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Ivermectin is a broad-spectrum antiparasitic agent that interferes with glutamate-gated chloride channels
found in invertebrates but not in vertebrate species. Mass drug administration (MDA) with ivermectin-based
regimes has been a mainstay of elimination efforts targeting onchocerciasis and lymphatic filariasis for more
than 3 decades. More recently, interest in the use of ivermectin to control other neglected tropical diseases
(NTDs) such as soil-transmitted helminths and scabies has grown. Interest has been further stimulated by the
fact that ivermectin displays endectocidal efficacy against various Anopheles species capable of transmitting
malaria. Therefore there is growing interest in using ivermectin MDA as a tool that might aid in the control of
both malaria and several NTDs. In this review we outline the evidence base to date on these emerging indica-
tions for ivermectin MDAwith reference to clinical and public health data and discuss the rationale for evaluating
the range of impacts of a malaria ivermectin MDA on other NTDs.
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Introduction
Ivermectin is a macrocyclic lactone compound and part of
the avermectin family. Avermectins were discovered by Satoshi
Omura and William C. Campbell in Japan in the 1970s, during
analysis of Streptomyces avermitilis compounds, and they subse-
quently discovered ivermectin. In 2015, both scientists received
theNobel Prize in Physiology orMedicine for their discovery.1 Since
its introduction, the drug’s utility has seen its use extended in
veterinary medicine and animal husbandry to treat endo- and
ectoparasites.2–4
Ivermectin is a mainstay in the success of the control and

elimination of Onchocerca volvulus, the causative agent of river
blindness. It has been extensively used by the African Pro-
gramme for Onchocerciasis Control, the Expanded Special Project
for the Elimination of Neglected Tropical Diseases in Africa
and the Onchocerciasis Elimination Program of the Americas.
Ivermectin is also known to affect a variety of invertebrate
species.5–7 Due to its broad application, it is considered an endec-
tocide, a drug affecting several ecto- and endoparasites, and

its use has steadily expanded in the years since its discovery.
In recent years ivermectin has been successfully applied on a
larger scale against several pathogens/parasites, including sca-
bies mites (Sarcoptes scabiei), lice (Pediculus humanus sp.) and
helminths such as Strongyloides stercoralis8–11 and there is grow-
ing interest in its use as a mosquitocidal agent as part of malaria
control.
We aimed to summarise data on the use of oral ivermectin

in non-immuncompromised patients across a range of emerg-
ing indications. We highlight key data on the rationale, dosage
considerations and existing evidence supporting the use of iver-
mectin for each new indication. The pharmacology and mode
of action of ivermectin have been extensively reviewed else-
where12–16 and we therefore primarily limit this literature review
to factors of direct relevance to its extended use. However, a short
summary of the mode of action and pharmacology will be given
for completeness. Finally, this literature review is restricted to
multicellular parasites, excluding suggested but unproven appli-
cations in oncology17 or virology,18,19 including severe acute res-
piratory syndrome coronavirus 2.
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Mode of action
In invertebrates, ivermectin interferes with glutamate-gated
chloride channels (GluCls), which are not expressed in verte-
brates. GluCls play a role in several processes in invertebrates and
their inhibition affects motility, feeding and reproduction.15,20
These effects are shown at nanomolar concentrations. At higher
concentrations, ivermectin interacts with a variety of receptors
such as γ -aminobutyric acid, glycine, histamine and nicotinic
acetylcholine receptors, which are expressed in both inverte-
brates and vertebrates.20
Vertebrates, including humans, express P-glycoprotein (P-gp),

also known as multidrug resistance protein 1 (MDR1), in their
blood–brain barrier, which functions as a transport efflux pump of
ivermectin out of the central nervous system.16,21 The combina-
tion of its receptor specificity and the existence of P-gp is thought
to be themajor factor behind the safety and side-effect profile of
ivermectin. Notably, some species, such as certain dog or horse
breeds, do not possess the gene encoding P-gp, and recently a
human case was found.22 Therefore, in specific animal species,
the use of ivermectin, especially at high dosages, can lead to
drowsiness, coma and death,23,24 clearly demonstrating the pro-
tective role of P-gp in humans.16

