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Abstract

We introduce a strategy for learning image registration without acquired imaging data, producing 

powerful networks agnostic to contrast introduced by magnetic resonance imaging (MRI). While 

classical registration methods accurately estimate the spatial correspondence between images, 

they solve an optimization problem for every new image pair. Learning-based techniques are 
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fast at test time but limited to registering images with contrasts and geometric content similar to 

those seen during training. We propose to remove this dependency on training data by leveraging 

a generative strategy for diverse synthetic label maps and images that exposes networks to a 

wide range of variability, forcing them to learn more invariant features. This approach results 

in powerful networks that accurately generalize to a broad array of MRI contrasts. We present 

extensive experiments with a focus on 3D neuroimaging, showing that this strategy enables robust 

and accurate registration of arbitrary MRI contrasts even if the target contrast is not seen by the 

networks during training. We demonstrate registration accuracy surpassing the state of the art 

both within and across contrasts, using a single model. Critically, training on arbitrary shapes 

synthesized from noise distributions results in competitive performance, removing the dependency 

on acquired data of any kind. Additionally, since anatomical label maps are often available 

for the anatomy of interest, we show that synthesizing images from these dramatically boosts 

performance, while still avoiding the need for real intensity images. Our code is available at 

https://w3id.org/synthmorph.

IndexTerms—

Deformable image registration; data independence; deep learning; MRI-contrast invariance

I. Introduction

Image registration estimates spatial correspondences between image pairs and is a 

fundamental component of many neuroimaging pipelines involving data acquired across 

time, subjects, and modalities. Magnetic resonance imaging (MRI) uses pulse sequences 

to obtain images with contrasts between soft tissue types. Different sequences can 

produce dramatically different appearance even for the same anatomy. For neuroimaging, 

a range of contrasts is commonly acquired to provide complementary information, such 

as T1-weighted contrast (T1w) for inspecting anatomy or T2-weighted contrast (T2w) 

for detecting abnormal fluids [1]. Registration of such images is critical when combining 

information across acquisitions, for example to gauge the damage induced by a stroke 

or to plan a brain-tumor resection. While rigid registration can be sufficient for aligning 

within-subject images acquired with the same sequence [2], images acquired with different 

sequences can undergo differential distortion due to effects such as eddy currents and 

susceptibility artifacts, requiring deformable registration [3]. Deformable registration is 

also important for morphometric analyses [4]–[6], which hinge on aligning images with 

an existing standardized atlas that typically has a different contrast [7]–[9]. Given the 

central importance of registration tasks within and across contrasts, and within and across 

subjects, the goal of this work is a learning-based framework for registration agnostic to 

MRI contrast: we propose a strategy for training networks that excel both within contrasts 

(e.g. between two T1w scans) as well as across contrasts (e.g. T1w to T2w), even if the test 

contrasts are not observed during training.

Classical registration approaches estimate a deformation field between two images by 

optimizing an objective that balances image similarity with field regularity [10]–[16]. 

While these methods provide a strong theoretical background and can yield good results, 
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the optimization needs to be repeated for every new image pair, and the objective and 

optimization strategy typically need to be adapted to the image type. In contrast, learning-

based registration uses datasets of images to learn a function that maps an image pair to 

a deformation field aligning the images [17]–[24]. These approaches achieve sub-second 

runtimes on a GPU and have the potential to improve accuracy and robustness to local 

minima. Unfortunately, they are limited to the MRI contrast available during training and 

therefore do not generally perform well on unobserved (new) image types. For example, 

a model trained on pairs of T1w and T2w images will not accurately register T1w to 

proton-density weighted (PDw) images. With a focus on neuroimaging, we remove this 

constraint of learning methods and design an approach that generalizes to unseen MRI 

contrasts at test time.

A. Related Work

1) Classical Methods: Deformable registration has been widely studied [11], [12], 

[15], [16], [25]. Classical strategies implement an iterative procedure that estimates an 

optimal deformation field for each image pair. This involves maximizing an image-similarity 

metric, that compares the warped moving and fixed images, and a regularization term that 

encourages desirable deformation properties such as preservation of topology [10], [13]–

[15]. Cost function and optimization strategies are typically chosen to suit a particular task. 

Simple metrics like mean squared error (MSE) or normalized cross-correlation (NCC) [12] 

are widely used and provide excellent accuracy for images of the same contrast [26].

For registration across MRI contrasts, metrics such as mutual information (MI) [27] and 

correlation ratio [28] are often employed, although the accuracy achieved with them is 

not on par with the within-contrast accuracy of NCC and MSE [29]. For some tasks, e.g. 

registering intra-operative ultrasound to MRI, estimating even approximate correspondences 

can be challenging [30], [31]. While they are not often used in neuroimaging, metrics based 

on patch similarity [32]–[36] and normalized gradient fields [37]–[39] outperform simpler 

metrics, e.g. on abdominal computer-tomography (CT). Other methods convert images to 

a supervoxel representation, which is then spatially matched instead of the images [40], 

[41]. Our work also employs geometric shapes, but instead of generating supervoxels from 

input images, we synthesize arbitrary patterns (and images) from scratch during training to 

encourage learning contrast-invariant features for spatial correspondence.

2) Learning Approaches: Learning-based techniques mostly use convolutional neural 

networks (CNNs) to learn a function that directly outputs a deformation field given an image 

pair. After training, evaluating this function is efficient, enabling fast registration. Supervised 

models learn to reproduce simulated warps or deformation fields estimated by classical 

methods [21], [22], [24], [42]–[44]. In contrast, unsupervised models minimize a loss similar 

to classical cost functions [17], [45]–[47] such as normalized MI (NMI) [48] for cross-

contrast registration. In another cross-contrast registration paradigm, networks synthesize 

one contrast from the other, so that within-contrast losses can be used for subsequent 

nonlinear registration [29], [49]–[53]. These methods all depend on having training data of 

the target contrast. If no such data are available during training, models generally predict 

inaccurate warps at test time: a model trained on T1w-T1w pairs would fail when applied 
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within unseen contrasts (e.g. T2w-T2w) or across unseen contrast combinations (e.g. T1w-

T2w).

Recent approaches also use losses driven by label maps or sparse annotations (e.g. fiducials) 

for registering different imaging modalities labeled during training, such as T2w MRI and 

3D ultrasound within the same subject [54], [55], or aiding existing formulations with 

auxiliary segmentation data [17], [56]–[58]. While these label-driven methods can boost 

registration accuracy compared to approaches using intensity-based loss functions, they are 

dependent on the limited annotated images available during training. Consequently, these 

approaches do not perform well on unobserved MRI contrasts.

Data-augmentation strategies expose a model to a wider range of variability than the 

training data encompasses, for example by randomly altering voxel intensities or applying 

deformations [59]–[62]. However, even these methods still need to sample training data 

acquired with the target contrast. Similarly, transfer learning can be used to extend a trained 

network to new contrasts but does not remove the need for training data with the target 

contrast [63]. Given the continuing development of new and improved MRI contrast types at 

ever higher field strengths, the reduction in accuracy evidenced by existing methods in the 

presence of novel image contrast becomes a limiting factor.

