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Artificial intelligence to detect malignant eyelid tumors from
photographic images
Zhongwen Li 1,2,7✉, Wei Qiang1,7, Hongyun Chen3, Mengjie Pei4, Xiaomei Yu1, Layi Wang1, Zhen Li1, Weiwei Xie1, Xuefang Wu5,
Jiewei Jiang 6✉ and Guohai Wu 1✉

Malignant eyelid tumors can invade adjacent structures and pose a threat to vision and even life. Early identification of malignant
eyelid tumors is crucial to avoiding substantial morbidity and mortality. However, differentiating malignant eyelid tumors from
benign ones can be challenging for primary care physicians and even some ophthalmologists. Here, based on 1,417 photographic
images from 851 patients across three hospitals, we developed an artificial intelligence system using a faster region-based
convolutional neural network and deep learning classification networks to automatically locate eyelid tumors and then distinguish
between malignant and benign eyelid tumors. The system performed well in both internal and external test sets (AUCs ranged from
0.899 to 0.955). The performance of the system is comparable to that of a senior ophthalmologist, indicating that this system has
the potential to be used at the screening stage for promoting the early detection and treatment of malignant eyelid tumors.
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INTRODUCTION
Eyelid tumors are the most common neoplasm encountered in
daily ophthalmology practice1,2. As eyelids have many tissue
types, various benign and malignant tumors can develop3.
Malignant eyelid tumors pose a great threat because of their
proximity to the eyeballs, brain, and paranasal sinuses, which may
cause cosmetic disfigurement and severe morbidity4,5. Early
recognition and treatment of malignant eyelid tumors can result
in the most cosmetically and functionally satisfactory outcomes4–6.
In addition, although melanoma and sebaceous gland carcinoma
(SGC) of the eyelid are rare lesions, they have high mortality7,8.
However, the estimated 5-year survival rate of these malignant
eyelid tumors can be over 99% if they could be detected in their
earliest stages (depth of skin invasion ≤0.76 mm)8. Therefore, early
detection of these malignant eyelid tumors is considerably critical.
Benign and malignant eyelid tumors sometimes have over-

lapping features, hence differentiation between them can be
challenging for primary care physicians, dermatologists, and
ophthalmologists without sufficient experience4,5. Due to the
intricate anatomy of the eyelid, the diagnosis of eyelid tumors
often requires experienced ophthalmologists. However, while over
200,000 ophthalmologists worldwide, there is a present and
expected future shortfall in the number of ophthalmologists in
both developing and developed countries9. The shortage of
experienced ophthalmologists may hinder the early detection of
malignant eyelid tumors, especially in underdeveloped countries
and remote regions.
Recently, artificial intelligence (AI) has been reported to attain a

high level of accuracy in the automated detection of numerous
diseases from clinical images10–15. In ophthalmology, a large
number of studies developed deep learning-based systems that
could accurately detect ocular diseases such as diabetic retino-
pathy, retinal detachment, and glaucoma16–21. However, eyelid

tumors, particularly malignant ones, which need early detection
and prompt referral, are not well investigated. Employment of a
deep learning algorithm in conjunction with eyelid tumor images
may realize the early identification of malignant eyelid tumors
with potential benefits including increased accessibility and
affordability for the suspected cases. In addition, for allowing
medical practitioners and suspected patients to proactively track
eyelid tumors and identify malignant ones earlier, the algorithm
should be capable of localizing eyelid tumors autonomously
within images.
In this study, we tried to develop an AI system, which used a

faster region-based convolutional neural network (Faster R-CNN)
and deep learning classification networks, to automatically locate
eyelid tumors and distinguish malignant from benign tumors in
photographic images captured by ordinary digital cameras.
Besides, we separately investigated the performance (dichoto-
mous diagnosis: malignant, benign) of this system in detecting the
most frequent malignant and benign eyelid tumors. Moreover, we
compared the performance of the system to that of ophthalmol-
ogists of different levels.

