    (5)

where ex is a p-vector of residual error that follows a multivariate 
normal distribution  N(0,  Σ  1     x  2  / ( n  1   − 1))  and ey is a p-vector of 
residual error that follows another a multivariate normal distribu-
tion  N(0,  Σ  2     y  2  / ( n  2   − 1 ) ) . A similar approximate inference algorithm 
under the maximum likelihood framework is developed for the 
summary version of MRAID.

Simulations
We performed realistic simulations to evaluate the performance of 
MRAID and compared it with seven existing MR methods. For simu-
lations, we randomly selected 60,000 individuals from the U.K. Biobank 
(31). We split these individuals randomly into two equal-sized sets: 
one set with 30,000 individuals to serve as the exposure GWAS and 
another set with the remaining 30,000 individuals to serve as the 
outcome GWAS. For these individuals, we obtained their genotypes 
from 649,695 SNPs on chromosome 1 that are overlapped with the 
Kaiser Permanente/UCSF Genetic Epidemiology Research Study on 

Adult Health and Aging (GERA) study we used before (17), standardized 
each SNP to have mean zero and unit SD, and used the standardized 
genotypes to simulate the exposure and outcome. Specifically, in the 
exposure GWAS, we randomly selected K SNPs (K = 100 or 1000) 
to have nonzero effects on the exposure. We denoted the genotype 
matrix of the K SNPs as     ~ Z    x   . We simulated the K SNP effect sizes on 
the exposure () from a normal distribution  N(0,  PVE     ~ Z    x     / K) , where 
the scalar   PVE     ~ Z    x      represents the proportion of variance in the expo-
sure variable explained by these genetic effects. We summed the 
genetic effects across all K SNPs as     ~ Z    x    . In addition, we simulated the 
residual errors x from a normal distribution  N(0, 1 −  PVE     ~ Z    x    ) . We 
then summed the genetic effects and the residual errors to yield the 
simulated exposure variable x. In the outcome GWAS, we obtained 
the genotypes for the same K SNPs as     ~ Z    y    and used the same  from 
the exposure GWAS to compute the genetic component underlying the 
outcome as     ~ Z    y    . We set the causal effect  to be   =  √ 

___________
   PVE     /  PVE     ~ Z    x        so 

that the proportion of variance in the outcome variable explained 
by the causal effect term (    ~ Z    y    ) is PVE. We randomly obtained 
cK SNPs (rounded to an integer) from the K SNPs to exhibit cor-
related pleiotropy. We simulated the correlated pleiotropic effect sizes 
to be  and set  so that the proportion of variance in the outcome 
variable explained by correlated pleiotropy is PVEc. In addition, 
we randomly obtained 1K SNPs (again rounded to an integer) from 
the K SNPs and randomly obtained 100 − 1K SNPs from the remaining 
noncausal SNPs to exhibit uncorrelated pleiotropy so that a total of 
100 SNPs displayed uncorrelated pleiotropy. We simulated the un-
correlated horizontal pleiotropic effects for these 100 SNPs from a 
normal distribution and scaled them so that the proportion of pheno-
typic variance in the outcome explained by uncorrelated pleiotropy 
is PVEu. We simulated the residual errors y from a normal distri-
bution N(0,1 − PVE − PVEc − PVEu). We summed the causal effect 
term, correlated and uncorrelated horizontal pleiotropic effects, and 
the residual errors to yield the simulated outcome y. We treated the 
causal SNPs as unknown and followed standard MR procedure to 
select SNPs to serve as the instrumental variables. To do so, we used 
the linear regression model implemented in genome-wide efficient 
mixed-model analysis (GEMMA) (66) to perform association anal-
ysis in the exposure GWAS and selected SNPs with a P value below 
5 × 10−8 as the candidate instrumental variables for analysis. For the 
selected SNPs, we obtained their effect size estimates, SEs, and z scores to 
serve as the summary statistics input. We also denoted the standard-
ized genotype matrices for the selected SNPs in the exposure and 
outcome GWASs as Zx and Zy, respectively. On the basis of the 
genotype matrices, we obtained the SNP correlation matrices as   
Σ  1   =    Z x  T   Z  x   _  n  1   − 1   and   Σ  2   =    Z y  T   Z  y   _  n  2   − 1   to serve as input for MR model fitting.