Safety considerations
Ivermectin has an extremely well-established safety profile, with
billions of doses being administered since the inception of the
Mectizan Donation Programme by Merck in 1987 for onchocerci-
asis and filariasis control.25 Pharmacokinetic dosing studies have
suggested that doses of ivermectin up to six times the recom-
mended dose as well as repeated daily or monthly doses26–32 are
well tolerated. There is a well-established risk associated with the
use of ivermectin in Loa loa (a filariform parasite) endemic areas.
In this setting, ivermectin can lead to a rapid die-off of large num-
bers of Loa loamicrofilaria in the central nervous system, leading
to a potentially fatal encephalopathy.33,34
Currently, due to a lack of safety data, ivermectin should not

be given to pregnant women35, however, inadvertent use in con-
trol programmes has occurred regularly.36 The majority of data
currently are based on observed teratogenicity fromanimalmod-
els using P-gp-deficient mice37 or very high doses in rats and rab-
bits with 10–50 and 7–30 times the human equivalent, respec-
tively.38–40 The relevance of these animal data to humans is
therefore questionable and better data are needed. Currently
children whose weight or height is<15 kg or<90 cm are also not
recommended to receive ivermectin. The basis for these restric-
tions is the unproven concept of an immature ‘leaky’ blood–brain
barrier, for which there is no scientific support.41–43 In contrast to
theoretical concerns, there is an increasing accumulation of real-
world data showing safety among young children.44–50

Malaria
Malaria control measures over the past 2 decades have resulted
in a significant reduction in morbidity and mortality, driven
by a combination of long-lasting insecticidal nets, indoor

residual spraying, artemisinin-based combination therapy and
rapid diagnostic tests.51 However, the emergence of drug and
insecticide resistance, and changes in vector behaviour, such as
increased outdoor biting and resting behaviour, is threatening
this progress.52–54 Over the past decade, interest has emerged
in the use of ivermectin as an additional tool for the control of
malaria.55,56
Anophelesmosquitoes predominantly express GluCls in organs

and tissues responsible for their sensory and motor function.14
The same channels exist in the culicine nervous system; however,
ivermectin appears to be unable to penetrate into the haemocoel
and only exerts an effect at levels 10 times greater than shown
for Anopheles sp. Its effect on culicine species such as Aedes and
Culex is therefore greatly reduced57,58 unless the drug is injected
directly into the haemocoel.59
Several historical studies have explored the use of ivermectin

and its impact on mosquito control,60–62 but significant interest
for malaria vector control has re-emerged recently.63 These
studies use different methods to assess ivermectin’s effect.
Specifically, membrane feeding assays (MFAs) involve feeding
mosquitos on donated blood, either from donors who have taken
oral ivermectin or on blood spiked with ivermectin. Direct feeding
assays (DFAs) involve feeding mosquitos on volunteers treated
with ivermectin. Different Anopheles species, such as Anopheles
gambiae (MFA, DFA), Anopheles arabiensis (MFA), Anopheles
aquasalis (MFA, DFA), Anopheles minimus (DFA), Anopheles
campestris (DFA), Anopheles sawadwongporni (DFA), Anopheles
dirus (MFA), Anopheles darlingi (MFA), Anopheles farauti (DFA),
and Anopheles stephensi (human MFA, mouse DFA), have all
shown highmortality after ingesting blood containing ivermectin
levels comparable to those reached in humans after an oral dose
of 200, 400 and 600 μg/kg body weight.58,64–69 The IVERMAL
trial found no difference in ivermectin mosquitocidal toxicity
between MFAs and DFAs against A. gambiae using placebo
(n=23), 300 μg/kg/d (n=24) or 600 μg/kg/d (n=22).70 Although
DFAs showed higher mosquitocidal toxicity than MFAs in a trial
by Sampaio et al.,64 the number of participants was small (n=6).
Pharmacokinetic considerations limit the effectiveness of a