RESULTS
Dataset characteristics
After excluding 150 photographic images without histopatholo-
gical diagnoses, a total of 1,417 images with 1,533 eyelid tumors
delineated by tight bounding boxes were used to establish and
evaluate an eyelid tumor detection system (ETDS). A total of 1,533
cropped images (1,161 images of benign tumors and 372 images
of malignant tumors) created by the ETDS were leveraged to
develop and assess the deep learning classification system. Details
on the development set and external test set are described in
Table 1.
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The top three malignant eyelid tumors in our datasets are basal
cell carcinoma (BCC) (245/372, 65.9%), squamous cell carcinoma
(SCC) (50/372, 13.4%), and SGC (66/372, 17.7%). The proportion of
the other malignant eyelid tumors (e.g., melanoma and actinic
keratosis) is 3.0% (11/372). The top three benign eyelid tumors are
squamous cell papilloma (SCP) (104/1161, 9.0%), nevus (385/1,161,
33.2%), and seborrheic keratosis (106/1161, 9.1%). The proportion
of the other benign eyelid tumors (e.g., hemangioma and
xanthoma) is 47.4% (566/1161). In total, 116 (7.6%) malignant
tumors and 630 (41.1%) benign tumors appeared on the upper
eyelid, 238 (15.5%) malignant tumors and 470 (30.7%) benign
tumors appeared on the lower eyelid, 11 (0.7%) malignant tumors
and 55 (3.6%) benign tumors appeared in the inner canthus, and 7
(0.5%) malignant tumors and 6 (0.4%) benign tumors appeared in
the outer canthus.

Performance of the ETDS and different deep learning
algorithms
The average precision (AP) scores of the ETDS for locating eyelid
tumors were 0.801 in the internal test set and 0.762 in the external
test set. The representative detection results of the Faster-RCNN
for eyelid tumors were shown in Fig. 1. Four classic deep learning
algorithms, DenseNet121, ResNet50, Inception-v3, and VGG16
were used to train models to distinguish malignant eyelid tumors
from benign ones. The receiver operating characteristic (ROC)
curves of these algorithms in internal and external test sets are
shown in Fig. 2, and the corresponding confusion matrices are
presented in Supplementary Fig. 1, which indicates that the
optimal algorithm is the DenseNet121. The t-distributed stochastic
neighbor embedding (t-SNE) technique also showed that the
features of benign and malignant eyelid tumors learned by the
DenseNet121 were more separable than those of the ResNet50,
Inception-v3, and VGG16 (Supplementary Fig. 2).
In discerning malignant eyelid tumors, the optimal algorithm

DenseNet121 achieved an area under the receiver operating
characteristic curve (AUC) of 0.955 (95% confidence interval [CI],
0.923–0.979), a sensitivity of 96.1% (95% CI, 90.8–100), and a
specificity of 77.4% (95% CI, 70.6–84.2) in the internal test set, and
an AUC of 0.899 (95% CI, 0.854–0.934), a sensitivity of 91.5% (95%

CI, 84.4–98.6), and a specificity of 79.2% (95% CI, 73.9–84.5) in the
external test set. Further information encompassing accuracies,
sensitivities, and specificities of these four algorithms is displayed
in Table 2. Compared to the ground truth, the unweighted
Cohen’s κ coefficients of the optimal algorithm DenseNet121 were
0.613 (95% CI, 0.497–0.730) in the internal test set and 0.560 (95%
CI, 0.452–0.668) in the external test set.
The distribution of malignancy scores related to the major

categories determined by the optimal algorithm DenseNet121 in
internal and external test sets is shown in Fig. 3. With a
malignancy cutoff at > 0.5, the percentage of correctly classified
images in malignant tumors was 91.0% (61/67) in BCC, 92.9% (13/
14) in SCC, 100% (19/19) in SGC, and 100% (7/7) in melanoma. In
benign tumors, the percentage of correctly classified images was
70.2% (73/104) in nevus, 56.3% (18/32) in seborrheic keratosis,
69.2% (27/39) in SCP, and 90.0% (27/30) in cyst.
A total of 36 images (12 malignant tumor images and 24 benign

tumor images) were classified into the borderline case group
(eyelid tumors of uncertain malignant nature) by the expert. The
optimal algorithm DenseNet121 achieved an accuracy of 77.8%
(95% CI, 64.2–91.4) with a sensitivity of 83.3% (95% CI, 62.2–100)
and a specificity of 75.0% (95% CI, 57.7–92.3) in differentiating
malignant eyelid tumors from benign ones on this group. The
receiver operating characteristic curve of our system in images of
eyelid tumors of uncertain malignant nature is shown in
Supplementary Fig. 3.