In the simulations, we first examined a baseline simulation set-
ting where we set   PVE     ~ Z    x     = 10% , PVE = 0, K = 100, c = 0, PVEu = 0, 
and PVEc = 0. On top of the baseline setting, we varied one parameter 
at a time to examine the influence of various parameters on method 
performance. For   PVE     ~ Z    x     , we set it to be either 5 or 10%. For , in addi-
tion to simulating it from a normal distribution, we also simulated them 
from the Bayesian sparse linear mixed model (BSLMM) distribution 
(53). Specifically, we randomly selected either 1 or 10% of the K SNPs 
to have large effects, and these large-effect SNPs explain 20% of   PVE     ~ Z    x     . 
We set the remaining SNPs to have small effects to explain the remain-
ing   PVE     ~ Z    x     . For K, we set it to be either 100 or 1000. For PVE, we set it to 
be zero in the null simulations and examined different values in the 
alternative simulations. In the alternative simulations, we set PVE 
to be 0.05, 0.15, or 0.25% when K = 100 and set it to be 0.5, 1.5, and 

http://www.xzlab.org/software.html
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2.5% when K = 1000 to ensure sufficient power. For the uncor-
related horizontal pleiotropic effects, we set PVEu to be either 0, 2.5, or 
5%. Under the null (PVE = 0) in the absence of uncorrelated hori-
zontal pleiotropy (PVEu = 0), we set K to be 100 or 1000. In the 
presence of uncorrelated horizontal pleiotropy, we set K to be 
100 and set 1 to be either 0, 10, 20, or 30%. We also simulated the 
correlated pleiotropy effects and set c to be either 5 or 10%, with  
being   √ 

_
 0.02    or   √ 

_
 0.05    following the previous literature (8).

Note that MRAID used the same variance parameter for model-
ing the uncorrelated horizontal pleiotropic effects of both instru-
mental and noninstrumental SNPs, as the number of SNPs included 
in the model may not be sufficiently large for accurate inference of 
the two separate parameters. We conducted additional simulations 
to evaluate the robustness of MRAID against the violation of this 
assumption in the presence of horizontal pleiotropic effects 
(PVEu = 5%), with the proportion of instrumental SNPs having 
uncorrelated horizontal pleiotropy to be 20 and 30%, respectively. 
We set the variance parameter for generating the uncorrelated 
horizontal pleiotropic effects from the noninstrumental SNPs to be 
either three times or 1/3 of that from the instrumental SNPs.

For the above simulations, we examined the number of causal 
SNPs in each LD block. Specifically, we used LDetect (67) and 
followed its default settings to divide chromosome 1 into 133 inde-
pendent LD blocks. We then examined the location of the randomly 
selected 100 causal SNPs in each simulation. We found that the 
mean proportion of LD blocks that contain at least one causal SNP 
across the 1000 simulation replicates is 51%. In the LD blocks that 
contain at least one causal SNPs, we found the number of causal 
SNPs ranges from one to seven. In particular, an average of 64% of 
LD blocks with at least one causal SNP contain exactly one causal 
SNP, and an average of 36% of LD blocks with at least one causal 
SNP contain more than one causal SNP. Therefore, it appears that 
multiple causal SNPs are presented in the same LD block in our 
simulations. For the SNPs that are in the same LD block, the mean 
of the absolute value of pairwise r2 is 0.76.

For null simulations, we performed 1000 simulation replicates in 
each scenario to examine type I error control. For power evaluation, 
we performed 100 alternative simulations along with 900 null sim-
ulations, with which we computed power on the basis of an FDR of 
0.05. We then repeated this analysis five times and report the average 
power across these replicates. Note that we computed power on the 
basis of FDR instead of a nominal P value threshold to allow for fair 
comparison across methods, as the same P value from different 
methods may correspond to different type I errors.

