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Abstract
Cardiac fibroblasts constitute the major cell type of the murine and human heart. Once activated, they contribute to an 
excessive deposition of extracellular matrix (ECM) leading to cardiac fibrosis and subsequently organ dysfunction. With 
the exception of the pulmonary drugs, nintedanib and pirfenidone, drugs specifically targeting anti-fibrotic pathways are 
scarce. We recently performed large library screenings of natural occurring compounds and identified first lead structures 
with anti-fibrotic properties in vitro and in vivo. In line, we now aimed to improve efficacy of these anti-fibrotic lead struc-
tures by combining in vitro validation studies and in silico prediction. Next to this combined approach, we performed large 
OMICs-multi-panel-based mechanistic studies. Applying human cardiac fibroblasts (HCF), we analysed 26 similars of the 
initially identified anti-fibrotic lead molecules bufalin and lycorine and determined anti-proliferative activity and potential 
toxicity in an array of in vitro and ex vivo studies. Of note, even at lower concentrations, certain similars were more effective 
at inhibiting HCF proliferation than nintedanib and pirfenidone. Additionally, selected similars showed low cytotoxicity on 
human iPS-derived cardiomyocytes and anti-fibrotic gene regulation in human ex vivo living myocardial slices. Further, 
array and RNA sequencing studies of coding and non-coding RNAs in treated HCFs revealed strong anti-fibrotic properties, 
especially with the lycorine similar lyco-s (also known as homoharringtonine), that led to a nearly complete shutdown of 
ECM production at concentrations 100-fold lower than the previously identified anti-fibrotic compound lycorine without 
inducing cellular toxicity. We thus identified a new natural compound similar with strong anti-fibrotic properties in human 
cardiac fibroblasts and human living heart tissue potentially opening new anti-fibrotic treatment strategies.
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Introduction

In the last decades, cardiovascular diseases (CVD) became 
the leading cause of death worldwide with approx. 30% of 
all deaths attributed to CVD [53]. One major driver and 
representation of CVD is heart failure (HF), the inability of 
the heart to supply the body with the necessary amount of 
oxygenated blood, causing breathlessness, fatigue and swell-
ing. An estimate of 64 million people worldwide are affected 
by HF, and morbidity as well as mortality remain high while 
quality of life remains poor [41, 49]. To date, therapeutic 
options for those HF patients with preserved ejection frac-
tion (HFpEF) but enhanced stiffness of the heart are still 
absent [37].

A major underlying cause of HFpEF is cardiac fibro-
sis, marked by excessive deposition of extracellular matrix 
(ECM). Currently, there are two anti-fibrotic drugs, nint-
edanib and pirfenidone, which are approved for treatment 
of idiopathic pulmonary fibrosis (IPF). While both slow dis-
ease progression or prolong progression-free survival in IPF 
patients, adverse reactions limit the therapeutic potential [18, 
40]. The potential therapeutic effect of pirfenidone in HF 
patients is currently under investigation, and a recent phase 
II clinical trial (NCT02932566) showed slight improvements 
of extracellular volume, a surrogate measurement of cardiac 
fibrosis, but not in hemodynamic parameters [28]. While this 
approach is promising, there is a serious and ever increas-
ing need for novel therapeutic strategies for the treatment 
of HFpEF.

One possible treatment strategy counteracting the fibrotic 
process and potentially reversing cardiac fibrosis is to inhibit 
the activation of human cardiac fibroblasts (HCF), the main 
effector cells of cardiac fibrosis, thereby lowering ECM dep-
osition. We previously identified two natural compounds, 
bufalin (toad exudate and component of the traditional Chi-
nese medicine “ChanSu”) and lycorine (Amaryllidaceae), 
as potent pharmacological inhibitors of HCF proliferation 
in vitro and in vivo [42]. Here, we report on similars and 
derivatives of these lead compounds with improved efficacy 
and toxicological profiles. Additionally, we herein present 
novel molecular insight into the compounds’ mechanism of 
action.

Methods

Human cardiac fibroblast (HCF) culture

Cryopreserved human cardiac fibroblasts (HCF) of multiple 
donors were obtained by Promocell, Germany (#C-12375). 
Initial cryovial was thawed and cells were transferred into 
pre-warmed fibroblast growth medium (FGM-3): 1 ng/mL 

Basic Fibroblast Growth Factor (bFGF) and 5 µg/mL Insulin 
(Promocell, #C-39350), 1% Penicillin–Streptomycin (P/S, 
Gibco, #15140122), 10% Fetal Bovine Serum (FBS, Gibco, 
#10270106) in Fibroblast Basal Medium 3 (Promocell, 
#C-23230). FGM medium was exchanged 24 h after thaw-
ing and/or 96 h after passaging, cells were passaged every 
7 days by washing twice with DPBS and subsequent incuba-
tion with Trypsin/EDTA for 3–5 min. 10% FCS in DMEM 
was used to block trypsin before centrifugation at 300g, 4 °C 
for 5 min.

Human‑induced pluripotent stem cell‑derived 
cardiomyocyte (hiPS‑CM) culture and differentiation

Human-induced pluripotent stem cells (iPSC) [19] were 
cultured and differentiated into cardiomyocytes following 
the method of Lian et al. [29], adapted as described before 
[6, 14]. Briefly, iPSCs were maintained on Geltrex (Gibco, 
#A1413302) in SC medium (StemMACS iPS-Brew XF with 
supplement, Miltenyi Biotec, #130-104-368) and passaged 
on confluency with Versene (Gibco, #15040066) + 2 µM 
Thiazovivin (Selleckchem, #S1459) in SC medium.