B. Contribution

In this work we present SynthMorph, a general strategy for learning contrast-agnostic 

registration (Fig. 1). At test time, it can accurately register a wide variety of acquired 

images with MRI contrasts unseen during training. SynthMorph enables registration of 

real images both within and across contrasts, learning only from synthetic data that far 

exceed the realistic range of medical images. During training we synthesize images from 

label maps, whereas registration requires no label maps at test time. First, we introduce a 

generative model for random label maps of variable geometric shapes. Second, conditioned 

on these maps, or optionally given other maps of interest, we build on recent methods 

to synthesize images with arbitrary contrasts, deformations, and artifacts [64]. Third, the 

strategy enables us to use a contrast-agnostic loss that measures label overlap, instead 

of an image-based loss. This leads to two SynthMorph network variants (sm) that yield 

substantial generalizability, both capable of registering any contrast combination tested 

without retraining: sm-shapes trains without acquired data of any kind, matches classical 

state-of-the-art registration of neuroanatomical MRI, and outperforms learning baselines 

at cross-contrast registration. Variant sm-brains trains on images synthesized from brain 

segmentations only and substantially outperforms all classical and learning-based baselines 

tested.

This work builds on and extends a preliminary conference paper [65] presented at 

the IEEE International Symposium on Biomedical Imaging (ISBI) 2021. The extension 

includes a series of new experiments, new analyses of the framework and regularization, 

and a substantially expanded discussion. We also show that networks trained within the 

SynthMorph strategy generalize to new image types with MRI contrasts unseen at training. 

Our contribution focuses on neuroimaging but provides a general learning framework that 

can be used to train models across imaging applications and machine-learning techniques. 
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Our code is freely available as part of the VoxelMorph library [66] and at https://w3id.org/

synthmorph.

II. Method

A. Background

Let m and f be a moving and a fixed 3D image, respectively. We build on unsupervised 

learning-based registration frameworks and focus on deformable (non-linear) registration. 

These frameworks use a CNN hθ with parameters θ that outputs the deformation ϕθ = hθ(m, 

f) for image pair {m, f}.

At each training iteration, the network hθ is given a pair of images {m, f}, and parameters 

are updated by optimizing a loss function ℒ θ; m, f, ϕθ  similar to classical cost functions, 

using stochastic gradient descent. Typically, the loss contains an image dissimilarity term 

ℒdis m ∘ ϕθ, f  that penalizes differences in appearance between the warped image and the 

fixed image, and a regularization term ℒreg(ϕ) that encourages smooth deformations

ℒ θ; m, f, ϕθ = ℒdis m ∘ ϕθ, f + λℒreg ϕθ , (1)

where ϕθ = hθ(m, f) is the network output, and λ controls the weighting of the terms. 

Unfortunately, networks trained this way only predict reasonable deformations for images 

with contrasts and shapes similar to the data observed during training. Our framework 

alleviates this dependency.

B. Proposed Method Overview

We strive for contrast invariance and robustness to anatomical variability by requiring no 

acquired training data, but instead synthesizing arbitrary contrasts and shapes from scratch 

(Fig. 1). We generate two paired 3D label maps {sm, sf} using a function gs(z) = {sm, 

sf} described below, given random seed z. However, if anatomical labels are available, we 

can use these instead of synthesizing segmentation maps. We then define another function 

gI sm, sf, z = m, f  (described below) that synthesizes two 3D intensity volumes {m, f} 

based on the maps {sm, sf} and seed z.

This generative process resolves the limitations of existing methods as follows. First, 

training a registration network hθ(m, f) using the generated images exposes it to arbitrary 

contrasts and shapes at each iteration, removing the dependency on a specific MRI contrast. 

Second, because we first synthesize label maps, we can use a similarity loss that measures 

label overlap independent of image contrast, thereby obviating the need for a cost function 

that depends on the contrasts being registered at that iteration. In our experiments, we use 

the (soft) Dice metric [67]

ℒdis′ ϕ, sm, sf = − 2
J ∑

j = 1

J smj ∘ ϕ ⊙ sf
j

smj ∘ ϕ ⊕ sf
j , (2)
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where sj represents the one-hot encoded label j ∈ {1, 2, …, J} of label map s, and ⊙ and ⊕ 
denote voxel-wise multiplication and addition, respectively.

While the framework can be used with any parameterization of the deformation field ϕ, in 

this work we use a stationary velocity field (SVF) v, which is integrated within the network 

to obtain a diffeomorphism [11], [45], [68], that is invertible by design. We regularize ϕ 
using ℒreg(ϕ) = 1

2 ∥ ∇u ∥2, where u is the displacement of the deformation field ϕ = Id + u.

C. Generative Model Details

1) Label Maps: To generate input label maps with J labels of random geometric shapes, 

we first draw J smoothly varying noise images pj (j ∈ {1, 2, …, J}) by sampling voxels 

from a standard distribution at lower resolution rp and upsampling to full size (Fig. 2). 

Second, each image pj is warped with a random smooth deformation field ϕj (described 

below) to obtain images pj = pj ∘ ϕj. Third, we create an input label map s by assigning, for 

each voxel k of s, the label j corresponding to image pj that has the highest intensity, i.e. 

sk = arg maxj pj k .

Given a selected label map s, we generate two new label maps. First, we deform s with a 

random smooth diffeomorphic transformation ϕm (described below) using nearest-neighbor 

interpolation to produce the moving segmentation map sm = s ◦ ϕm. An analogous process 

yields the fixed map sf.

Alternatively, if segmentations are available for the anatomy of interest, such as the brain, 

we randomly select and deform input label maps instead of synthesizing them (Fig. 3). 

To generate two different images, we could start by using a single segmentation twice, 

or two separate ones. In this work, we sample separate brain label maps as this captures 

more realistic variability in the correspondences that the registration network has to find. In 

contrast, for sm-shapes training, we use a single label map s as input twice to ensure that 

topologically consistent correspondences exist.

2) Synthetic Images: From the pair of label maps {sm, sf}, we synthesize gray-scale 

images {m, f} building on generative models of MR images used for Bayesian segmentation 

[69]–[72] (Fig. 3). We extend a publicly available model [64] to make it suitable for 

registration, which, in contrast to segmentation, involves the efficient generation of pairs of 

images (Section II-D.3). Given a segmentation map s, we draw the intensities of all image 

voxels that are associated with label j as independent samples from the normal distribution 

N μj, σj2 . We sample the mean μj and standard deviation (SD) σj for each label from 

continuous distributions U aμ, bμ  and U aσ, bσ , respectively, where aμ, bμ, aσ, and bσ are 

hyperparameters. To simulate partial volume effects [73], we convolve the image using an 

anisotropic Gaussian kernel K(σi=1,2,3) where σi = 1, 2, 3 U 0, bK .