Classification errors of the deep learning system
In total, 87 images (18.0% of the 482 images) from the internal and
external test sets had inconsistent findings between the system
and the ground truth. In the category of malignant eyelid tumors
(110 images), seven images (6.4%) were misclassified by the
system as benign tumors (false-negative classification). In the
category of benign eyelid tumors (372 images), 80 images (21.5%)
were misclassified by the system as malignant tumors (false-
positive classification). The details regarding images misclassified
by the system are illustrated in Supplementary Fig. 4. Examples of
incorrectly classified images are shown in Supplementary Fig. 5.

Table 1. Characteristics of the development set and the external test set.

Development set External test set

Total no. of photographic images 1,258 309

Total no. of qualified photographic
imagesa

1,151 266

Total no. of cropped images 1, 248 285

No. of patients 675 176

Mean age/range (years) 49.6 (1–100) 50.0 (2–87)

No. of women (%) 421 (62.4) 111 (63.1)

Institution NEH JEH and ZFPH

Location of institution East of China East and west of China

Camera model Canon IXUS-130, Nikon COOLPIX-
S7000

FUJIFILM FinePix-F41, HUAWEI EVA-
AL00

Training set Validation set Internal
test set

Benign eyelid tumorb 668/
883 (75.7)

121/168 (72.0) 146/197 (74.1) 226/285 (79.3)

Malignant eyelid tumorb 215/
883 (24.3)

47/168 (28.0) 51/197 (25.9) 59/285 (20.7)

NEH Ningbo Eye Hospital, JEH Jiangdong Eye Hospital, ZFPH Zunyi First People’s Hospital.
aQualified photographic images indicate the images with unequivocal histopathological diagnoses.
bData are no. of cropped images/total no. (%) unless otherwise indicated.
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The relationship between the classification error rates and
predicted probabilities of our system is displayed in Fig. 4, which
denoted that the classification error rate of each category and the
total classification error rate increased with the decrease of the
predicted probabilities. When the predicted probabilities are over
0.9, the classification error rate of the malignant eyelid tumors is

0% and the classification error rate of the benign eyelid tumors is
about 8%. When the predicted probabilities are less than 0.7, the
classification error rates of these two categories are both greater
than 20% and the total classification error rate is over 35%. As our
system is a binary classification system, the lowest predicted
probability value of the system’s output is greater than 0.5.

b. Benign eyelid tumor

a. Malignant eyelid tumor
a1 a3a2

b1 b2 b3

Fig. 1 Representative detection results of the Faster-RCNN for eyelid tumors. The green dotted line boxes refer to the ground truth of the
eyelid tumors. The orange solid line boxes refer to the detection results by Faster region-based convolutional neural network (R-CNN). The
orange numerical values indicate confidence scores (range 0–1) which reflect how confident the model is that the box contains an eyelid
tumor. a Malignant eyelid tumor: a1 basal cell carcinomas. a2 squamous cell carcinomas. a3 sebaceous gland carcinoma. b Benign eyelid
tumor: b1 nevus. b2 seborrheic keratosis. b3 squamous cell papilloma.

a. Internal test set b. External test set 

Fig. 2 Performance of four deep learning algorithms in discerning malignant eyelid tumors. a The receiver operating characteristic (ROC)
curves of the deep learning algorithms in the internal test set. b The ROC curves of the deep learning algorithms in the external test set. AUC
area under the ROC curve. CI confidence interval.

Table 2. Performance of four deep learning algorithms in identifying malignant eyelid tumors in the internal and external test sets.

