Table 13.
REF | Feature selection methods | The best model | Dataset | Result |
| ||||
[22] | RFE | RF | CKD dataset | AC = 100% |
PR = 100% | ||||
RE = 100% | ||||
FS = 100% | ||||
[27] | No | A hybrid model LR and RF | CKD dataset | AC = 99.94% |
E = 99.84% | ||||
S = 99.80% | ||||
[30] | CFS | AdaBoost based on KNN | CKD dataset | AC = 98.1% |
PR = 98% | ||||
RE = 98% | ||||
FS = 98% | ||||
[23] | Rffs, FS, FES, BS, BES | RF | CKD dataset | AC = 98.825% |
RE = 98.04% | ||||
[24] | Cost-sensitive ensemble feature ranking | An ensemble of decision tree models | CKD dataset | AC = 97.27% |
PRC = 99.44% | ||||
RE = 96.25% | ||||
FS = 97.68% | ||||
[25] | No | Random subspace-based KNN | CKD dataset | AC = 100% |
RE = 100% | ||||
[26] | Genetic search algorithm | Multilayer perceptron | CKD dataset | AC = 99.75% |
Our work | Relief-F | DT | CKD dataset | Cross-validation result AC = 100%, PRC = 100%, RRE = 100% FS = 100% result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100% |
GBT Classifier | CKD dataset | Cross-validation result AC = 100%, PRC = 100%, RRE = 100%, FS = 100%; result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100% |