We further corrupt the image with a spatially varying intensity-bias field B [74], [75]. We 

independently sample the voxels of B from a normal distribution N 0, σB
2  at lower resolution 

rB relative to the full image size (described below), where σB U 0, bB . We upsample B to 
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full size, and take the exponential of each voxel to yield non-negative values before we 

apply B using element-wise multiplication. We obtain the final images m and f through 

min-max normalization and contrast augmentation through global exponentiation, using a 

single normally distributed parameter γ N 0, σγ2  for the entire image such that m = mexp(γ), 

where m is the normalized moving image, and similarly for the fixed image (Fig. 3).

3) Random Transforms: We obtain the transforms ϕj (j = 1, 2, …, J) for noise image 

pj by integrating random SVFs vj [11], [45], [46], [68]. We draw each voxel of vj as 

an independent sample of a normal distribution N 0, σj2  at lower resolution rp, where 

σj U 0, bp  is sampled uniformly, and each SVF is integrated and upsampled to full size. 

Similarly, we obtain the transforms ϕm and ϕf based on hyperparameters rv and bv for 

sm-brains. For sm-shapes, we sample several SVFs vm N 0, σv2  at resolutions rv ∈ {1:8, 

1:16, 1:32}, drawing a different σv for each to synthesize a more complex deformation, 

since the fixed and moving images are based on the same input label map. The upsampled 

SVFs are then combined additively, and a similar procedure yields vf.

D. Implementation Details

1) Hyperparameters: The generative process requires a number of parameters. During 

training, we sample these based on the hyperparameters presented in Table I. Their values 

are not chosen to mimic realistic anatomy or a particular MRI contrast. Instead, we select 

hyperparameters visually to yield shapes and contrasts that far exceed the range of realistic 

medical images, to force our networks to learn generalizable features that are independent of 

the characteristics of a specific contrast [59]. We thoroughly analyze the impact of varying 

hyperparameters in our experiments.

2) Architecture: The models implement the network architecture used in the 

VoxelMorph library [17], [45]: a convolutional U-Net [60] predicts an SVF vθ from the 

input {m, f}. As shown in Fig. 4, the encoder has 4 blocks consisting of a stride-2 

convolution and a LeakyReLU layer (parameter 0.2), that each halve the resolution relative 

to the inputs. The decoder features 3 blocks that each include a stride-1 convolution, an 

upsampling layer, and a skip connection to the corresponding encoder block. We obtain the 

SVF vθ after 3 further convolutions at half resolution, and the warp ϕθ after integration and 

upsampling.

All convolutions use 3 × 3 × 3 kernels. We use a default network width of n = 256 unless 

stated otherwise. While the last layer of all networks employs n = 3 filters, we reduce the 

width to n = 64 for the parameter sweeps of Section III-G and the analysis of feature maps 

in Fig. 10 and Fig. 12, to lower the computational burden and memory requirements and 

thereby enable us to perform the analyses within our computational resources. We expect the 

results to be generally applicable as we use the same synthesis and registration architecture, 

while higher network capacities typically improve accuracy as long as the training set is 

large enough.
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3) Implementation: We implement our networks using TensorFlow/Keras [76]. We 

integrate SVFs using a GPU version [45], [46] of the scaling and squaring algorithm with 5 

steps [11], [68]. Training uses the Adam optimizer [77] with a batch size of one registration 

pair and an initial learning rate of 10−4, that we decrease to 10−5 in case of divergence. We 

train each model until the Dice metric converges in the synthetic training set, typically for 4 

× 105 iterations.

To generate pairs of images with high variability for registration, we extend a model [64] 

implemented for a single-input segmentation task. First, we improve efficiency to meet the 

increased computational demand. For example, we replace smoothing operations based on 

3D convolutions by 1D convolutions with separated Gaussian kernels. We also integrate 

spatial augmentation procedures such as random axis flipping into a single deformation 

field, enabling their application as part of one interpolation step. We also implement an 

interpolation routine with fill-value-based extrapolation on the GPU. The fill value enables 

extrapolating with zeros instead of repeating voxels where the anatomy extends to the edge 

of the image, making the spatial augmentation more realistic.

Second, we add to the data augmentation within the model by expanding random axis 

flipping to all three dimensions, and by drawing a separate smoothing kernel for each 

dimension of space enabling randomized anisotropic blurring. We implement a more 

complex warp synthesis that generates and combines SVFs at multiple spatial resolutions. 

We also extend most augmentation steps to vary across batches, thereby increasing 

variability.

Third, we simplify the code to improve its maintainability and reusability. We use the 

external VoxelMorph and Neurite libraries to avoid code duplication. We update the model 

to support the latest TensorFlow version to benefit from the full set of features including 

batch profiling and debugging in eager execution mode.

III. Experiments

We evaluate network variants trained with the proposed strategy and compare their 

performance to several baselines. The test sets include a variety of image contrasts and 

levels of processing to assess method robustness. Our goal is for SynthMorph to achieve 

unprecedented generalizability to new contrasts among neural networks, matching or 

exceeding the accuracy of all classical and learning methods tested.

A. Data

While SynthMorph training involves data synthesized from label maps that vary widely 

beyond realistic ranges, all tests and method comparisons use only acquired MRI data.

1) Datasets:

a) OASIS, HCP-A, BIRN:  We compile 3D brain-MRI datasets from the Open Access 

Series of Imaging Studies (OASIS) [78] and the Human Connectome Aging Project (HCP-

A) [79], [80]. OASIS includes T1w MPRAGE acquired at 1.5 T with ~(1 mm)3 resolution. 

HCP-A includes both T1w MEMPRAGE [81] and T2w T2SPACE [82] scans acquired at 
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3 T with 0.8 mm isotropic resolution. We also use PDw 1.5-T BIRN [83] scans from 8 

subjects, which include manual brain segmentations. Fig. 6 shows typical image examples.

b) UKBB, GSP:  We obtain 7000 skull-stripped T1w scans acquired at 3 T field strength. 

Of these, we source 5000 MPRAGE images with 1 mm isotropic resolution from the UK 

Biobank (UKBB) [84] and 2000 MEMPRAGE [81] scans with 1.2 mm isotropic resolution 

from the Brain Genomics Superstruct Project (GSP) [85].

c) Multi-FA, Multi-TI:  We compile a series of spoiled gradient-echo (FLASH) [86] 

images for flip angles (FA) varied between 2° and 40° in 2° steps. For each of 20 subjects, 

we obtain contrasts ranging from PDw to T1w using the steady-state signal equation with 

acquired parametric maps (T1, T2*, PD) and sequence parameters: repetition time (TR) 

20 ms, echo time (TE) 2 ms. Equivalently, we compile a series of MPRAGE images 

for inversion times (TI) varied between 300 ms and 1000 ms in steps of 20 ms. For 

each of 20 subjects, we fit MPRAGE contrasts based on MP2RAGE [87] echoes acquired 

with parameters: TR/TE 5000/2.98 ms, TI1/TI2 700/2500 ms, FA 4°. Fig. 9 shows typical 

examples of these data.

d) Buckner40:  We derive 40 distinct-subject segmentations with brain and non-brain 

labels from T1w MPRAGE scans of the Buckner40 dataset [88], a subset of the fMRIDC 

structural data [89].

e) Cardiac MRI:  We gather cine-cardiac MRI datasets from 33 subjects [90]. Each frame 

is a stack of thick 6–13 mm slices with ~(1.5 mm)2 in-plane resolution. The data include 

manually drawn contours outlining the endocardial and epicardial walls of the left ventricle. 