Deep learning
algorithms

Internal test set External test set

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

DenseNet121 96.1% (90.8–100) 77.4% (70.6–84.2) 82.2% (76.9–87.6) 91.5% (84.4–98.6) 79.2% (73.9–84.5) 81.8% (77.3–86.2)

ResNet50 94.1% (87.7–100) 77.4% (70.6–84.2) 81.7% (76.3–87.1) 69.5% (57.7–81.2) 84.5% (79.8–89.2) 81.4% (76.9–85.9)

Inception-v3 90.2% (82.0–98.4) 77.4% (70.6–84.2) 80.7% (75.2–86.2) 74.6% (63.5–85.7) 73.9% (68.2–79.6) 74.0% (68.9–79.1)

VGG16 86.3% (76.8–95.7) 78.8% (72.1–85.4) 80.7% (75.2–86.2) 66.1% (54.0–78.2) 82.3% (77.3–87.3) 78.9% (74.2–83.7)

CI, confidence interval.
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Interpretability of the deep learning system
To investigate the interpretability of the system in classifying
benign and malignant eyelid tumors, heatmaps were created to
visualize the regions that contributed most to the system’s
decisions. We found that heatmaps highlighted the regions of
benign and malignant eyelid tumors, regardless of the size,
location, and shape of the tumors. Examples (images and
corresponding heatmaps) of malignant and benign eyelid tumors
are shown in Figs. 5 and 6, respectively.

Deep learning system versus ophthalmologists
For differentiating malignant eyelid tumors from benign ones
based on the external test set, the junior ophthalmologist
achieved an accuracy of 72.3% (95% CI, 67.1–77.5) with a

sensitivity of 66.1% (95% CI, 54.0–78.2) and a specificity of
73.9% (95% CI, 68.2–79.6), the senior ophthalmologist achieved an
accuracy of 77.9% (95% CI, 73.1–82.7) with a sensitivity of 74.6%
(95% CI, 63.5–85.7) and a specificity of 78.8% (95% CI, 73.4–84.1),
and the expert achieved an accuracy of 90.2% (95% CI, 86.7–93.6)
with a sensitivity of 94.9% (95% CI, 89.3–100) and a specificity of
88.9% (95% CI, 84.8–93.0), while the system achieved an accuracy
of 81.8% (95% CI, 77.3–86.2) with a sensitivity of 91.5% (95% CI,
84.4–98.6) and a specificity of 79.2% (95% CI, 73.9–84.5). The
sensitivity of the system was superior to that of the junior and
senior ophthalmologists and comparable to that of the expert,
whereas the specificity of the system was only inferior to that of
the expert (Supplementary Table 1). Confusion matrices of these
three ophthalmologists are presented in Supplementary Fig. 6.

DISCUSSION
Our objective in this study was to evaluate the performance of a
deep learning system in distinguishing malignant eyelid tumors
from benign ones based on photographic images captured by
ordinary digital cameras. The findings shown in Fig. 2 demon-
strated that deep learning algorithms performed well in discern-
ing malignant eyelid tumors and the algorithm DenseNet121 had
better performance than the other three algorithms. The general-
izability of our system was confirmed on the basis of its good
performance (AUC 0.899, sensitivity 91.5%, specificity 79.2%) in
the external test set, of which images were collected from two
other hospitals. Besides, the agreement between the outputs of
the system and the ground truth was substantial according to the
unweighted Cohen’s κ coefficients, further verifying the reliability
of our system. When compared to the ophthalmologists of
different levels, the system’s sensitivity was higher than that of the
junior and senior ophthalmologists and comparable to that of
the expert, while the system’s specificity is lower than that of the
expert. As a high sensitivity is a prerequisite in a potential
screening tool22, the results implied that our system can
potentially serve as an efficient approach for the early detection
of malignant eyelid tumors, reducing the medical costs and
workload via avoiding the need for the further examination of
evidently benign eyelid tumors.
In both eastern and western countries, the top three malignant

eyelid tumors are BCC, SCC, and SGC, and the top three benign
eyelid tumors are SCP, seborrheic keratosis, and nevus1,2,23–25,
which are consistent with the statistics of our datasets. The
accuracy of our system in detecting these most frequent
malignant tumors is greater than 90%. Although melanoma is a
rare lesion on eyelids, it has considerable potential morbidity and
mortality4. The early recognition and timely treatment of patients
with melanoma are crucial for improving the prognosis4,5.
Therefore, we investigated the performance of our system in
images of melanoma. Inspiringly, the percentage of correctly
classified images by the system in malignant eyelid tumors was
100% in melanoma. These results suggested that our system had
good performance in identifying both frequent and rare
malignant eyelid tumors.
Differentiating a malignant eyelid tumor from a benign one can

be challenging for the examining physician in primary care centers
due to the relatively small size, variability in clinical presentation,
and minimal ophthalmologic training in the medical school5,26.
Unlike skin tumors in other regions of the body, where physicians
might feel comfortable conducting biopsies, the intricate anatomy
of eyelids often calls for a referral to an ophthalmologist. Even
oculoplastic ophthalmologists have only 70% accuracy in diag-
nosing eyelid tumors5. Due to the reliable performance, our
system could be utilized both at the screening stage before
patients visit the physician and at the disease confirmation stage
after the consultation, promoting the early detection of malignant
eyelid tumors.