At a confluency of 70–80%, directed cardiomyocyte dif-
ferentiation was initiated by incubation with 250 mg human 
recombinant albumin (Sigma-Aldrich, #A9731), 100 mg 
L-AA (L-ascorbic acid 2-phosphate sesquimagnesium salt 
hydrate, Sigma-Aldrich, #A8960), 5 μM GSK-3 inhibi-
tor XVI (Merck, #361559) in 500 mL RPMI-G medium 
(RPMI 1640 + GlutaMAX™, Gibco, #72400047) for 48 h. 
Subsequently, medium was changed and supplemented with 
5 mM of the Wnt signaling inhibitor IWP-2 (Selleckchem, 
#S7085), followed by medium changes with albumin and 
L-AA in RPMI-G medium every 48 h. From differentia-
tion day 8 on, cells were cultured with 1 × B-27™ (Gibco, 
#17504001) in RPMI-G, and medium was changed every 
2–3 days.

Cardiomyocytes were purified using metabolic selection 
[47] by culturing the cells for 4–10 days with 4 mM DL-lac-
tate (Merck, #L4263, in 1 M HEPES, Carl Roth, #HN77.3), 
albumin, L-AA, in no glucose RPMI medium (RPMI 1640, 
no glucose, Gibco, #11879020).

In vitro anti‑proliferative activity

96-well plates (TPP) were coated with 0.1% gelatine 
and seeded with 7500 HCFs/well. After 72  h, medium 
was exchanged with serial dilutions of compounds in 
FGM-3 + 1.6% DMSO + 1% 5-bromo-2′-deoxyuridine 
(BrdU, Roche, #11647229001), prepared in additional 
plates. After 24 h, cells were washed twice with DPBS 
(Gibco, #14190144) before incubation with anti-BrdU:POD 
(Roche, #11647229001) for 60 min (RT). Readout was per-
formed by measurement of absorbance at 370 nm + 490 nm 
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in a Synergy HT (BioTek) microplate reader. Reference 
wavelength-corrected values were analysed using the 
ECanything function of GraphPad Prism, normalized to 
respective TOP, to determine EC50 (effective concentration 
50%), as well as EC5 and EC95, ± 95% CI (confidence inter-
val). As validation, HCF were seeded as before, but treated 
with serial dilutions of compounds after 24 h. After further 
24 h, medium was exchanged to 10% 2-(4-Iodophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1, 
Roche, #11644807001) in FGM-3. After 60 min of incuba-
tion (37 °C, in the dark), absorbance at 450 nm + 630 nm 
was measured maintaining 37 °C and analysed as described 
before.

To assess screening quality, quality acceptance criteria Z′ 
(Z prime), SW (signal window), S:B (signal-to-background), 
S:N (signal-to-noise) were determined following [20, 55]. 
Average Z′ ≥ 0.5 and SW ≥ 2 were required to accept the 
screening overall, whereas single plates were rejected from 
analysis if Z′ < 0.3 or SW < 1. Compounds were categorized 
as “active” if n ≥ 3 repetitions and EC50 < 10 µM in both 
assays.

From this point on, we employed the respective 
10 × EC50 of each compound for all experiments unless 
noted otherwise. Importantly, due to the high EC50 of lyco-
rine, we could generate only 2 × EC50 as the highest relative 
concentration.

In silico ADME prediction, prediction score 
and chemical similarity

After SMILES (string representation of molecular formula 
using the “Simplified molecular-input line-entry system”) 
were determined for every compound using Marvin (Che-
mAxon), additional properties were predicted in silico 
using SwissADME [10]. For all parameters, compounds 
were scored as negative/poor (0) to positive/optimal (30). 
Weighted scores were grouped into the categories phys-
icochemical properties, pharmacokinetics, drug‐likeness, 
medicinal chemistry, as well as bioavailability. Weighted 
category averages (2, 3, 2, 1, 1, respectively) were used to 
determine an average prediction score from 0 (poor) to 30 
(optimal prediction) for every compound. Top 6 candidates 
were chosen by combining low EC50 with high prediction 
score (Fig. 1f), as well as the 2 original lead compounds 
for comparisons. Chemical similarity was determined by 
calculating Tanimoto coefficients of the fingerprints using 
C-SPADE [38].

In vitro toxicity

As contrast to activity, toxicity of top six similars and lead 
compounds was determined by a multiplex measurement 
of caspase activation and membrane integrity (using LDH 

release and inclusion of the CellTox Green dye). Briefly, 
HCFs were seeded as before. After 24 h, cells were treated 
with serial dilutions of compounds with additional 0.1% 
CellTox™ Green dye (Promega, #G8741). After 24 h incu-
bation, 5 µL medium was removed from each well, mixed 
with 95 µL LDH Storage buffer (Promega, #J2380) and 
frozen for later analysis. 95 µL Caspase-Glo® 3/7 reagent 
(Promega, #G8090) was added to each well, and after 60 min 
of incubation luminescence was measured in a Synergy HT. 
Afterwards, micrographs of brightfield and green fluores-
cence were taken using a Cytation 1 (BioTek) automated 
microscope maintaining 37 °C and 5%  CO2. Wells were 
manually checked for co-localization of fluorescence sig-
nal with cells in brightfield. On the next day, supernatants 
in LDH Storage buffer were thawed, and 50 µL was mixed 
with 50 µL of LDH Detection reagent and luminescence was 
measured after 60 min of incubation. Dose–response curves 
were determined as described before. To determine toxicity 
of the top 3 anti-fibrotic similars in hiPS-CM, 20,000 cells/
well were seeded, treated and analysed as above, devoid the 
fluorescent dye steps.

Ex vivo toxicity in human living myocardial slices

Myocardial slices were generated from human left ventricu-
lar heart specimens taken from failing hearts at the time 
of transplantation. Tissue was obtained from the Clinic for 
Cardiac, Thoracic, Transplant and Vascular Surgery at the 
Hannover Medical School (MHH), Hannover, Germany. 
Patients provided informed consent to the scientific use of 
the explanted tissue. The study was performed in accordance 
with the ethical standards laid down in the 1964 Declaration 
of Helsinki and its later amendments.