Besides the above comprehensive simulations, we also conducted 
a set of simple simulations to help build the intuition of the benefits 
of MRAID brought by modeling multiple correlated SNPs. Specifi-
cally, we first used LDetect with the default settings to divide chro-
mosome 1 into 133 approximately independent LD blocks (67). We 
randomly selected one LD block and randomly selected 10 SNPs in 
the LD block for simulations. Among the 10 SNPs, we randomly 
selected one SNP to be causal and applied different methods to 
perform MR analysis either with the causal SNP (i.e., 10 SNPs total) 
or without the causal SNPs (i.e., nine SNPs total). We also randomly 
selected two SNPs to be causal and performed MR analysis either 
with the causal SNPs (i.e., 10 SNPs total) or without the two causal 
SNPs (i.e., eight SNPs total). In addition, we randomly selected two 
neighborhood LD blocks on chromosome 1 and randomly selected 
10 SNPs from each block for another set of simulations. We then 

carried out similar simulations, with one SNP in each LD block 
randomly selected to be causal and with the MR analysis performed 
either with or without the two causal SNPs. We examined both the 
type I error control and power in the absence of both correlated and 
uncorrelated horizontal pleiotropic effects. We set n1 = 30,000, n2 = 
30,000,   PVE     ~ Z    x      = 0.25%, PVE = 0 (null simulation), or PVE = 1% 
(power simulation) to examine the performance of MRAID and the 
MR method that uses only the lead variant.

Real data applications
We applied MRAID and other MR methods to detect causal associ-
ations between 38 lifestyle risk factors and 11 CVD-related traits in the 
U.K. Biobank. The U.K. Biobank data consist of 487,298 individuals 
and 92,693,895 imputed SNPs (31). We followed the same sample 
quality control procedure in Neale laboratory (https://github.com/
Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas) to retain 
a total of 337,129 individuals of European ancestry for analysis. We 
also filtered out SNPs with a Hardy Weinberg equilibrium (HWE) 
P < 10−7, a genotype call rate < 95%, or a minor allele frequency 
(MAF) < 0.001 to obtain a total of 13,876,958 SNPs for analysis. For 
the retained individuals, we obtained all lifestyle-related quantitative 
traits and CVD-related traits, removed those traits with a sample 
size less than 10,000, and focused on the remaining set of 38 lifestyle 
traits and 11 CVD-related traits for analysis. The 38 lifestyle traits 
include 8 physical activity traits, 12 alcohol intake traits, 10 diet traits 
(e.g., coffee and fruits), and 8 smoking-related traits. The 11 CVD- 
related traits include four pulse wave traits, two blood pressure traits 
(SBP and DBP), four lipid traits [LDL, HDL, total cholesterol (TC), 
and triglycerides (TG)], and BMI. Details of these traits are listed in 
table S3. Many of these lifestyle risk factors have been found to be 
associated with CVD- related traits in observational studies (68–70), 
although it remains unclear whether these associations represent 
causal relationship. For each trait in turn, we removed the effects of 
sex and top 10 genotype principal components to obtain the trait 
residuals, standardized the residuals to have a mean of zero and an 
SD of one, and used these scaled residuals for MR analysis.

To mimic the two-sample MR design, we randomly split the 
337,129 individuals into two nonoverlap sets: an exposure GWAS 
set with 168,564 individuals and an outcome GWAS set with 
168,565 individuals. The random data split strategy ensures sample 
homogeneity within each study and independence between studies 
and was extensively used in the previous MR literature (6, 71–73). 
We examined the 38 lifestyle traits in the exposure GWAS and 
examined the 11 CVD-related traits in the outcome GWAS. In both 
GWASs, we obtained summary statistics for each trait through 
linear regression implemented in GEMMA. When lifestyle traits in 
the exposure GWAS were treated as the exposure, we selected SNPs 
with a P value below 5 × 10−8 to serve as the candidate instruments 
for each exposure trait. Because almost all MR methods require at 
least two instrumental SNPs, and some methods can become unstable 
when the number of instrumental SNPs is too large, we removed 
exposure traits for which the number of candidate instruments is 
either below two or above 10,000. This way, we removed three traits 
with less than two candidate instruments and four traits with more than 
10,000 candidate instruments. We paired the remaining 31 exposure 
lifestyle traits with 11 outcome CVD-related traits into 341 trait 
pairs. The mean number of significantly associated SNPs among the 
31 traits is 286. When CVD-related traits in the outcome GWAS 
were treated as the exposure, we removed three traits with less than 

https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas
https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas
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two candidate instruments, including pulse wave reflection index with 
no candidate SNP, pulse wave peak to peak time with one candi-
date SNP, and pulse wave arterial stiffness index with one candidate 
SNP. We still found that the remaining eight traits have a total of 
more than 10,000 candidate instruments. Therefore, for these 
remaining traits, we used a more stringent P value threshold of 1 × 
10−15 to select SNP instruments and analyzed the resulting 304 trait 
pairs. The mean number of associated SNPs among the eight CVD- 
related traits is 2318. In total, we analyzed 645 trait pairs.