Fig. 15 shows representative frames.

2) Processing: As we focus on deformable registration, we map all brain images into a 

common 160×160×192 affine space [4], [91] at 1 mm isotropic resolution. Unless manual 

segmentations are available, we derive brain and non-brain labels for skull-stripping and 

evaluation using the contrast-adaptive SAMSEG [6] method.

For each subject of the multi-FA and multi-TI datasets, we derive brain labels from a single 

acquired T1w image using FreeSurfer [4], ensuring identical labels across all MRI contrasts 

obtained for the subject.

We resample all cardiac frames to 256×256×112 volumes with isotropic 1-mm voxels and 

transfer the manual contours into the same space.

3) Dataset Use:

a) Training:  We use the Buckner40 label maps for data synthesis (Fig. 5) and 

SynthMorph training. For the learning baselines, we use T1w and T2w images from 100 

HCP-A subjects, and all T1w images from GSP and UKBB.
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b) Validation:  For hyperparameter tuning and monitoring model training, we use 10 

registration pairs for each of the OASIS, HCP-A and BIRN contrast pairings described 

below. These subjects do not overlap with the training set.

c) Test:  Table II provides an overview of the contrast combinations compiled from 

OASIS, HCP-A, and BIRN. Except for the 8 PDw BIRN images, the subjects do not overlap 

with the training or validation sets. We also use the multi-FA, multi-TI and cardiac images 

for testing; none of these data are used in training or validation.

B. Baselines

We test classical registration with ANTs (SyN) [12] using recommended parameters [92] 

for the NCC similarity metric within contrast and MI across contrasts. We test NiftyReg 

[13] with the default cost function (NMI) and recommended parameters, and we enable its 

diffeomorphic model with SVF integration as in our approach. Both ANTs and NiftyReg 

are optimized for neuroimaging applications, leading to appropriate parameters for our tasks. 

We also run the deedsBCV [93] patch-similarity method, which we tune for neuroimaging. 

To match the spatial scales of brain structures, we reduce the default grid spacing, search 

radius and quantization step to 6 × 5 × 4 × 3 × 2, 6 × 5 × 4 × 3 × 2, and 5 × 4 × 3 × 2 × 1, 

respectively, improving registration in our experiments.

As a learning baseline, we train VoxelMorph (vm), using an image-based NCC loss and the 

same architecture as SynthMorph, on 100 skull-stripped T1w images from HCP-A that do 

not overlap with the validation set. Similarly, we train another model with NMI as a loss on 

random combinations of 100 T1w and 100 T2w images. This exposes each model to 9900 

different cross-subject registration pairs, and vm-nmi to T1w-T1w, T1w-T2w and T2w-T2w 

contrast pairings (both contrasts were acquired from the same 100 subjects). Following the 

original VoxelMorph implementation [17], we train these baseline networks without data 

augmentation, with the exception of randomized axis flipping.

While we compare to learning baselines following their original implementation [17], we 

also investigate if the performance of these methods can be further improved. First, we 

retrain the baseline model adding a further 7000 T1w images from UKBB and GSP to the 

training set to evaluate whether the original finding that 100 images are sufficient [17] holds 

true in our implementation, or whether the greater anatomical variability would promote 

generalizability across contrasts or datasets (vm-ncc-7k).

Second, we explore to what extent augmentation can improve accuracy, by retraining vm-

ncc with 100 T1w images, while augmenting the input images with random deformations as 

for sm-brains training (vm-ncc-aug).

Third, we train a new hybrid method using extreme contrast augmentation to explore if more 

variability in the training contrasts would help the network generalize (Fig. 5). At every 

iteration, we sample a registration pair from 100 T1w images and pass it to the similarity 

loss, while the network inputs each undergo an arbitrary gray-scale transformation: we 

uniformly sample a random lookup table (LUT) from U(0, 255), remapping the intensities {0, 
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…, 255} to new values of the same set. We smooth this LUT using a Gaussian kernel L(σL = 

64).

Fourth, the synthesis enables supervised training if the moving and fixed label maps {sm, 

sf} are generated from the same input label map, so that the net warp is known. We 

analyze whether knowledge of the synthetic net warp can improve accuracy, by training 

models with the same architecture using an MSE loss between the synthesized and predicted 

SVFs v (sup-svf) or deformation fields ϕ (sup-def), respectively. As for sm-shapes, we 

draw the SVFs {vm, vf} at several resolutions rv ∈ {1:8, 1:16, 1:32} to synthesize a more 

complex deformation since we use a single brain segmentation map as input to ensure that a 

topologically consistent spatial correspondence exists.

C. SynthMorph Variants

For image-data and shape-agnostic training (sm-shapes), we sample {sm, sf} by selecting 

one of 100 random-shape segmentations s at each iteration, and synthesizing two separate 

image-label pairs from it. Each s contains J = 26 labels that we include in the loss ℒdis. 

Since brain segmentations are often available, even if not for the target MRI contrast, we 

train another network on the Buckner40 anatomical labels instead of shapes (sm-brains). 

In this case, we sample {sm, sf} from two distinct label maps at each iteration and further 

deform them using synthetic warps. We optimize the J = 26 largest brain labels in ℒdis, 

similar to what VoxelMorph does for validation [17] (see below).

D. Validation Metrics

To measure registration accuracy, we propagate the moving labels using the predicted 

warps and compute the Dice metric D [94] across a representative set of brain structures: 

amygdala, brainstem, caudate, ventral DC, cerebellar white matter and cortex, pallidum, 

cerebral white matter (WM) and cortex, hippocampus, lateral ventricle, putamen, thalamus, 

3rd and 4th ventricle, and choroid-plexus. We average scores of bilateral structures. In 

addition to volumetric Dice overlap, we evaluate the mean symmetric surface distance 

S (MSD) between contours of the same moved and fixed labels. We also compute the 

proportion of voxels where the warp ϕ folds, i.e. det(Jϕ) ≤ 0 for voxel Jacobian Jϕ.

E. Experiment 1: Baseline Comparison

1) Setup: For each contrast, we run experiments on 50 held-out image pairs, where each 

image is from a different subject, except for T1w-PDw pairs, of which we have eight. To 

assess robustness to non-brain structures, we evaluate registration within and across datasets, 

with and without skull-stripping, using datasets of the same size. We determine whether the 

mean differences between methods are significant using paired two-sided t-tests.