The preparation [16, 50] and culture [13] of myocardial 
slices has been described before. Briefly, human heart speci-
mens were sliced into 300 µm thick slices using a vibrating 
microtome (Campden Instruments, #7000smz-2) while in 
ice-cold 30 mM 2,3-butanedione monoxime + 1 mM d-glu-
cose + 10 mM HEPES + 6 mM KCl + 140 mM NaCl + 1 mM 
 MgCl2 + 1.8 mM  CaCl2 (cardioplegic Tyrode’s solution), 
before being trimmed into approx. 7 × 7  mm pieces of 
aligned muscle fibres. Subsequently, pieces were attached 
to plastic rings (3D-printed in-house) using Histoacryl® (B. 
Braun, #1050052) and transferred into specifically designed 
culture chambers (mechanically stretched to a sarcomere 
length of 2.1 µm, continuous electrical stimulation at 0.2 Hz, 
20–30 mA, 3 ms) filled with 0.1% DMSO or compound in 
Medium 199 (Sigma-Aldrich, #M4530).

After 48 h in culture, myocardial slices were frozen in 
liquid nitrogen and stored at −80 °C for further gene expres-
sion analysis.
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In vitro migration assays

To assess migrative capabilities of HCF, cells were 
stained with 1:1000 1,1 ′-Dioctadecyl-3,3,3 ′ ,3 ′-
Tetramethylindotricarbocyanine Iodide (DIR′) dye in FGM-3 
for 20 min at 37 °C. Cells were washed with DPBS and 
seeded into 0.1% gelatine-coated 96-well plates at 30,000 
cells per well. After 24 h incubation, scratches were intro-
duced manually using a small pipette tip, cells were treated 
with 10 × EC50 of the respective compound, and plates were 
imaged using an Odyssey Imager. After 17 h and 24 h, plates 
were imaged again. Rate of migration was determined using 
the migrative index (MI) [31].

Real‑time qPCR and overexpression/inhibition

Cells were collected in QIAzol Lysis Reagent (Qiagen, 
#79306) for RNA isolation via precipitation method or with 
miRNeasy Mini Kit (Qiagen, #217004). Reverse transcrip-
tion of mRNA was performed with iScript Select cDNA 
Synthesis Kit (Bio-Rad, #170-8897) using oligo dT prim-
ers. cDNA was diluted 1:3 with  dH2O prior to the real-time 
qPCR with iQ SYBR Green Supermix (Bio-Rad, #1708882), 
including ROX Reference Dye. A mix of forward and 
reverse primer pairs (10 µM, Eurofins) or 10 × Quantitect 
Primer Assay (Qiagen, #249900) was used for mRNA. 
To measure miRNA, RNA was reverse-transcribed using 
the miRNA TaqMan MicroRNA Reverse Transcription Kit 
(Applied Biosystems, #4366597) with specific miRNA RT 

Fig. 1  Similars of bufalin and lycorine inhibit human cardiac fibro-
blast (HCF) proliferation. a 15 similars of bufalin and 11 similars of 
lycorine were investigated for their inhibitory potential on HCF pro-
liferation, determined by BrdU incorporation. 14 similars of bufalin 
were able to inhibit HCF proliferation in a dose-dependent man-
ner, whereas only one similar of lycorine (lyco-s) showed inhibitory 
activity. Solid lines represent calculated dose–response for bufalin 
(blue), lycorine (red), working set (black) and remaining active simi-
lars (grey). Dashed line represents control and inactive compounds, 
and dotted lines show exemplary 95% confidence interval for bufalin 
(blue), lycorine (red) and lyco-s (black). n = 3–7 biological replicates, 
6–7 technical replicates each. b Similars inhibit metabolic activity of 
HCF (determined by WST-1 assay) with comparable EC50s as seen 

for BrdU incorporation. Lines and colours as in a. n = 4 biological 
replicates, 3–4 technical replicates each. c In silico prediction sug-
gests superior drug properties for bufalin similars of the working set, 
whereas lyco-s scored lower than lycorine in most categories. The 
anti-fibrotic drugs nintedanib and pirfenidone (used in idiopathic 
pulmonary fibrosis, IPF) are in a comparable range for most catego-
ries. d Analysis of chemical structure showed high similarity between 
bufalin and the chosen similars, but not lycorine and lyco-s. e Sites of 
modification of bufalin and lycorine similars. f Working set of simi-
lars was selected by combining BrdU and WST-1-derived EC50 with 
the in silico-derived prediction score. Bufalin, lycorine, and similars 
selected in the working set are highlighted. Approved IPF drugs nint-
edanib and pirfenidone are shown for comparison
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primers (ThermoFisher, #4427975). cDNA was diluted 1:3 
with  dH2O before qPCR with Absolute Blue qPCR Mix 
(Abgene, #AB-4136/B) and the specific Taqman probes 
(ThermoFisher, #4427975). Runs were performed in ViiA7 
(Applied Biosystems) or QuantStudio 7 Flex (Applied 
Biosystems). Real-time qPCR data were analysed as 
described elsewhere [30].

miRNA array and mRNA panel determination

For assessment of miRNA deregulation, TaqMan® Array 
Human MicroRNA Cards (754 miRNAs, Applied Biosys-
tems™, #4444913) were used according to the manufacturer’s 
instructions. Briefly, 590 ng of isolated total RNA of HCF 
(2 individual replicates for each of 3 different passages) was 
mixed with the Megaplex Primer Pool (A or B) and reverse-
transcribed as instructed. cDNA was gently mixed with 
TaqMan® Universal Master Mix II, no UNG (Applied Bio-
systems™, #4440043) and  dH2O and loaded onto the cards. 
PCR amplification of array cards was performed as instructed. 
After quality control of all real-time qPCRs, cT values were 
exported and all runs were merged into a single excel file. Rec-
ommended baseline correction using relative thresholds to cor-
rect for varying reconstitution rates of different Taqman probes 
was not performed. Low-expressed miRNAs with cT > 32 in 
more than 1 replicate per treatment were excluded from analy-
sis, before samples were normalized to column mean. Multi-
ple unpaired t tests were performed using GraphPad Prism, 
deregulations were accepted as discoveries if FDR ≤ 1% (using 
BKY adjustment [5]). As miRNA identifiers were based on 
miRbase v14, we converted them to the latest v22 for further 
analysis using miRBaseConverter [54]. 747 sequences could 
be converted correctly, while the remaining miRNAs were 
removed from miRbase due to incorrect annotation (e.g. the 
sequences of hsa-miR-886-3p and hsa-miR-886-5p are part of 
VTRNA2-1 [44]) or no evidence of human expression.