Fig. 3 Malignancy scores (range 0–1) predicted by the deep
learning classification system for the major categories of
malignant and benign eyelid tumors. Scores closer to 1 denote a
higher probability of malignancy. The upper and lower bounds of
the box refer to the 25th and 75th percentiles, and the line
intersection in the box refers to the median. Whiskers refer to the
full range of malignancy scores. BCC basal cell carcinoma, SCC
squamous cell carcinoma, SGC sebaceous gland carcinoma, SCP
squamous cell papilloma.

Fig. 4 Relationship between the classification error rates and
predicted probability values. The classification error rate is the
fraction of incorrectly classified images in each predicted probability
interval between the breaking points. BET benign eyelid tumor, MET
malignant eyelid tumor.
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Recently, Adamopoulos et al.27 trained models using a deep
learning artificial neural network for classifying patients with
eyelid BCC and healthy individuals without eyelid tumors based
on 143 photographic images obtained from a single clinical
center. The AUC of their best model reached approximately 1.00.
As their model was mainly used for detecting eyelid BCC, it may
not be employed to discern other malignant eyelid tumors. In
comparison to their study, our study showed several important
features. First, we developed a deep learning system that could
distinguish a variety of malignant eyelid tumors from benign ones
with AUCs ranging from 0.899 to 0.955. In addition, our system has
the potential to be applied to ordinary digital cameras, which
would be a convenient and cost-effective approach for promoting
the early detection of malignant eyelid tumors. Third, our datasets
included 1,417 photographic images collected from three
different clinical hospitals and thereby were more representative
of the data in real-world settings. Fourth, the ground-truth label of
each image in this study is based on an unequivocal histopatho-
logical diagnosis.
While deep learning has great performance in medical image

diagnosis problems, it remains highly criticized for being “a black
box”28. This is considered as a major shortcoming in the
application of deep learning to high-stakes decisions29. To explore
this issue, we generated heatmaps using a Gradient-weighted
Class Activation Mapping (Grad-CAM) technique to visualize the

regions which contributed most to the system’s classification. The
heatmap revealed that the eyelid tumors in images, irrespective of
malignant and benign categories, were identified as the critical
regions, which further demonstrated the validity of the system
(Figs. 5 and 6). Our system’s interpretability feature could facilitate
its application in real-world settings.
Compared to the ground truth, our system made a few

mistakes. For the malignant eyelid tumors incorrectly classified
as benign ones, 85.7% (6/7) images showed BCC. The BCCs in
these images are relatively small, unclear, and similar to the scar
and seborrheic keratosis, which might be possible contributors to
this misclassification. For benign eyelid tumors misclassified as
malignant ones, most images showed nevus (31/80, 38.8%),
followed by seborrheic keratosis (14/80, 17.6%), and SCP (12/80,
15.0%). These benign tumors, in varying degrees, have similar
appearances (e.g. irregular shapes, irregular pigmentation, and
telangiectasia) to malignant ones. When analyzing the relationship
between the system’s predicted probability and classification error
rate, the results suggested that the higher classification error rate
is associated with the lower predicted probability. Hence
ophthalmologists need to pay more attention to the images with
low predicted probability values. As an ideal intelligent screening
system should minimize both false-negative and false-positive
errors, further studies are needed to address this issue.