single standard dose of ivermectin of 200 μg/kg for malaria con-
trol programmes. The half-life of 18 h means that these dosing
regimens only generate a mosquitocidal effect lasting for about
5–6 d,71 which is inadequate for malaria control. Furthermore,
vectors from outside the treated areas, especially in open sys-
tems on larger landmasses, will quickly repopulate these losses.
To improve the pharmacokinetic profile, and hence the duration
of its endectocidal effect, alternative dosages have been sug-
gested: a single dose of 400 μg/kg or three consecutive daily
doses of 300 μg/kg.72 The latter regime was investigated in the
IVERMAL trial conducted in Kenya and was given once a month
for three consecutive months in human volunteers. The treat-
ment had a good safety profile and the mosquitocidal effect
lasted for up to 28 d.73
In the Repeat Ivermectin Mass Drug Administrations for Con-

trol of Malaria: a Pilot Safety and Efficacy Study (RIMDAMAL) con-
ducted in Burkina Faso, villages were randomly assigned to iver-
mectin (150–200 μg/kg) and albendazole (400mg) at baseline in
both arms followed by the same single doses of ivermectin every
3 weeks over 18 weeks in the intervention arm or no treatment
in the control arm. The study aimed to evaluate the effect on

202



Transactions of the Royal Society of Tropical Medicine and Hygiene

the cumulative incidence of uncomplicated malaria. The results
showed evidence of a reduction in incidence in children <5 y of
age,74 although the statistical methods for analysis have been
disputed.75,76
The results of these relatively small trials have led to

the planning of larger trials. The 300 μg/kg/d for 3 d treat-
ment schedule is now being evaluated in ongoing or planned
cluster randomized trials: the MASSIV trial (NCT03576313) in
Gambia,77 the Adjunctive Ivermectin Mass Drug Administration
for Malaria Control (MATAMAL) trial in the Bijagos Islands, in
Guinea Bissau (NCT04844905) and RIMDAMAL II in Burkina Faso
(NCT03967054). The BOHEMIA trial is currently planned to be
conducted in Tanzania and Mozambique, in which ivermectin will
be administered to both livestock and humans. Another trial is
planned in Thailand using ivermectin in rubber plantation work-
ers, but it has not yet started.

Potential veterinary application of ivermectin
as part of malaria MDA
Several Anopheles species, such as A. arabiensis and A. farauti,
exhibit both anthropophagy and zoophagy, particularly for
peridomestic animals such as cattle and pigs.78,79 These alterna-
tive feeding sources can therefore sustain the mosquito popula-
tion and complicate control efforts.80 Treating livestock therefore
offers a possible addition for vector control for malaria transmis-
sion and has been shown to be feasible in field studies in Belize,
Burkina Faso and Tanzania.81–83 Veterinary applications of iver-
mectin allow for higher and repeated dosing than are possible in
humans, as well as application of potential long-lasting formula-
tions.84–86
Similarly, Glossina palpalis and Glossina morsitans, the vectors

for Trypanosoma gambiense and Trypanosoma rhodesiense, West
and East African sleeping sickness, respectively, take their blood
meal from humans, wild animals and livestock alike. Field stud-
ies have shown these species exhibit similar susceptibility to iver-
mectin as Anopheles mosquitos. This included dose-dependent
reduced lifespan and fecundity.87–89 Similar data from animal
models exist for some triatomine bugs (Triatoma infestans and
Rhodnius neglectus), vectors of Trypanosoma cruzi, the causative
agent of Chagas disease.90
This ‘One Health’ approach could offer additional advantages

by treating animals for endoparasites and ectoparasites, improv-
ing the health and economic value of domestic animals,91 while
also providing vector control for malaria and other diseases.
The use of ivermectin in animals is restricted by public health
policies, such as the withdrawal times for slaughter or milk-
ing,92 which could make this strategy technically challenging.93
Another important aspect is the effect of ivermectin in livestock
on dung degradation and non-target fauna, which could cause
environmental concerns94–98 and needs to be addressed.