All discoveries from bufalin and its similars were grouped 
as “bufalin-like”, and discoveries from lycorine and lyco-
s as “lycorine-like”, for pathway enrichment using miRNA 
Enrichment Analysis and Annotation (miEAA v2.0, [21]). 
Over-Representation Analysis (ORA) was performed using 
all converted sequences as reference set, and for ORA and 
miRNA enrichment analysis ((G)SEA) pathways were 
deemed significant if BH [3] adjusted p value < 0.05 and at 
least 2 hits per subcategory. The 7 most deregulated miR-
NAs were further validated by real-time qPCR and overex-
pression/inhibition analysis.

To determine whether our compounds were effective in 
fibrotic signalling, we used the nCounter® Fibrosis Panel 
(nanoString, #XT-CSO-HFIB2-12), which allows measure-
ment of 770 mRNAs related to 4 different stages of fibro-
sis, according to the manufacturer’s instructions. Briefly, 
100 ng/5µL isolated total RNA of HCF after 24 h treatment 

(RIN > 7.5 and DV300 > 88%) was mixed with the hybridi-
zation Master Mix and incubated at 65 °C for 20 h before 
loading on a nCounter® FLEX (Department of Pathology, 
Hannover Medical School, Germany). All run files (.RCC) 
were compiled into a single experiment using the nSolver 
analysis software. After quality assessment with the R pack-
age NanoString QC Pro (v1.22, [34]), we excluded 1 sample 
(medium control of Lot 5) for inconsistent count data. Refer-
ence genes for normalization were determined by nSolver 
using all samples (ACAD9, ARMH3, CNOT10, GUSB, 
MTMR14, NOL7, NUBP1, PGK1, PPIA, RPLP0, see sup-
plemental Fig. 4e, f). We then used the Advanced analysis 
plugin (v2.0.115) including LOT as confounder variable 
and BY adjusted p value < 0.05 for identification of cen-
tral deregulated pathways. Additionally, normalized counts 
were further analysed with GraphPad Prism using multiple 
unpaired t tests with FDR ≤ 5% after BKY adjustment [5] 
and log2 |FC| ≥ 1. DiVenn was used to identify the shared 
deregulated genes after treatment with similar compounds 
(bufalin-like or lycorine-like), as well as after treatment with 
lyco-s in multiple culture conditions (data not shown) [45].

Global RNA sequencing

The NEBNext Ultra II Directional RNA Kit was used to 
prepare the samples (the same as for the nCounter® Fibro-
sis Panel, see above) for subsequent deep sequencing on a 
NovaSeq PE50 (Illumina) at HZI Braunschweig (Germany). 
Reads were trimmed and mapped to the human genome 
hg38.79 using RNA STAR  (v2.4.2a, [11]) by HZI Braun-
schweig. RAW read counts were further analysed on Galaxy 
(v3.38.3, usegalaxy.org, [2]) using the limma-voom method 
[26, 43]. Low-expressed transcripts without more than 0.25 
CPM (counts per million reads mapped) in at least 3 samples 
(42,079 of 61,043) were filtered out, and TMM (trimmed mean 
of M values) was the method used to normalise library sizes. 
Changes in transcript expression were considered significant 
if FDR [4] ≤ 0.05 and log2 |FC| ≥ 1.3. GSEA was performed 
using enrichR [7, 24], combined as well as separate for up- and 
down-regulated genes.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 
(versions 7, 8, and 9) or as described in the other methods. 
Generally, unpaired Student’s t tests were used to compare 
two groups, one-way or two-way ANOVA (as mixed model 
if values were missing) to compare multiple groups. Find-
ings were deemed significant if p value < 0.05 (*), 0.01 
(**), 0.001 (***), 0.0001 (****). p values were adjusted 
for multiple comparisons with Dunnett/Tukey, BH (Benja-
mini–Hochberg), BY (Benjamini–Yekutieli), or BYK (Ben-
jamini–Krieger–Yekutieli) whenever appropriate. Values 
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with Q = 0 were removed from Volcano plots for graphing 
reasons. Several heatmaps were created using the cluster-
gram function of MATLAB (versions 2019a, and 2020a) 
exported using the “export_fig” plugin (version 3, Y. Alt-
man, https:// github. com/ altma ny/ export_ fig).

Results

Identification of anti‑fibrotic efficacy of natural 
compound similars

We previously identified anti-fibrotic activities of bufa-
lin and lycorine in a screen of 480 natural compounds 
[42]. To search for compounds with even further improved 
anti-fibrotic properties, we now analysed a selection of 
“similars”, small molecules closely related to these lead 
substances. In a first step, we investigated whether these 
similars demonstrate potential to reduce cardiac fibroblast 
proliferation (Fig. 1a). Activity of similars on human car-
diac fibroblasts (HCF) was determined by BrdU incorpora-
tion (first screen) and WST-1-derived metabolic activity 
(second screen). Overall, 14 out of 15 similars of bufalin 
(buf-s-n) showed anti-proliferative effects (EC50 < 10 µM) 
with EC50s in the range of 5–500 nM (Fig. 1a). In com-
parison, only 1 out of 11 similars of lycorine could reduce 
HCF proliferation. When compared to lycorine, the EC50 
of this similar, from here on termed “lyco-s” (lycorine 
similar, later identified as homoharringtonine), was deter-
mined to be over 100-fold lower than the EC50 of the lead 
substance lycorine. The EC50s determined by BrdU incor-
poration could be validated by WST-1-derived metabolic 
activity for all compounds (Fig. 1b) with 0.04 ± 0.19 log 
units difference between BrdU and WST-1-derived EC50s. 
Please note differences between the compounds observed 
on the Y-axis do not necessarily translate to metabolic dif-
ferences due to assay variability.