2) Results: Fig. 5 shows examples of SynthMorph training data, and Fig. 6 shows typical 

registration results. Fig. 7 compares registration accuracy across structures to all baselines, 

in terms of Dice overlap (Fig. 7a) and MSD (Fig. 7b). By exploiting the anatomical 

information in a set of brain labels, sm-brains achieves the best accuracy across all datasets, 

even though no real MR images are used during training. First, sm-brains outperforms 

classical methods on all tasks by at least 2.4 Dice points, and often much more (p < 
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0.0003 for T1w-PDw, p < 4×10−15 for all other tasks). Second, it exceeds the state-of-the-art 

accuracy of vm-ncc for T1w-T1w registration, which is trained on T1w images, by at least 

0.6 Dice points (p < 6 × 10−6). Importantly, across contrasts sm-brains outperforms all 

other methods, demonstrating its ability to generalize to contrasts. Compared especially 

to baseline learning methods, which cannot generalize to contrasts unseen during training, 

sm-brains leads by up to 45.1 points (p < 6 × 10−7 for all cross-contrast tasks). Compared to 

classical methods, the proposed method outperforms by 2.9 or more points (p < 0.0003 for 

T1w-PDw, p < 2 × 10−17 for other cross-contrast tasks).

The shape and contrast-agnostic network sm-shapes matches the performance of the 

best classical method for each dataset except T1w-T1w registration, where it slightly 

underperforms (p < 8 × 10−11), despite never having been exposed to either imaging 

data or even neuroanatomy. Like sm-brains, sm-shapes generalizes well to multi-contrast 

registration, matching or exceeding the accuracy of all baselines, and by significant margins 

compared to learning baselines (p < 8×10−7 for T1w-PDw, p < 2×10−17 otherwise).

The baseline learning methods vm-ncc and vm-nmi perform well and clearly match or 

outperform classical methods at contrasts similar to those used in training. However, as 

expected, these approaches break down when tested on a pair of new contrasts that were not 

sampled during training, such as T1w-PDw. Similarly, vm-ncc and vm-nmi achieve slightly 

lower accuracy on image pairs that are not skull-stripped.

While MSD can be more sensitive than Dice overlap at structure boundaries, our analysis 

of surface distances yields a similar overall ranking between methods (Fig. 7b). Importantly, 

sm-brains achieves the lowest MSD for all contrasts, typically 0.7 mm or less, which is 

below the voxel size. Within contrasts, sm-brains outperforms classical methods by at least 

0.06 mm (p < 2× 10−9), surpassing all baselines tested across contrasts (p < 0.04 for 

T1w-PDw, p < 10−10 for the other tasks).

Exposing the baseline models to a much larger space of deformations at training does 

not result in a statistically significant increase of accuracy for T1w-to-T1w registration 

within OASIS (Fig. 8a). For vm-ncc-aug, accuracy across T1w datasets (OASIS-HCP, p 
< 0.007) and T2w-to-T2w accuracy (p < 0.03) decrease by 0.1 Dice point relative to 

vm-ncc. For vm-ncc-7k, accuracy across T1w datasets increases by 0.1 point (p < 0.04), 

with no significant change for T2w-to-T2w registration, but overall these 0.13% changes 

are negligible. Similar to vm-ncc, these models do not generalize to unseen pairings across 

contrasts, under-performing sm-brains by 42.9 or more points (Fig. 8a, p < 10−8).

Augmenting T1w image contrast using random LUTs (Fig. 5) substantially enhances 

performance across contrasts for hybrid compared to vm-ncc (p < 2×10−7), exceeding the 

supervised models by up to 6.1 Dice points (p < 0.009 for T1w-PDw, p < 3 × 10−15 for 

all other tasks). However, the increased contrast robustness comes at the expense of a drop 

of 0.5–1.9 Dice points within contrasts relative to vm-ncc (p < 0.0002), while sm-brains 

outperforms hybrid by at least 2.4 points within (p < 6 × 10−17) and 4.5 points across 

contrasts (p < 10−5 for T1w-PDw, otherwise p < 10−23). We also investigate lower kernel 

widths σL < 64, but find these to negatively impact accuracy and therefore do not include 
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them in the graph: reducing σL introduces noise in the image, indicating the importance of 

LUT smoothness.

Finally, the supervised networks sup-def and sup-vel achieve the lowest accuracy for 

within-contrast registration (p < 0.02) and consistently under-perform their unsupervised 

counterpart sm-brains by 6.8–10.7 points across all contrast combinations (p < 0.0001 

for T1w-PDw, p < 3 × 10−26 for all other tasks). As for the main baseline comparison, 

measurements of the mean surface distance in Fig. 8b result in a similar ranking between 

method variations, at comparable significance levels.

In our experiments, learning-based models require less than 1 second per 3D registration on 

an Nvidia Tesla V100 GPU. Using the recommended settings, NiftyReg and ANTs typically 

take ~0.5 h and ~1.2 h on a 3.3-GHz Intel Xeon CPU, respectively, whereas deedsBCV 

requires ~3 min.

F. Experiment 2: Contrast Invariance

In this experiment we evaluate registration accuracy as a function of gradually varying MRI 

contrast and measure robustness to new image types by analyzing the variability of network 

features across these contrasts.

1) Setup: To assess network feature invariance to MRI contrast, we perform the following 

procedure for 10 pairs of separate subjects, where each subject is only considered once 

and, thus, registered to a different fixed image. Given each such pair, we run a separate 

registration between each of the multi-FA contrasts for the moving subject and the most 

T1w-like contrast (FA 40°) of the fixed subject. For each pair of subjects, we measure 

accuracy with all tested methods as well as the variability of the features of the last network 

layer, before the SVF is formed, across input pairs. Specifically, we compute the root-mean-

square difference d (RMSD) between the layer outputs of the first and all other contrast 

pairs over space, averaged over contrasts, features, and subjects. For efficiency, we restrict 

the moving images for this analysis to the subsets of FAs and TIs that undergo the largest 

changes in contrast, i.e. FAs from 2 to 30° (4° steps) and TIs from 300 to 600 ms (40-ms 

steps).

2) Results: Fig. 11 compares registration accuracy as a function of the moving-image 

MRI contrast for baseline methods and SynthMorph. In both the multi-FA and the multi-TI 

data, we obtain broadly comparable results for all methods when the moving and fixed 

image have T1w-like contrast. However, the performance of ANTs, NiftyReg and learning 

baselines decreases with increasing contrast differences, whereas SynthMorph remains 

largely unaffected.

Fig. 12 shows the variability of the response of each network layer to varying MRI contrast 

of the same anatomy (shown in Fig. 9). Compared to VoxelMorph, the feature variability 

within the deeper layers is significantly lower for the SynthMorph models. Fig. 10 illustrates 

this result, containing example feature maps extracted from the last network layer before the 

SVF is formed.
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Overall, SynthMorph models exhibit substantially less variability in response to contrast 

changes than all other methods tested, indicating that the proposed strategy does indeed 

encourage contrast invariance.

G. Experiment 3: Hyperparameter Analyses

1) Setup: We explore the effect of various hyperparameters on registration performance 

using 50 skull-stripped HCP-A T1w pairs that do not overlap with the test set. First, we train 

with regularization weights λ ∈ [0, 10] and evaluate accuracy across: (1) all brain labels and 

(2) only the largest 26 (bilateral) structures optimized in ℒdis. Second, we train variants of 

our model with varied deformation range bv, image smoothness bK, number of features n 
per layer (network width), bias-field range bB, gamma-augmentation strength σγ and relative 

resolutions r. Third, for the case that brain segmentations are available (sm-brains), we 

analyze the effect of training with full-head labels, brain labels only, or a mixture of both. 