Soil-transmitted helminths (STHs)
STHs are among the most prevalent parasitic infections in
humans both in tropical and subtropical regions of the globe99,100

and are associatedwith broad health impacts including anaemia,
stunting and delays in cognitive development.101
MDA with benzimidazol derivatives (albendazole and meben-

dazole) is recommended to reduce the STH burden in a commu-
nity,102 because these drugs have a significantly greater efficacy
compared with ivermectin in most STH species.103,104 Data on
the effect of ivermectin on hookworms show a variable reduc-
tion of 0–33%,105,106 with the most successful application being
two doses of 200 μg/kg 10 d apart reported from Brazil.8 In com-
parison, both Ascaris lumbricoides and Strongyloides stercoralis
respond well to a single standard ivermectin dose of 200 μg/kg
each, with field studies finding cure rates of 98–100% and 83–
96%,107,108 respectively. Reports on Trichuris trichiura are mixed,
ranging from 11% in Tanzania to 84% in Peru.8,103,105,109,110 The
reasons for these geographical differences in susceptibility are
not yet well understood but could be due to different species.111
Other nematodes such as Ancylostoma braziliense, Ancylostoma
caninum and Uncinaria stenocephala are primarily zoonotic dis-
eases that cause cutaneous larva migrans (CLM) syndrome in
humans. Depending on the clinical presentation, one to two stan-
dard doses of ivermectin have been used and have been shown
to resolve the lesions in 81–100% of cases.112,113
Currently there are no published data evaluating the impact of

higher-dose multiple treatment regimes, as utilised for malaria
control, on STHs. Ongoing malaria MDA provides an additional
opportunity to investigate these potential synergistic impacts.

Filarial worms
Filarial infections were the first human disease targeted for con-
trol using ivermectin. Widespread roll-out of ivermectin MDA has
produced a significant impact on filarial disease–related morbid-
ity, including blindness and severe pruritus caused by O. volvu-
lus and lymphatic obstruction and secondary bacterial skin dis-
ease caused by Wuchereria bancrofti, Brugia malayi and Brugia
timori.114–116
Ivermectin as a single dose administered annually at 150–

200 μg/kg for onchocerciasis will reduce the microfilarial load by
99% after 1–2 months and administered over 16–18 y interrupts
transmission and leads to elimination.117,118 Recent data have
shown that a sterilizing effect on adult onchocercal filaria can be
achieved with administration every 3 months over 3 y.119
In lymphatic filariasis (LF), caused by W. bancrofti, B. malayi

and B. timori, ivermectin (200 μg/kg) lacks activity against the
adult filaria responsible for the pathology and it is therefore
used in combination with either albendazole or diethylcarba-
mazine citrate (DEC) or as a triple combination of all three outside
onchocerciasis areas.120–122 The latter combination of ivermectin,
DEC and albendazole has shown superior efficacy compared with
the dual combination120,122–124 and is now recommended by the
World Health Organization for use in many LF-endemic regions.
Ivermectin is used with caution in Loa loa-endemic areas

with a surveillance system for early detection and management
of post-treatment severe adverse events, as it results in rapid
killing of microfilaria (mf),125 which can cause acute encephali-
tis, leading to disability and even death.33,34,126 For other com-
mon filarial parasites such as Mansonella streptocerca and
Mansonella ozzardi, ivermectin treatment with 150 μg/kg and
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150–200 μg/kg, respectively, leads to a reduction of microfi-
laria and possibly some impact onmacrofilaria.127–130 Mansonella
perstans was shown not to be affected by a standard single
dose of ivermectin,131–134 with reports of repeated doses being
potentially more successful.32,135 Importantly, ivermectin does
not appear to affect the vector of these filaria, Culicoides sp.136,137

Food-borne nematodes
For food-borne nematodes such as Gnathostoma sp., the rec-
ommended daily dosage is 200 μg/kg for 2–3 d.138,139 Cau-
tion is advised in infections of the central nervous system, as
treatment could cause deleterious inflammation. For trichinel-
losis, ivermectin was effective in rat and mouse models against
the free-living stage in the gut but was ineffective against the
encysted stage of the parasite.140,141

