Skip to main content
. 2022 Feb 23;2022:9898831. doi: 10.1155/2022/9898831

Table 13.

The comparison of performance between the previous studies and our work on the same dataset.

REF Feature selection methods The best model Dataset Result

[22] RFE RF CKD dataset AC = 100%
PR = 100%
RE = 100%
FS = 100%
[27] No A hybrid model LR and RF CKD dataset AC = 99.94%
E = 99.84%
S = 99.80%
[30] CFS AdaBoost based on KNN CKD dataset AC = 98.1%
PR = 98%
RE = 98%
FS = 98%
[23] Rffs, FS, FES, BS, BES RF CKD dataset AC = 98.825%
RE = 98.04%
[24] Cost-sensitive ensemble feature ranking An ensemble of decision tree models CKD dataset AC = 97.27%
PRC = 99.44%
RE = 96.25%
FS = 97.68%
[25] No Random subspace-based KNN CKD dataset AC = 100%
RE = 100%
[26] Genetic search algorithm Multilayer perceptron CKD dataset AC = 99.75%
Our work Relief-F DT CKD dataset Cross-validation result AC = 100%, PRC = 100%, RRE = 100% FS = 100% result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100%
GBT Classifier CKD dataset Cross-validation result AC = 100%, PRC = 100%, RRE = 100%, FS = 100%; result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100%