In addition to these efficacy measurements, we predicted 
physicochemical properties, pharmacokinetics, drug‐ and 
lead‐likeness, as well as bioavailability in silico using the 
SwissADME webservice [10]. All compounds were ranked 
in each category, leading to an “ADMET” prediction score 
ranging from 0 (unfavourable) to 30 (optimal in all catego-
ries) (Fig. 1c). This score was used as an additional ranking 
dimension to determine our working set of the 2 initial lead 
compounds and 6 follow-up similars for further follow-up 
studies (Fig. 1f). When compared to nintedanib and pirfeni-
done, the two leading anti-fibrotic drugs approved for treat-
ment of idiopathic pulmonary fibrosis, our newly identified 
natural compound similars show higher activity and similar 
or better prediction scores.

To assess the striking differences in bufalin and lyco-
rine similars, we first compared the chemical structures 

(Fig. 1e, working set of compounds highlighted). We could 
observe a high similarity between bufalin and the chosen 
similars buf-s-13, buf-s-14, buf-s-17 and buf-s-18, mostly 
differing in a single bond only (Fig. 1d). Only bufalin simi-
lar buf-s-5, chosen for its high prediction score, exhibits 
notable differences in structure. Surprisingly, the only 
active lycorine similar lyco-s was not as closely related to 
the lead substance as expected, but had an additional side 
chain and a differing scaffold approximately doubling its 
molecular weight.

Toxicological assessment and functional validation 
of natural compound similars

After we demonstrated anti-proliferative activity of selected 
similars, we assessed potential cytotoxic effects by measur-
ing caspase activation and membrane integrity (using LDH 
release and inclusion of the CellTox Green dye) to rule out 
that anti-fibrotic effects were mediated mainly by cell death. 
Comparison of efficacy (BrdU) and cytotoxicity measure-
ments yielded therapeutic indices (T.i., ratio of toxic to 
effective concentration) for each compound of the working 
set (Fig. 2a, b and Supplemental Fig. 2a). We did not detect 
any increase of LDH release or cellular inclusion of CellTox 
Green dye, indicating persistent membrane integrity after 
compound treatment. Treatment with bufalin, buf-s-13, buf-
s-14, buf-s-17, and buf-s-18 led to dose-dependent induction 
of Caspase-3/7 within the tested concentration range. Most 
probably, true EC50s for cytotoxicity (Fig. 2a, red crosses) 
as well as Caspase induction (Fig. 2a, yellow crosses) are 
at higher concentrations than tested, placing T.i. for most 
compounds well over 1000:1 and likely higher than noted 
in Fig. 2b.

Furthermore, we treated human iPS-derived cardiomyo-
cytes (hiPS-CM) with selected compounds (Supplemental 
Fig. 2b–e). hiPS-CM showed neither increased Caspase acti-
vation nor LDH release after treatment at effective concen-
trations, but we observed increased cytotoxicity at maximal 
available concentrations (Supplemental Fig. 2d, e). This led 
to smaller, but still useable T.i. compared to the treatment of 
HCF (Supplemental Fig. 2b, c). Furthermore, we employed 
human living myocardial slices, an ex vivo model of human 
left ventricular heart tissue under constant electrical stimula-
tion ([23, 51], details see methods section). qPCR analysis 
revealed significant down-regulation of FAP (supplemen-
tal Fig. 2g, Fibroblast activation protein alpha) and MMP2 
(supplemental Fig. 2j) after treatment with lyco-s, but not 
lycorine.

As our working set of compounds overall showed favoura-
ble safety at effective concentrations in HCFs and hiPS-CM, 
we investigated further functional anti-fibrotic properties. 
HCF treated with selected bufalin similars and the lycorine 
similar showed markedly impaired fibroblast migration 

https://github.com/altmany/export_fig
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(Fig. 2c, d). Interestingly, using microscopic evaluation after 
treatment with bufalin or its related similars (buf-s-5, buf-s-
14, buf-s-18), we observed nearly complete lack of migra-
tion within the first half hour. In contrast, treatment with 
lyco-s repressed migration only after several hours, explain-
ing the slightly elevated migration index. In summary, the 
two lead compounds as well as the chosen similars are able 
to impair fibroblast proliferation and migration.

Natural compound similars regulate a set 
of fibrosis‑associated miRNAs

As the importance of miRNAs in organ fibrosis [32, 46] and 
cardiovascular disease [1, 22] has been reported, we specu-
lated on the importance of miRNAs regulated through our 
newly identified anti-fibrotic natural compound similars. An 
overview of all 165 in HCFs detectable miRNAs is shown in 
Fig. 3a. We found a common set of miRNAs down-regulated 
after treatment with buf-s-14, buf-s-18, lycorine and lyco-s, 
but not bufalin and buf-s-5, whereas a smaller number of 

miRNAs were upregulated across all treatments. Overall, 
we identified 43 miRNAs with Q value > 2.