Other nematodes
Enterobius vermicularis, colloquially known as pin-
worm/threadworm, is a common cosmopolitan parasite pri-
marily causing anal pruritus and in rare cases appendicitis. It
has been successfully treated with a single dose of ivermectin
(200 μg/kg), with a study from Peru reporting cure rates of 89%
3 d after treatment and 78% after 30 d,109 but a study from
China showed a lower cure rate of 52.9%.105

Ectoparasites
Scabies is a globally occurring skin disease caused by the sca-
bies mite (Sarcoptes scabiei var. hominis) that is especially com-
mon in poor and crowded communities in tropical and subtropi-
cal areas142 and causes both significant morbidity and mortality
through its downstream sequelae.143,144
There is limited pharmacodynamic data available on the use

of ivermectin for scabies, although an animal model in pigs is
available.145 Doses ≤150 μg/kg have lower efficacy,146 and even
at standard doses of 200 μg/kg, increased survival times have
been found in vitro over the last decade.147 The use of a higher
dose and repeated administration may improve the cure rate.143
Several large-scale trials have demonstrated significant reduc-

tions in the prevalence of scabies following MDA with ivermectin.
The SkinHealth Intervention Fiji Trial was a three-arm randomised
trial in which communities were randomized to standard of care,
MDA with topical permethrin or MDA with ivermectin. MDA was
superior to other treatment options, with a relative reduction
in prevalence of 94% for ivermectin, 62% for permethrin and
49% for standard of care.9 The Azithromycin Ivermectin Mass
Drug Administration trial on the Solomon Islands, a prospective
single-arm, before and after community intervention trial using
ivermectin and azithromycin in combination and permethrin 5%
for pregnant and breastfeeding women and children weighing
<12.5 kg, showed an 88% relative reduction of baseline sca-
bies prevalence after 12 months.148 Similar results have been
reported from studies in Australia using ivermectin MDA for sca-
bies control in remote aboriginal communities10 and Brazil using

ivermectin as a community intervention for several susceptible
parasites.8,149
Success of ivermectin-based MDA for scabies control is depen-

dent on treating individuals with a contraindication to iver-
mectin. Currently this is through topical permethrin treatment,
but increasing safety data on ivermectin in these populations,
especially for children <5 y of age, may increase the proportion
of the population who can be treated with ivermectin.
Humans are host to three species of closely related lice:

Pediculus humanus capitis, Pediculus humanus corporis and
Phtirus pubis. Of these, only the body louse P. humanus corporis
commonly acts as a vector of potentially life-threatening infec-
tious diseases. However, recent data have shown the potential
for head lice to also transmit similar pathogens,150 are a cause of
bacterial pyoderma of the scalp151 and even cause iron deficiency
in heavy infestations.152 All three of these species cause pruritus
and hence morbidity.153,154
In a cluster randomized trial including centres in the UK,

Ireland, France and Israel, a dose of 400 μg/kg/d 1 week apart
resulted in a 97.1% reduction of head lice on day 15.155 Another
randomized household-level trial in Brazil using 200 μg/kg/d
twice 10 d apart led to 16% in the intervention arm being
louse free compared with 4% in the control arm at 60 d post-
intervention.156 Several non-randomized studies from Egypt and
Mexico using 200 μg/kg/d showed cure rates of 92.5–97% after a
second dose 8 d later if the first dose failed.157–159 A study in the
Solomon Islands using MDA with a dose of 200 μg/kg/d on days
0 and 7 resulted in a 89% reduction of head lice at day 14 post-
MDA160 and a study in Thailand using the same schedule showed
a 95% reduction at 14 d post-MDA.161
A study from Senegal using 400 μg/kg/d resulted in a 77.4%

reduction in the ivermectin arm compared with 32.3% in the
d-phenothrin shampoo arm at day 15. However, 7.4% of the
children showed treatment failure to ivermectin162 and there
was some evidence of potential ivermectin resistance in head
lice. Additional molecular analysis confirmed a genetic muta-
tion of the GluCl receptor, the primary target of ivermectin in
arthropods.163
Data on ivermectin for the treatment of body lice and pubic