Unless indicated, we test all hyperparameters using n = 64 convolutional filters per layer. For 

comparability, both SynthMorph variants use SVFs {vm, vf} sampled at a single resolution 

rv.

2) Results: Fig. 13 shows registration performance for various training settings. Variant 

sm-brains performs best at low deformation strength bv, when label maps s from two 

different subjects are used at each iteration (Fig. 13a), likely because the differences between 

distinct subjects already provide significant variation. For {sm, sf}, a larger value of bv = 3 

is optimal due to the lacking inter-subject deformation, since we generate {sm, sf} from a 

single segmentation s.

Random blurring of the images {m, f} improves robustness to data with different smoothing 

levels, with optimal accuracy at bK ≈ 1 (Fig. 13b). Higher numbers of filters n per 

convolutional layer boost the accuracy at the cost of increasing training times (Fig. 13c), 

indicating that richer networks better capture and generalize from synthesized data. We 

identify the optimum bias-field cap and gamma-augmentation SD as bB = 0.3 and σγ = 

0.25, respectively. We obtain the highest accuracy when we sample the SVF and bias field 

at relative resolutions rv = 1:16 and rB = 1:40, respectively (Fig. 13f). Finally, training on 

full-head as compared to skull-stripped images has little impact on accuracy (not shown).

Fig. 14a shows that with decreasing regularization, accuracy increases for the large 

structures used in ℒdis. When we include smaller structures, the mean overlap D reduces for 

λ < 1, as the network then focuses on optimizing the training structures. This does not apply 

to sm-shapes, which is agnostic to anatomy since we train it on all synthetic labels present in 

the random maps. Fig. 14b shows a small proportion of locations where the warp field folds, 

decreasing with increasing λ. For test results, we use λ = 1, where the proportion of folding 

voxels is below 10−6 at our numerical precision. At fixed λ = 1, increasing the number of 

integration steps reduces voxel folding, about 6-fold for 10 instead of 5 steps, after which 

further increases have no effect.

Hoffmann et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H. Experiment 4: Cine-Cardiac Application

In this experiment we test SynthMorph and VoxelMorph on cine-cardiac MRI to assess 

how these models transfer to a domain with substantially different image content. The 

goal is to analyze whether already trained models extend beyond neuroimaging, rather than 

claiming their outperformance over methods specifically developed for the task. We choose 

the dataset because the trained networks assume affine registration of the input images, 

which can be challenging in non-brain applications, whereas cardiac frames from the same 

subject are largely aligned. This provides an opportunity for testing registration of images 

with structured background within contrast; we test cross-contrast registration in Section 

III-E and Section III-F.

1) Setup: Non-rigid registration of cardiac images from the same subject is an important 

tool that can help assess cardiovascular health. Some approaches choose an end-diastolic 

frame as the fixed image, as it is easily identified [95], [96]. Thus, we pair an end-systolic 

with an end-diastolic frame for each of 33 subjects, corresponding to maximum cardiac 

contraction and expansion. For 3D registration of these pairs, we use already trained 

SynthMorph and VoxelMorph models without optimizing for the new task.

2) Results: Table III compares the effect on mean symmetric surface distance for the 

best-performing SynthMorph (sm-shapes) and VoxelMorph (vm-ncc) models. Registration 

with sm-shapes reduces MSD between the epicardial contours by ΔS/S = (11.6 ± 1.5)% 

on average, improving MSD for 85% of pairs (lower MSD is better). The mean reduction 

for vm-ncc is only ΔS/S = (4.3 ± 1.4)%. While the pairs that do not improve appear 

visually unchanged, MSD increases slightly: for example, the most substantial decrease 

for sm-shapes is 35.4%, but the least accurate registration only results in a 3.9% increase. 

While the performance gap between the models is smaller for endocardial MSD, sm-shapes 

still outperforms vm-ncc. The models sm-brains and vm-nmi underperform sm-shapes and 

vm-ncc in terms of MSD, respectively. Fig. 15 shows exemplary cardiac frames before 

and after registration with sm-shapes along with the displacement fields, illustrating how 

SynthMorph leaves most anatomy intact while focusing on dilation of the heart to match its 

late-diastolic shape.

IV. Discussion

We propose SynthMorph, a general strategy for learning contrast-invariant registration that 

does not require any imaging data during training. We remove the need for acquired data by 

synthesizing images randomly from noise distributions.

A. Generalizability

A significant challenge in the deployment of neural networks is their generalizability to 

image types unseen during training. Existing learning methods like VoxelMorph achieve 

good registration performance but consistently fail for new MRI contrasts at test time. 

For example, vm-ncc is trained on T1w pairs and breaks down both across contrasts (e.g. 

T1w-T2w) and within new contrasts (e.g. T2w-T2w). The SynthMorph strategy addresses 

this weakness and makes networks resilient to contrast changes by exposing them to a 
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wide range of synthetic images, far beyond the shapes and contrasts typical of MRI. This 

approach obviates the need for retraining to register images acquired with a new sequence.

Training conventional VoxelMorph with a loss evaluated on T1w images while augmenting 

the input contrasts enables the transfer of domain-specific specific knowledge to cross-

contrast registration tasks. However, the associated decrease in within-contrast performance 

indicates the benefit of SynthMorph: learning to match anatomical features independent of 

their appearance in the gray-scale images.

The choice of optimum hyperparameters also is an important problem for many deep 

learning applications. While the grid search of Fig. 13 illustrates the dependency of accuracy 

on hyperparameter values, SynthMorph performance is robust over the ranges typical of 

medical imaging modalities, e.g. smoothing kernels with SD σK ∈ [0, 2].

We select SynthMorph hyperparameters for all experiments based on the analysis of Fig. 13, 

using validation data that do not overlap with the test sets. The chosen parameters (Table I) 

enable robust registration across six different test sets in Section III-E and over a landscape 

of continually evolving MRI contrasts in Section III-F, demonstrating their generalizability 

across datasets.

B. Baseline Comparison

Networks trained within the SynthMorph framework do not have access to the MRI 

contrasts of the test set nor indeed to any MRI data at all. Yet sm-shapes matches state-

of-the-art classical performance within contrasts and provides substantial improvements in 

cross-contrast performance over ANTs and NiftyReg, all while being substantially faster.

Registration accuracy varies with the particular contrast pairings, likely because anatomical 

structures appear different on images acquired with different MRI sequences. There is 

no guarantee that a structure will have contrast with neighboring structures and can be 

registered well to a scan of a particular MRI contrast (e.g. PDw). Nevertheless, SynthMorph 

outperforms both classical and learning-based methods across contrasts, demonstrating that 

it can indeed register new image types, to the extent permitted by the intrinsic contrast.

If brain segmentations are available, including these in the image synthesis enables the 

sm-brains network to outperform all methods tested by a substantial margin–at any contrast 

combination tested–although this model still does not require any acquired MR images 

during training.