We further performed over-representation analysis (ORA) 
of significantly deregulated miRNAs using the miEAA2 
tool [21] (see Supplemental File 1). Briefly, miEAA2 tests 
whether a given list of miRNAs (without prior conversion 
to mRNA targets) is significantly over-represented in cer-
tain biological pathways, compared to a random selection 
of miRNAs. Enriched terms (with qadj. < 0.05) were indeed 
related to ECM (Fig. 3b), e.g. extracellular matrix structural 
constituent (GO:0005201, adj. p = 5.5 ×  10−3), extracellular 
matrix organization (GO:0030198, adj. p = 1.3 ×  10−2), or 
cell matrix adhesion (GO:0007160, adj. p = 2.2 ×  10−2), 
as well as fibrosis (Fig. 3c), e.g. regulation of cell migra-
tion (GO:0030334, adj. p = 1.2 ×  10−3), regulation of cell 
proliferation (GO:0042127, adj. p = 1.2 ×  10−2), or fibro-
sis (MNDR,1 adj. p = 2.8 ×  10−3). Additionally, miRNAs 

Fig. 2  Favourite similars buf-s-14, buf-s-18 and lyco-s have low 
toxicity and inhibit HCF migration. a In addition to efficacy (BrdU, 
teal; WST-1, green), we determined cytotoxicity via dye inclu-
sion (CellTox Green, not shown), LDH release (red) as well as Cas-
pase-3/7 activation (yellow). Vertical lines represent EC50, horizon-
tal lines 95% CI. Horizontal bars indicate therapeutic index (T.i., 
IC50 ∕ EC50) until LDH (red) or caspase activation (yellow). Pale 
part of bars indicates predicted range above the highest tested con-
centration. n = 3 biological replicates (donors), 2 technical repli-

cates each. b Effective concentration (EC50 by BrdU assay) and 
T.i. (IC50 / EC50) for working set. CTG: CellTox Green dye. c, d 
HCF were stained with 1:1000 DIR before plating. After 24 h incu-
bation, cells were scratched and subsequently treated with the com-
pounds (c). All compounds were able to inhibit HCF migration (d). 
n = 3 biological replicates, six technical replicates each. Bars repre-
sent mean ± 95% CI. Analysed with Two-way ANOVA (p < 0.05), 
adjusted following Dunnett. DIR: 1,1′-Dioctadecyl-3,3,3′,3′-
Tetramethylindotricarbocyanine Iodide

1 MNDR: mammalian ncRNA-Disease Repository [35].
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controlling the TGF-β pathway were significantly affected 
(Fig. 3d), e.g. positive regulation of transforming growth 
factor beta receptor signaling pathway (GO:0030511, adj. 
p = 3.6 ×  10−4). In summary, our compounds deregulate 
miRNAs mainly involved in fibrotic processes.

Of the 43 significantly deregulated miRNAs, we chose 
the top 7, based on absolute fold-change, for further vali-
dation and assessment. As such, we were able to validate 
the significant regulation of miRNA expression by real-
time qPCR analysis (exemplarily shown in Fig. 3e, f). To 
determine whether these miRNAs are part of and essential 
to the mechanism of action of the compounds, we trans-
fected HCF with miR mimics or inhibitors of the miRNA 
candidates prior to compound treatment. If a miRNA is 
essential for the compounds’ mechanism, we would expect 
the absence of anti-proliferative effects after inhibition 
of this miRNA, whereas anti-proliferative effects would 
remain if the miRNA is rather a downstream element of 
the compound response. Indeed, we were able to detect 
such an absence of the anti-proliferative effect for hsa-
miR-132-3p after treatment with buf-s-18 and lyco-s, but 
not buf-s-14 (Fig. 3h). Meanwhile, we observed an inverse 
correlation for hsa-miR-125a-5p, as overexpression of the 
miRNA was able to prevent the anti-proliferative effect of 
treatment with buf-s-14 and lyco-s (Fig. 3g). These find-
ings indicate the contribution of these two miRNAs in 

the signalling required for the anti-proliferative action of 
the respective anti-fibrotic drug candidates. The remain-
ing miRNAs showed changed expression after compound 
treatment via real-time qPCR (data not shown), but no sig-
nificant influence on HCF proliferation could be detected 
regardless of the treatment (Supplemental Fig. 3c–g).

Identification of regulated anti‑fibrotic pathways

To test a potential influence of newly identified natural com-
pound similars on pro-fibrotic pathways, we utilized a tar-
geted fibrotic signalling mRNA profiling tool. Quality con-
trol of all runs led to exclusion of 1 sample (HCF in medium 
only, Donor 5, Supplemental Fig. 4a–c). Results from the 
remaining 29 samples were analysed by correlation analy-
sis, indicating relatively high consistency between measure-
ments (Pearson r > 0.84 for all comparisons). Moreover, 10 
of the genes were chosen as reference genes (Supplemental 
Fig. 4e, f). Highest-expressed genes after normalization were 
CXCL8, FN1, and VIM, as well as SERPINE1 in lyco-s-
treated samples (Supplemental Fig. 4g). As we observed sig-
nificant differences between the HCF donors (Supplemental 
Fig. 4h), we corrected for donor variability as a covariate in 
the following in-depth analyses.

Out of the remaining 760 mRNAs of this targeted 
panel, 369 showed significant deregulation (BY adjusted p 
value < 0.05) in at least one condition. No significant differ-
ences were found between DMSO and medium only con-
trol samples. An overview of all significantly deregulated 
genes is shown in Fig. 4a. Of note, treatment with lycorine 
resulted in less deregulation (fold-change) compared to 
the other treatments. Samples treated with lyco-s trended 
towards more down- than upregulation, and the pattern of 
up- and down-regulated genes was different from the pat-
tern observed for the remaining treatments. In contrast, bufa-
lin and all bufalin similars shared a highly similar profile. 
Indeed, out of 156 differentially expressed genes (DEGs) 
with log2 |FC| ≥ 1 of bufalin and its similars, a set of 93 
genes was always up- or down-regulated across all condi-
tions, and further 13 genes in at least 5 of the 6 different 
treatments (Fig. 4b). Consequently, Volcano plots were 
highly similar for bufalin similars, but not lyco-s (Fig. 4c). 
Pathway analysis revealed significant downregulation of 
several gene clusters after lyco-s treatment (Fig. 4d). Spe-
cifically, lyco-s repressed genes related to endothelial mes-
enchymal transition (EMT), ECM homeostasis as well as 
collagen biosynthesis (Fig. 4e).