Clinical images Tumor-centered 
cropped images

Tumor-centered 
heatmaps

a

c

b

d

Fig. 5 Examples of photographic images, cropped images and corresponding heatmaps of malignant eyelid tumors. a Basal cell
carcinomas. b Squamous cell carcinomas. c Sebaceous gland carcinoma. d Melanoma.
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Although the present study proves the potential of the deep
learning system in discriminating between malignant and benign
eyelid tumors, the system has several limitations which we wish to
address in the near future. First, since our system was developed
solely based on the Chinese Population from several different
geographic regions, its effectiveness in other racial populations
would need to be further verified. Additional training on various
clinical and demographic cohorts might further improve the
performance and clinical utility of the system in a broad range of
populations. In addition, while our system appears well suited for
a screening purpose (discerning malignant eyelid tumors), it
cannot provide a specific diagnosis based on images. We expect
to collect more images of eyelid tumors of each category and then
develop an AI system to realize this function.
In conclusion, the current study demonstrated that our deep

learning system had roust performance in differentiating malig-
nant eyelid tumors from benign ones. This AI system has the
potential to assist medical practitioners and suspected patients to
proactively track eyelid tumors and identify malignant ones
earlier.

METHODS
Image acquisition
For developing a deep learning system, a total of 1,258 photographic
images (675 patients) were collected at NEH. The NEH dataset included

subjects who presented for eye examinations and ophthalmology
consultations due to the discovery of eyelid tumors. The images were
captured between January 2010 and March 2021 using ordinary digital
cameras. To better confirm the effectiveness and generalizability of the
deep learning system, an additional dataset including 248 photographic
images (129 patients) collected at Jiangdong Eye Hospital (JEH) and 61
photographic images (47 patients) collected at Zunyi First People’s
Hospital (ZFPH) were used to externally assess the system. The images
of the development set and the external test set were taken at various
locations, such as outpatient clinics, inpatient wards, operating rooms,
hence the lighting and background of the images were not uniform,
indicating the richness and diversity of our datasets. All anonymized,
unaltered images (size, 0.6–5.5 megabytes per image) were transferred to
researchers for inclusion in the study. This study followed the recently
published reporting guidelines for the clinical research involving AI: the
CONSORT-AI extension30.

Development of an eyelid tumor detection system
As one photographic image may show one or more eyelid tumors of
different nature, this study first developed an ETDS using the Faster-RCNN,
an object detection network depending on region proposal algorithms31,
to automatically locate and crop eyelid tumors from photographic images.
This step can also remove the background noise around tumors in
photographic images for better training the subsequent deep learning-
based classification networks. Each eyelid tumor in a photographic image
was delineated by a tight bounding box for the training of the Faster-RCNN
model. Each cropped image only contains one eyelid tumor. The pipeline
of the ETDS is described in Supplementary Fig. 7.

Clinical images Tumor-centered 
cropped images

Tumor-centered 
heatmaps

a

c

b

d

Fig. 6 Examples of photographic images, cropped images and corresponding heatmaps of benign eyelid tumors. a Compound nevus. b
Seborrheic keratosis. c Squamous cell papilloma. d Epidermoid cyst.
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Ground truth and image classification
Two junior ophthalmologists who both had two-year clinical experience
were recruited to annotate cropped images. The label of each cropped
image was based on an unequivocal histopathological diagnosis which
was considered as the ground truth of this study. Images without sufficient
diagnostic certainty were excluded from the study. All images with clear
diagnoses were classified by the study steering committee into two
categories: malignant eyelid tumors (including premalignant ones) and
benign eyelid tumors. The malignant eyelid tumors included BCC, SCC,
SGC, etc. The benign eyelid tumors included SCP, seborrheic keratosis,
nevus, etc.

Development of a deep learning classification system
The cropped images created by the ETDS using the NEH dataset were
randomly split at a 7:1.5:1.5 ratio for training, validation, and testing of a
deep learning classification system. No overlap was allowed among
training, validation, and internal test sets. For acquiring the best deep
learning algorithm to identify malignant eyelid tumors, four state-of-the-art
CNN architectures (DenseNet121, ResNet50, Inception-v3, and VGG16)
were investigated in this study. The architectural characteristics of these
four networks were described as follows:

(1) DenseNet121: This network has 121 layers that are densely
connected through jointing all preceding layers into subsequent
layers to accomplish strengthened feature propagation and alleviate
a vanishing-gradient issue32. Recently, DenseNet121 has been used
to identify keratitis from slit-lamp images20.