Compared methods
We compared the performance of MRAID with seven existing 
methods that include the following: (i) IVW-R, which is the random 
effects version of IVW. It obtains the causal effect estimate through 
weighting and combining the effect estimates from individual in-
struments. It relies on random effects to account for pleiotropy and 
effect estimate heterogeneity across instruments (74). (ii) Weighted 
mode, which is a mode version of IVW. It obtains the causal effect 
estimate as the mode, instead of the mean, of the effect estimates 
obtained from individual instruments (75). (iii) Robust, which is a 
robust version of IVW. It uses the MM-estimation procedure 
consisting of an initial S-estimate followed by an M-estimate (76) 
that is further combined with Tukey’s biweight loss function (77). 
(iv) Weighted median, which can provide the consistent estimator 
even when up to 50% of the information comes from invalid instru-
mental variables. We fitted methods (i) to (iv) using R package 
“MendelianRandomization” with default settings. (vi) RAPS, which 
is the MR-adjusted profile score method. It incorporates random 
effects and robust loss functions into the profile score to account for 
systematic and idiosyncratic pleiotropy (6). We fitted RAPS using 
R package “mr.raps.” (vi) MRMix, which relies on a mixture model 
to account for horizontal pleiotropic effects and their correlation 
with instrumental effect sizes (7). We fitted MRMix using R package 
“MRMix.” (vii) CAUSE, which identifies instrumental effect size 
patterns that are consistent with causal effects while accounting 
for correlated pleiotropy (8). We fitted CAUSE using R package 
“cause.” We compared MRAID with the above seven methods 
because CAUSE is one of the most recently developed methods; 
IVW-R, Robust, and RAPS all have been shown to have superior 
performance when the InSIDE assumption is satisfied, while 
MRMix and Weighted mode perform well even the InSIDE assump-
tion is violated (8, 34). In both simulations and real data applica-
tions, we first obtained SNPs that achieve genome-wide significance 
level (P < 5 × 10−8) to serve as a candidate set of instrumental SNPs. 
We directly use this candidate set of instrumental SNPs for MRAID.  
Because all other MR methods require independent instrumental 
SNPs, we performed LD clumping on the candidate set of instru-
mental SNPs to select independent ones for analysis. LD clumping 
is performed using PLINK, where we set the LD r2 parameter to be 
0.001. CAUSE also requires estimating some nuisance parameters 
in the model by using a random set of SNPs across the genome, and 
we did so by randomly selecting 100,000 SNPs following (8). Last, 
we explored an oracle approach in the power simulations where we 
knew the actual set of instrumental SNPs that affect the exposure 
variable. In the oracle approach, we obtained the actual set of in-
strumental SNPs, selected among them the independent ones via 
pruning, and used the selected set of SNPs to serve as instruments 
using the IVW-R method. The compared methods and their corre-
sponding software are listed in table S4.

Last, in the simple illustrative simulations, we compared MRAID 
with the well-known Wald ratio estimator for MR analysis (33), 
which uses only a single instrument. The Wald ratio estimator for the 
causal effect is in the form of   ̂    =    ̂     y    _ 

  ̂     x  
   , where    ̂     y    is the estimated single 

SNP effect on outcome and    ̂     x    is the estimated single SNP effect on 
exposure. The corresponding test statistics is  T =    ̂    _ var( ̂   )  ≈    z y  2   z x  2  _ 

 z y  2  +  z x  2 
  , 

where zx and zy are the z statistics from the exposure GWAS and out-
come GWAS, respectively. The null distribution of T is approximated 
by a chi-square distribution with one degree of freedom.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl5744

View/request a protocol for this paper from Bio-protocol.
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