Next‑generation RNA‑Sequencing after anti‑fibrotic 
treatments

Global transcriptome analysis by RNA sequencing was per-
formed for buf-s-14, buf-s-18 and lyco-s. In total, sequencing 

Fig. 3  Natural compound similars regulate a set of fibrosis-associ-
ated miRNAs. a Treatment with compounds led to upregulation of 
several miRNAs across all treatments, whereas downregulation of a 
set of miRNAs was observed in buf-s-14, buf-s-18, lycorine as well 
as lyco-s. miRNAs analysed in more detail indicated on the right. 
n = 3 biological replicates (donors), 2 technical replicates each. Dis-
coveries determined with multiple unpaired t tests, adjusted follow-
ing BKY (Q = 0.01). Pathways of significantly deregulated miRNAs, 
summarized by “bufalin-like” (blue) or “lycorine-like” (red) treat-
ment, were determined by over-representation analysis (ORA) using 
miEAA2, adjusted following BH (Q = 0.05). A high number of terms 
were found related to extracellular matrix (b), fibrosis and fibroblast 
biology (c) as well as TGF-β pathways (d). As the analysis included 
more similars of bufalin than lycorine, more significant terms were 
observed for “bufalin-like” treatment overall. Dotted line indicates 
significance threshold (padj. < 0.05). Real-time qPCR analysis showed 
hsa-miR-125a-5p expression was independent of compound treatment 
(e), whereas hsa-miR-132-3p was upregulated in compound-treated 
HCF (f). n = 1 donor, 3 biological replicates. Analysed with Two-way 
ANOVA, adjusted following Tukey. Utilizing the WST-1 assay, over-
expression of hsa-miR-125a-5p partially protected against the anti-
proliferative effect of buf-s-14, buf-s-18 and lyco-s (g). In contrast, 
inhibition of hsa-miR-132-3p protected against buf-s-18 and lyco-s, 
but not buf-s-14 (h). Bars show Lipofectamine control (hatched), 
overexpression with respective miRNA mimic (full colour) and inhi-
bition with respective miRNA inhibitor (pale colour). Horizontal 
lines represent remaining activity after treatment with buf-s-14 (pink, 
dash-dot-dot) and buf-s-18 (teal, dash-dot) without miRNA mimic or 
inhibitor. n = 3 biological replicates (donors), 3–10 technical repli-
cates each. Analysed with Two-way ANOVA (p < 0.05), adjusted fol-
lowing Tukey

◂
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detected 61,043 transcripts, of which 42,079 low-expressed 
transcripts were excluded. Cluster analysis on the remain-
ing 18,964 transcripts could not distinguish buf-s-14 from 
buf-s-18 (Supplemental Fig. 5a). When compared to DMSO 
control, we detected over 4000 DEGs for all three treatments 
(Fig. 5a). We further determined the top 20 expressed tran-
scripts of the DMSO control in more detail to get infor-
mation about the most important genes of “basal HCF” 
(Supplemental Fig. 5b). Of note, the 6 highest-expressed 
transcripts already constitute over 10% of all reads (after fil-
tering, see methods section): FN1 (3.3%), COL1A1 (2.0%), 
EEF1A1 (1.3%), COL1A2 (1.3%), and two neighbouring 
lincRNAs. When we assessed the underlying pathways, 
we found most of those transcripts to be part of pathways 
expected for fibroblasts (supplemental Fig. 5c): cell–cell 
adhesion (GO:0034109), ECM organisation (GO:0030198), 
TGF-beta receptor signaling (GO:0007179) and cell migra-
tion (GO:0030334), as well as general protein-related pro-
cesses (GO:0006414, GO:0044267, GO:0006464).

We further analysed all DEGs of the different treatments 
using enrichR (Fig. 5c–f). For the two bufalin-related simi-
lars, down-regulated genes were enriched for terms related 

to DNA binding, cytoskeleton and multiple pathways of 
biosynthesis. Analysis of up-regulated genes after treatment 
with lyco-s enriched terms related to inflammation, whereas 
down-regulated terms concentrated on ECM, collagen and 
several biosynthesis pathways.

Of note, ECM organization or ECM-receptor interactions 
were the top 1 term in GO:BP, KEGG, Reactome and WikiP-
athways databases. This strong consistency between several 
databases led us to evaluate the changes in gene expres-
sion after treatment with lyco-s in more detail. First, we 
assessed the gene expression profile of GO biological path-
ways relevant to ECM and collagen function (Fig. 5b). We 
detected broad deregulation for many genes related to ECM 
organisation (GO:0030198, orange) and collagen binding 
(GO:0005518, green) or both (yellow) after treatment with 
lyco-s, and to a lesser degree for buf-s-14- and buf-s-18-
treated samples. Subsequently, we evaluated all expressed 
collagen isoforms as central components of fibrosis. From 
COL1A1 (13.9–14.6 log2 counts) to COL9A1 (− 6.3 
to − 4.7 log2 counts), expression level of collagen isoforms 
spun nearly 6 orders of magnitude. Focusing on the top 20 
expressed isoforms, we found significant differences after 