Visual inspection of typical deformation fields in Fig. 6 provides an interesting insight: the 

sm-brains network appears to learn to identify the structures of interest optimized in the loss. 

Thus, it focuses on registering these brain regions and their close neighbors, while leaving 

the background and structures such as the skull unaffected. This anatomical knowledge 

enables registration of skull-stripped images to data including the full head. While the 

resulting deformations may appear less regular than those estimated by classical methods, 

our analysis of the Jacobian determinant demonstrates comparable field regularity across 

methods.
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C. Dice-Loss Sensitivity

When training on synthesized structures with arbitrary geometry, the network learns to 

generally match shapes based on contrast. The sm-shapes model does not learn to register 

specific human anatomical structures or sub-structures since we never expose it to specific 

neuroanatomy and instead sample random shapes of all sizes during training. In the 

experiment trained on brain anatomy, the model matches substructures within labels if 

they manifest contrast. If substructures are not discernible, the smooth regularization yields 

reasonable predictions. This can be observed with sm-brains for smaller structures that are 

not included in the dissimilarity loss ℒdis but for which we obtain competitive validation 

Dice scores, e.g. the 3rd and 4th ventricle.

D. Supervised or Unsupervised?

Since ground-truth deformation fields are available for sm-shapes, we also train baseline 

models in a supervised manner. This approach consistently under-performs its unsupervised 

counterpart, for which we propose three possible explanations. First, several different 

deformations can result in the same warped brain, which has the potential to introduce a 

level of ambiguity into the registration problem that makes it challenging to train a reliable 

predictor. Second, related to this point, image areas with little intensity variation such as the 

background or central parts of the white matter offer no guidance for the supervised network 

to match the arbitrary ground-truth deformation, compared to unsupervised models, that 

are driven by the regularization term in those areas. Third, the synthesized transforms may 

not represent an exact identifiable mapping between the source and target image because 

of errors introduced by nearest-neighbor interpolation of the input label maps and further 

augmentation steps including image blurring and additive noise.

E. Further Work

While SynthMorph addresses important drawbacks of within and between-contrast 

registration methods, it can be expanded in several ways.

First, we plan to extend our framework to incorporate affine registration [47], [54], [55], 

[97]. We will explore whether the simultaneous estimation of affine and deformable 

transforms can improve accuracy and thoroughly investigate the appropriateness of 

architectures for doing this in heterogeneous data. In the current work, the input images 

{m, f} need prior affine alignment for optimal results. Although this preprocessing step 

is beyond the focus of our current contribution, the code we make available includes an 

optimization-based affine solution, thus providing full registration capabilities independent 

of third-party tools. The optimization estimates 12 affine parameters for each new pair of 3D 

images in ~10 seconds, with accuracy comparable to ANTs and NiftyReg.

Second, our approach promises to be extensible to unprocessed images acquired with any 

MRI sequence, of any body part, possibly even beyond medical imaging. While this is an 

exciting area of research, the present work focuses on neuroimaging applications since the 

breadth of the analyses required is beyond the scope of a single solid contribution.
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Third, an obvious extension is to combine the simulation strategy with existing image data 

that might already be available. We plan to investigate whether including real MRI scans 

would aid, or instead bias the network and reduce its ability to generalize to unseen contrast 

variations.

F. Invariant Representations

We investigate why the SynthMorph strategy enables substantial improvements in 

registration performance. In particular, we evaluate how accuracy responds to gradual 

changes in MRI contrast and show that the deep layers of SynthMorph models exhibit a 

greater degree of invariance to contrast changes than networks trained in a conventional 

fashion. We present qualitative and quantitative analyses demonstrating that the enhanced 

contrast invariance leads to highly robust registration across wide spectra of MR images 

simulated for two commonly used pulse sequences, FLASH and MPRAGE.

G. Cardiac Registration

The cine-cardiac experiment demonstrates the viability and potential of SynthMorph applied 

to a domain with substantially different image content than neuroimaging. While we do not 

claim to outperform dedicated cardiac registration methods, sm-shapes reduces the MSD 

metric between the fixed and moving frames in the majority of subjects, to a greater extent 

than any of the sm-brains, vm-ncc, and vm-nmi models. The network achieves this result 

without any optimization for the anatomy or image type considered, using weights obtained 

with generation hyperparameters tuned for isotropic 3D brain registration. In contrast, the 

cardiac data are volumes resampled from stacks of slices with thicknesses exceeding the 

voxel dimension of our neuroimaging test sets by 9-fold on average. Although sm-shapes 

is not an optimized registration tool for cardiac MRI, its weights provide a great choice 

for initializing networks when training application-specific registration, since the model 

produces reasonable results and is unbiased towards any particular anatomy.

H. Domain-Specific Knowledge

The comparisons between sm-brains and sm-shapes in neuroimaging datasets indicate that 

SynthMorph performs substantially better when exploiting domain-specific knowledge. For 

the cardiac application, this could be achieved in the following ways. First, if the amplitude 

of cardiac motion exceeds the deformations sampled during sm-shapes training, increasing 

hyperparameter bv will be beneficial. Second, a lower regularization weight λ may be 

favorable for cardiac motion, which is characterized by considerable displacements within a 

small portion of space. Third, anatomical segmentations in fields other than neuroimaging 

often include fewer different labels. To overcome this challenge and synthesize images 

complex enough for networks to learn anatomy-specific registration, these label maps could 

be augmented by including arbitrary geometric shapes as diverse backgrounds.

Qualitatively, our experience is that generation hyperparameters represent a trade-off 

between (1) sampling from a distribution large enough to include the features of a target 

dataset while promoting network robustness by exposure to broad variability, and (2) 

ensuring that the network capacity is adequate for capturing the sampled variation. As an 

alternative to making domain-specific informed changes to the generation hyperparameters 
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and retraining networks, recent work suggests to optimize hyperparameter values efficiently 

at test time using hypernetworks [98]. In addition to a registration pair, such hypernetworks 

take as input a set of hyperparameters and output the weights of a registration network, thus 

modeling a continuum of registration networks each trained with different hyperparameter 

values.

I. Data Requirements for Registration

The baseline comparison reveals that neither augmenting nor adding data in VoxelMorph 

training boosts performance. While counter-intuitive to intuitions about deep learning in 

classification tasks, this result is consistent with recent findings confirming that large 

datasets are not necessary for tasks like deformable registration and segmentation, that have 

sizable input and output spaces [58], [59], [99]: in effect, every image voxel can be thought 

of as a data sample, although these are, of course, not independent. For example, reasonable 

segmentation performance can be achieved with only a handful of annotated images [58]. 

For registration, our analysis shows that SynthMorph training with label maps from only 40 

subjects enables outperformance of all other methods tested.

We train the VoxelMorph baseline using images from 100 subjects, randomly flipping the 

axes of each input pair, which already gives rise to 79,200 different cross-subject image 

combinations. An analysis in the VoxelMorph paper [17] comparing training sets of size 100 

and 3231 without randomly flipping axes provides further evidence that larger datasets do 

not necessarily lead to significant performance gains.