lice are scarce and mainly from smaller case series or cohort
studies. These data appear to show a significant reduction in
prevalence.164,165 In this context, a potential ivermectin resis-
tance pathway has been described outside of the GluCl recep-
tor, called complexin, a synaptic exocytosis and neurotransmitter
release regulator protein.166 Aside from resistance, reintroduction
and re-infestation is a common problem in all three species of lice
even after successful MDA.160,164,167
Data from Brazil on the treatment of Tunga penetrans with a

standard dose of ivermectin did not show efficacy, although it
may be dependent on seasonality and the timing of the appli-
cation.149,168 In myiasis, which is common in tropical communi-
ties and can cause significantmorbidity, ivermectin has been suc-
cessfully used to facilitate extraction of larvae.169,170
There are only experimental blood feeding data from human

studies using ivermectin to treat Cimex lectularius and Cimex
hemipterus, the cause of bed bugs, a global nuisance. These data
show some impact, but real-world data are unavailable.171–173
Ivermectin has also been usedwith variable success for the treat-
ment of Demodex mites, which are associated with a variety of
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Table 1. Ivermectin use for endoparasites

Endoparasites

Potential
impact of
ivermectin
MDA

Ivermectin dose
(individual treatment)

Ivermectin MDA
schedule for control

Reduction at
recommended dose

(%)a References
Ascaris lumbricoides Yes 200 μg/kg, once 98–100% 8, 103, 106
Necator americanus Unclear Not recommended, two

doses of 200 μg/kg
10 d apart

0–33% single dose of
20 μg/kg, 68% two
doses of 200 μg/kg

10 d apart

8, 103, 105,
106

Ancylostoma
duodenale

Unclear Not recommendedb b b

Strongyloides
stercoralisc

Yes 200 μg/kg once or
multiple several days
apart (day 1, 2, 15

and 16)

83–96% 8, 103, 106,
107, 108,
109

Trichuris trichiurad Yes 200 μg/kg for 3 de,
200 μg/kg twice 10

days apart

11–88%c; 81.7–84%
200 μg/kg twice 10 d

apart

8, 103, 105,
109, 110

Enterobius
vermicularis

Yes 200 μg/kg once, plus
repeat after 14 d

52.6–89% 105, 109

Onchocerca volvulus Yes 150–200 μg/kg
biannually or annually

99% reduction in
microfilaria after
1–2 months;
transmission

interruption and
elimination after

16–18 y

117–119

Loa loa Yes Not recommended 125
Wuchereria bancrofti Yes Ivermectin

monotherapy not
recommended

200 μg/kg annually in
combination with a
second drug or as
triple therapy

94% reduction in
microfilaria using IDA

120–124

Brugia malayi Yes seeW. bancrofti
Brugia timori Yes seeW. bancrofti
Mansonella perstans Unclear 200–600 μg/kg once,

not recommended
400 μg/kg once then
800 μg/kg annually
for 3 y or 400 μg/kg
twice then 800 μg/kg
every 3 months for

3 y20

No effect short term;
MDA 85–97%
reduction

131–135

Mansonella
streptocerca

Yes 150 μg/kg once 55–60% reduction in
microfilariaf

127, 128

Mansonella ozzardi Yes 150–200 μg/kg once 94–100% reduction in
microfilaria

128–130

Gnathostoma sp. Yes 200 μg/kg for 2 d 76–100% 138, 139
Trichinella spiralis Mixed 200 μg/kg once, not

recommended
No effect on encysted
form; 80–90% in free

living formsg

140, 141

Ancylostoma
braziliense,
Ancylostoma
canium, Uncinaria
stenocephalah

Yes 200 μg/kg, 1–2 doses
depending on the
clinical picture

81–100% 112, 113

aCure rate if not otherwise indicated.
bPossibly a similar situation as N. americanus; no speciation conducted.
cIn immunocompetent patients.
dT. trichiuramay consist of several species explaining the geographically different rates in reduction after treatment.
eUnknown.
fPotential effect on macrofiliaria similar to O. volvulus.
gOnly animal model data available.
hAll responsible for CLM.
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Table 2. Use of ivermectin for ectoparasites

