Skip to main content
. 2022 Mar 3;144:105350. doi: 10.1016/j.compbiomed.2022.105350

Table 2.

Public Imaging Datasets used for COVID-19 Diagnosis.

Reference Image type Links Reference Papers
Ali (2020) [50] CXR https://www.kaggle.com/ahmedali2019/pneumonia-sample-xrays [51]
BIMCV (2020) [52] CXR https://bimcv.cipf.es/bimcv-projects/padchest/ [53]
CC-CCII database [54] CT http://ncov-ai.big.ac.cn/download?lang = en [30,55]
Chest Imaging (2020) [56] CXR https://threadreaderapp.com/thread/1243928581983670272.html [5,57]
Chung (2020) [58] CXR https://github.com/agchung/Actualmed-COVID-chestxray-dataset [26,57,[59], [60], [61]]
Cohen et al. (2020) [62] CXR and CT https://github.com/ieee8023/covid-chestxray-dataset [5,9,10,23,[26], [27], [28],51,53,55,57,[59], [60], [61],[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90]]
COVIDGR [91] CXR https://dasci.es/es/transferencia/open-data/covidgr/ [91]
Dadario AMV. COVID-19 X-rays CXR and CT http://dx.doi.org/10.34740/KAGGLE/DSV/1019469 [72]
European Society of Radiology [92] CXR and CT https://www.eurorad.org/advanced-search?search=COVID [65]
Gunraj et al. (2020) [93] CT https://www.kaggle.com/hgunraj/covidxct?select=2A_images [94]
Irvin et al. (2019) [95] CXR https://stanfordmlgroup.github.io/competitions/chexpert/ [57]
Jaeger et al. [96] CXR https://openi.nlm.nih.gov/faq#faq-tb-coll [23,27]
JSRT [97] CXR http://db.jsrt.or.jp/eng-01.php [23,27,70]
Kermany et al. (2018) [48] CXR https://data.mendeley.com/datasets/rscbjbr9sj/2 [23,69,72,75,77,81,89,90,98,99]
Khoong (2020) [100] CXR https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets [59]
LIDC–IDRI database [101] CT https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI [30]
Montgomery tuberculosis [96] CXR https://www.kaggle.com/raddar/tuberculosis-chest-xrays-montgomery [23,27]
Mooney (2017) [49] CXR https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/version/2 [5,10,26,57,60,[63], [64], [65],67,72,73,76,85,87,88]
MosMedData [102] CT https://mosmed.ai/datasets/covid19_1110/ [30,103]
Patel et al. (2020) [104] CXR https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia [94]
Praveen et al. (2020) [105] CXR https://www.kaggle.com/praveengovi/coronahack-chest-xraydataset [27]
Rahman et al. (2020) [106] CXR https://www.kaggle.com/tawsifurrahman/covid19-radiography-database [5,51,59,61,74,75,107]
Radiology Assistant CXR and CT https://radiologyassistant.nl/chest/covid-19/covid19-imaging-findings [63]
Radiopaedia [108] CXR and CT https://radiopaedia.org/search?lang = us&q = covid&scope = cases [5,9,26,60,79,90,109,110]
RSNA (2020) [111] CXR https://www.kaggle.com/c/rsna-pneumonia-detection-challenge [5,26,28,80,90,109,112]
Sajid [113] CXR https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images [59]
Shenzhen [114] CXR https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.html [23]
SIRM (2020) [115] CXR and CT https://sirm.org/category/senza-categoria/covid-19/ [5,26,57,60,65,90,109,110]
SARS-COV-2 CT-Scan (2020) [116] CT https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset [9,59,117,118]
Tianchi-Alibaba database [119] CT https://tianchi.aliyun.com/dataset/dataDetail?dataId = 90014 [30]
USCD-AI4H [120] CT https://github.com/UCSD-AI4H/COVID-CT [10,59,117,118,[121], [122], [123]]
Vaya et al. (2020) [124] CXR and CT https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/ [23,53]
Wang et al. (2017) [125] CXR https://github.com/muhammedtalo/COVID-19/tree/master/X-Ray, https://www.kaggle.com/nih-chest-xrays/sample [53,66,68,69,79,83,84,98]
Wang et al. (2020) [126] CXR https://github.com/lindawangg/COVID-Net [112]
Yan et al. (2020) [127] CT https://ieee-dataport.org/authors/tao-yan [103]