V. CONCLUSION

Our study establishes the utility of training on synthetic data only and indicates a novel way 

of thinking about feature invariance in the context of registration. SynthMorph enables users 

to build on the strengths of deep learning, including rapid execution, increased robustness 

to local minima and outliers, and flexibility in the choice of loss functions, by now having 

the previously-missing ability to generalize to any MRI contrast at test time. This leads us 

to believe the strategy can be broadly applied to networks to limit the need for training data 

while vastly improving applicability.
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Fig. 1. 
Unsupervised learning strategy for contrast-agnostic registration. At every mini batch, we 

synthesize a pair of 3D label maps {sm, sf} and the corresponding 3D images {m, f} from 

noise distributions. The label maps are incorporated into a loss that is independent of image 

contrast.
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Fig. 2. 
Generation of input label maps. Smooth 3D noise images pj (j ∈ {1, 2, …, J}) are sampled 

from a standard distribution, then warped by random deformations ϕj to cover a range of 

scales and shapes. We synthesize a label map s from the warped images pj = pj ∘ ϕj: for each 

voxel k of s, we assign label j corresponding to image pj where k has the highest intensity j, 

i.e. sk = arg maxj pj k . We use J = 26.
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Fig. 3. 
Data synthesis. Top: from random shapes. Bottom: if available, from anatomical labels. We 

generate a pair of label maps {sm, sf} and from them images {m, f} with arbitrary contrast. 

The registration network then predicts the displacement um→f. If anatomical labels are used, 

we generate {sm, sf} from separate subjects.
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Fig. 4. 
U-Net architecture of ϕθ = hθ(m, f). Each block of the encoder features a 3D convolution 

with n = 256 filters and a LeakyReLU layer (0.2). Stride-2 convolutions each halve 

the resolution relative to the input. In the decoder, each convolution is followed by an 

upsampling layer and a skip connection (long arrows). The SVF vθ is obtained at half 

resolution, yielding the warp ϕθ after integration and upsampling. All kernels are of size 3 × 

3 × 3. The final layer uses n= 3 filters.
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Fig. 5. 
Synthetic training data. Top: random geometric shapes synthesized from noise distributions. 

Center: arbitrary contrasts synthesized from brain segmentations. Bottom: hybrid synthesis 

requiring acquired MRI for contrast augmentation using smooth random lookup tables.
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Fig. 6. 
Typical results for sm-brains and classical methods. Each row shows an image pair from 

the datasets indicated on the left. The letters b and x mark skull-stripping and registration 

across datasets (e.g. OASIS and HCP-A), respectively. We show the best classical baseline: 

NiftyReg on the 1st, ANTs on the 2nd, and deedsBCV on all other rows.
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Fig. 7. 
Registration accuracy compared to baselines as (a) volume overlap D using the Dice metric, 

and (b) mean symmetric surface distance S between label contours. Each box shows mean 

accuracy over anatomical structures for 50 test-image pairs across distinct subjects (8 

for PD). The letters b and x indicate skull-stripping and registration across datasets (e.g. 

OASIS-HCP), respectively. Arrows indicate values off the chart.
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Fig. 8. 
Registration accuracy of method variations as (a) volume overlap D using the Dice metric, 

and (b) mean symmetric surface distance S between label contours. Each box shows mean 

accuracy over anatomical structures for 50 test-image pairs across distinct subjects (8 

for PD). The letters b and x indicate skull-stripping and registration across datasets (e.g. 

OASIS-HCP), respectively. Arrows indicate values off the chart.
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Fig. 9. 
Real MRI-contrast pairs used to assess network invariance. Top: we obtain FLASH images 

progressing from PDw (top left) to T1w for the same brain by varying FA using the steady-

state signal equation with acquired parametric maps (T1, T2*, PD). Bottom: we obtain 

MPRAGE contrasts with varying TI by fitting intensities based on a dual-echo MP2RAGE 

scan (TI1/TI2 700/2500 ms). For each of 10 subject pairs, we register a range of moving 

contrasts to a fixed T1w image.
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Fig. 10. 
Representative features of the last network layer before the stationary velocity field is 

formed, in response to evolving MRI contrasts from the same subject. Left: VoxelMorph 

using normalized mutual information (NMI) exhibits high variability of the same feature 

response across different input contrasts for the same brain, e.g. in the red box. Right: 

contrast-invariant SynthMorph (sm-brains). For this analysis, both networks use the same 

architecture with n= 64 filters per layer.
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Fig. 11. 
Accuracy as a function of moving-image contrast across 10 realistic (a) FLASH and (b) 

MPRAGE image pairs. In each registration, the fixed image has the same T1w contrast. 

The moving image becomes decreasingly T1w towards the right. Being comparable across 

methods, error bars are shown for ANTs only and indicate the standard error of the mean 

over subjects.
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Fig. 12. 
Feature variability for registration across (a) FLASH and (b) MPRAGE contrasts from 10 

distinct subject pairs. We use normalized RMSD d between each contrast and the most 

T1w-like, averaged over contrasts, features, subjects. All models use the same architecture 

with n = 64 filters per layer. SynthMorph variants exhibit the least variability in the deeper 

layers (red boxes). Error bars show the standard error of the mean over features.
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Fig. 13. 
Effect of training settings on median registration accuracy: (a) Maximum velocity-field SD 

bv. (b) Maximum image-smoothing SD bK. (c) Number of filters n per convolutional layer. 

(d) Maximum bias-field SD bB. (e) Gamma-augmentation SD σγ. (f) Resolution r. Error 

bars are comparable across methods and indicate SD over subjects.
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Fig. 14. 
Regularization analysis. (a) Median accuracy. Error bars are comparable across label sets 

and indicate SD over subjects. (b) Proportion of voxels where the warp ϕ folds, i.e. det (Jϕ)

≤0 for voxel Jacobian Jϕ (0 for λ>1; of 4.9 × 106 voxels). (c) Average Jacobian determinant. 

For λ ≥ 1, the deviation from the ideal value 1 is less than 2 × 10−3.
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Fig. 15. 
Cine-cardiac registration results. Each row shows an image pair from a different subject: we 

register frames corresponding to maximum cardiac contraction and expansion, respectively. 

Despite the thick slices and more diverse image content than typical of neuroimaging data, 

sm-shapes clearly dilates the contracted anatomy as indicated by the displacement fields in 

the rightmost column.
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TABLE II

Test Registration Sets Compiled From OASIS, HCP-A and BIRN for Experiments 1 and 3. The Superscripts 

B and X Indicate Skull-Stripping and Registration Across Datasets (e.g. Between OASIS and HCP-A), 

Respectively

Moving Fixed Subject pairs Experiment

Tl-Tlb OASIS OASIS 50 1

Tl-Tlb HCP-A HCP-A 50 3

Tl-Tlb,x OASIS HCP-A 50 1

T2-T2b HCP-A HCP-A 50 1

Tl-PDb,x OASIS BIRN 8 1

Tl-T2b HCP-A HCP-A 50 1

T1-T2 HCP-A HCP-A 50 1
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