Fig. 4  Similars regulate fibrotic mRNA signalling. a RNA isolated 
from HCF treated with bufalin, buf-s-5, buf-s-13, buf-s-14, buf-s-17, 
buf-s-18, lycorine or lyco-s was analysed using the nanoString Fibro-
sis panel. Out of 770 mRNAs measured, expression of 369 genes was 
significantly deregulated and distinct expression profiles for the com-
pound groups bufalin-like (blue) or lycorine-like (red) were obtained. 
n = 3 biological replicates (donors). Analysed with multiple t tests 
(p < 0.05), adjusted following BY. b 93 genes were up-regulated, 
respectively, downregulated in all bufalin-like compound-treated 
HCF, and further 13 genes in at least 5 of the 6 different treatments. c 

buf-s-14 and buf-s-18 tended to increase overall expression, whereas 
the number of significantly up- and down-regulated genes was simi-
lar after treatment with lyco-s. d Pathway signatures were scored by 
average expression of genes in respective pathway, normalized to 
respective signature mean. Bufalin and its similars have nearly inter-
changeable pathway profiles, whereas the profile of lycorine is similar 
to controls. Treatment with lyco-s is the only condition with reduction 
in collagen, ECM and EMT pathways. e Average expression per gene 
for selected pathways. n = 3 biological replicates (donors)
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treatment (ANOVA p value < 0.001). As such, treatment 
with lyco-s led to significantly reduced expression levels 
of most high- to medium-expressed collagen isoforms, and 
highest-expressed isoforms were reduced approx. tenfold 
(Fig. 5g, top 20 collagen isoforms, ordered from highest 

expressed left to the lowest expressed right). In contrast, col-
lagen levels remained mostly unchanged after treatment with 
buf-s-14 or buf-s-18 (Supplemental Fig. 5d, same order), as 
only COL5A1 was downregulated approx. fivefold.

Fig. 5  mRNA expression analysis of HCF reveals repression of 
ECM and collagen function after treatment with lyco-s. a Out of 
61,043 transcripts, 18,964 remained after exclusion of low-expressed 
transcripts. Volcano plots show over 4000 differentially expressed 
genes (DEGs) for all three treatments. Treatment with lyco-s led to 
a similar amount of significantly up- (red), but not down-regulated 
genes (blue) compared to bufalin similars. n = 3 biological replicates 
(donors). Discoveries (Q = 0.05) adjusted following BY. b Treat-
ment with lyco-s leads to increased deregulation of central pathways 
related to ECM function, including ECM organisation (orange), col-
lagen binding (green), or both (yellow). GO:BP analysis of DEGs 
highlights downregulation of ECM and myofibroblast functions (c) as 

well as metabolism (d) after treatment with lyco-s. In contrast, treat-
ment with buf-s-18 led to downregulation of genes involved in cilia 
(e) and DNA damage responses (f). For samples treated with buf-s-
14, no terms were significantly enriched after multiplicity adjustment. 
Dotted line indicates significance threshold (padj. < 0.05). g Treatment 
with lyco-s (purple) repressed most high to medium-expressed colla-
gen isoforms in HCF. The top 5 collagens are among the top 20 over-
all genes (compare Supplementary Fig. 4d). Mean (bars) and single 
biological replicates (circles), asterisk indicates significance in Two-
way ANOVA (p < 0.05), adjusted following Dunnett (including buf-s-
14 + buf-s-18, see Supplementary Fig. 4d)
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Conclusion

Here we describe the characterization of molecular simi-
lars of the previously identified natural compounds bufa-
lin and lycorine for the treatment of cardiac fibrosis. We 
selected anti-proliferative candidates based on in vitro 
screening and in silico predictions, and further validated 
their effect. In a multi-OMICs approach, we confirmed 
anti-fibrotic activity and identified several underlying 
molecular pathways.

The most promising candidate from our screen was lyco-
s, also known as homoharringtonine, and we determined 
EC50 for inhibition of proliferation on HCF at rather low 
concentrations (34 nM), being in line with the median activ-
ity of approved drugs of approx. 20 nM [36] and sufficient to 
advance further translational developments. Homoharringto-
nine has been mainly tested as an anti-cancer therapeutic, 
and has been evaluated in a number of phase II clinical trials 
(e.g. NCT00375219 [9]). After orphan drug designation in 
2006, homoharringtonine has been approved for treatment 
of chronic myeloid leukemia (CML) by the FDA in 2012.

Historic studies proposed interaction of bufalin with the 
Na(+),K(+)-ATPase [39] as well as of lycorine and lyco-s 
with the 80S ribosome [15, 48], recently supported by crys-
tal structures [17, 25]. Notwithstanding, literature reports on 
the action of bufalin, lycorine and lyco-s are highly incon-
sistent, often contradictory, and regularly with a relative 
narrow focus on potential interaction partners or targets. To 
conclusively resolve anti-fibrotic and selective target pro-
files of bufalin, lycorine and their similars, we decided on 
global and unbiased evaluation of the non-coding and coding 
transcriptome.

To determine changes in miRNA expression, we used a 
panel of 754 known human miRNAs. We could detect only 
a minority of 165 miRNAs expressed in HCF, of which 43 
were significantly deregulated after treatment. Surprisingly, 
overexpression of hsa-mir-125a-5p counteracted the anti-
proliferative activity of our compounds. Hsa-mir-125a-5p 
has been described to be a negative regulator of p53, thereby 
promoting cell proliferation and differentiation [27, 33]. 
Similarly, increased expression of hsa-mir-125a-5p has been 
reported in a sheep model of HF [52] and correlated with 
fibrosis score and severity of hepatic fibrosis and cirrhosis 
in human [8].

RNA profiling and validation experiments identified an 
exceptional downregulation by approx. 90% of high- to 
medium-expressed collagen isoforms after treatment with 
lyco-s, but not buf-s-14 and buf-s-18. Fibronectin 1 (FN1), 
Pleiotrophin (PTN), and Biglycan (BGN) are essential mark-
ers of myofibroblasts, which act as paracrine signals to other 
cell populations of the heart [12]. Again, we found all of 

those factors were significantly downregulated after treat-
ment with lyco-s. Anti-fibrotic effectivity of lyco-s could 
be validated even ex vivo in human living myocardial slices 
derived from heart failure patients.

In conclusion, we found strong evidence that the anti-
proliferative activity and anti-migratory activity of several of 
our similars, especially lyco-s, are sufficient to block fibro-
blast activation and thus validate them as interesting anti-
fibrotic drug candidates for further preclinical and clinical 
development.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00395- 022- 00919-6.
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