Ectoparasites
(excluding
Anopheles)

Potential
impact of
ivermectin
MDA

Ivermectin dose
(individual
treatment)

Ivermectin MDA
schedule for
control

Reduction at
recommended
dose (%)a

Parasite
mortality (%)
after n days References

Sarcoptes scabiei
var. hominis
(scabies)

Yes 200 μg/kg/day,
2 weeks apart or
a single dose

200 μg/kg/d
1–2 weeks
apart

83–100% at
12 monthsb

8–10,
146–149

Pediculus humanus
capitis (head
louse)

Yes 200–400 μg/kg/d
1 week apart

77.4–97.1% for
400 μg/kg/d,
89.1–95% for
200 μg/kg/d

154–162

Pediculus humanus
corporis (body
louse)

Yes 200 μg/kg on day 0,
7 and 14

78% 164

Phtirus pubis (pubic
louse)

Yes 200 μg/kg/d
1–2 weeks apart

100% 165

Cimex lectularius
(common
bedbug)

Yes 200 μg/kg once 67% after 20 d;
blood meal
3 h after oral
ivermectin:
moulting
reduced to 0%
at 20 d in the
same groupc

171–173

Cimex hemipterus
(tropical bedbug)

Uncleard Unclear Unclear Uncleare d

Demodex sp. Likely 200 μg/kg Unclear 174–176
Tunga penetrans No 200 μg/kg 149, 168
Myiasis (botfly
larva)

Unclearf 200 μg/kg Unclear 169, 170d

aCure rate if not otherwise indicated.
bTopical treatment for children <15 kg.
cWithout molting sexual maturity does not occur.
dCircumstantial observation.
eExpected to be similar to C. lectularius.
fRecommended only in conjunction with surgery.

inflammatory skin diseases, including acne, rosacea, blepharitis
and peri-oral dermatitis,174–176 but larger randomized studies are
needed to show specific efficacy of ivermectin.

Conclusions
Ivermectin has been the mainstay of onchocerciasis and LF con-
trol programmes worldwide. Within the last decade, ivermectin
has shown considerable promise for use in a broader range of
diseases, in particular for malaria, scabies and as an adjunct for
STH control. These diseases have highly overlapping distributions,
suggesting that in some circumstancesMDA formalariamay also
result in additional health and economic benefits through ‘off-
target’ effects.
Ongoing and plannedmalaria control trials utilising ivermectin

MDA provide opportunities to explore these potential synergies

(Box 1). Incorporating STH and scabies endpoints into these trials
should be strongly considered to more fully capture the poten-
tial health impacts of these programmes. On the other hand,
current onchocerciasis, LF, STH and scabies dosing schedules are
unlikely to have significant impacts on mosquito populations or
malaria transmission. A key question is whether the platforms
can be coordinated alongside newer malaria control efforts to
accelerate progress. The expansion of ivermectin use requires
careful consideration of the development of resistance in both
on- and off-target organisms. Potential environmental problems
could also arise from its use in animals for malaria vector control
or its impact on non-target insect species.94,96
In summary, as we enter the decade of the Sustainable Devel-

opment Goals, it appears the role of ivermectinmay be expanding
not contracting. Data emerging from recently completed, ongo-
ing and future well-designed clinical trials using ivermectin MDA
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formalaria control in varied settings, asmentioned in themalaria
section, will answer key programmatic questions about its future
role in disease control programmes worldwide.

Box 1.

After >30 y as the mainstay for control and elimination pro-
grammes for onchocerciasis and LF there is increasing evidence for
a range of expanded indications including scabies andmalaria con-
trol.
Extended use of ivermectin MDA for malaria vector control has the
potential to impact several co-endemic parasites by reducing their
burden of disease.
There is a need for exploration of reliable affordable generic supply
of ivermectin to support expanded applications forwhich donations
are currently unlikely.
Safety data on use in, at present, excluded populations such as
pregnant or breastfeeding women and younger children (<5 y of
age) is needed.
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