(2) ResNet50: This CNN is a 50-layer network that utilizes skip residual
connections to bypass signals across layers, allowing for the increase
in layers without compromising the ease of training33. ResNet50 has
been employed to detect brain abnormality from fluorodeoxyglu-
cose positron emission tomography images34.

(3) Inception-v3: This network has 42 layers and consists of 10 inception
modules which can decrease the number of parameters to be
trained and thereby reduce the computational complexity35.
Inception-v3 has been applied to identify age-related macular
degeneration from fundus images36.

(4) VGG16: This network contains 41 layers, of which, 16 layers have
learnable weights37. It includes the features of the classical
network’s simple structure while expanding the network’s depth
via the flexible use of 3 × 3 convolution37. VGG16 has been used to
detect breast cancer from histopathologic images37.

Transfer learning was adopted as it could promote the performance of
the deep learning algorithms in the tasks of medical image classification38.
Weights pre-trained for ImageNet classification (1,000 object classes) were
leveraged to initialize the CNN architectures39. Image standardization was
performed as a preprocessing step before training the models. Due to
using the transfer learning approach, all cropped images were resized to
224 × 224 pixels for the DenseNet121, ResNet50, and VGG16 algorithms
and to 299 × 299 pixels for the Inception-v3 algorithm. Image pixel values
were normalized within the range of 0 to 1. Data augmentation techniques
were adopted because they were capable of enhancing the robustness of
CNN networks40. Random brightness, rotation, and horizontal and vertical
flipping were applied to the images of the training set to augment the
sample size to 6 times larger than the original size (from 883 to 5,298).
The PyTorch deep learning framework (version 1.6.0) was used to train,

validate, and test our models. The DenseNet121, ResNet50, Inception-v3,
and VGG16 were trained using 4 Nvidia 2080TI graphics processing units.
The mini-batch size was set at 32 on each GPU to gain 128 images in one
iteration. The average value of these samples was computed to update the
trainable parameters. A variation of the stochastic gradient descent
algorithm, adaptive moment estimation (ADAM) optimizer, was used with
an initial learning rate at 0.001, β1 of 0.9, β2 of 0.999, and a weight decay
of 1e-4. Each algorithm was trained for 80 epochs. During the training
process, accuracy and cross-entropy loss were calculated on the training
and validation sets after each epoch and utilized as a reference for model
selection. Each time the accuracy increased or cross-entropy loss
decreased, a checkpoint saved the model state and corresponding weight
matrix. The model with the highest validation accuracy was selected for
use on the internal test set.
The performance of the binary classification model was further

evaluated on an independent external test set. The process of the
development and assessment of the deep learning classification system is
described in Supplementary Fig. 8. The t-SNE technique was applied to

visualize the embedding features of each category learned by the system
in a two-dimensional space41.
To investigate the performance of the system in eyelid tumors without

evident malignant features (borderline cases), we recruited an expert with
15 years of clinical experience to read all images from the external test set
and select images of eyelid tumors of uncertain malignant nature by
evaluating the appearance of the tumors.

Heatmap generation
The Grad-CAM technique42 was employed to produce visual explanations
for the decisions from the system by superimposing a visualization layer at
the end of the CNN model. This method leverages the gradients of any
target concepts, flowing into the last layer of the CNN to generate a
localization map highlighting the key regions in the image for predicting
the concept42. Redder regions denote the more significant features of the
system’s prediction. Using this tool, the heatmap was generated to
interpret the rationale of the system on the discrimination between
malignant and benign eyelid tumors.

Analysis of misclassified images
In a post hoc analysis, a senior ophthalmologist who was not involved in
the original analysis reviewed all false-negative and false-positive findings
made by the system. To illustrate these discrepancies, the possible reasons
for misclassified images were analyzed and documented on the basis of
the observed characteristics in images. In addition, the relationship
between the classification error rates and the system’s predicted
probability was investigated.

Performance comparison between the deep learning system
and ophthalmologists
To evaluate our deep learning classification system in the context of
malignant eyelid tumor detection, we recruited three ophthalmologists
who had different levels of clinical experience (a junior ophthalmologist
with three-year experience, a senior ophthalmologist with seven-year
experience, and an expert with 15-year experience). The external test set
was employed to compare the performance of the optimal system to that
of ophthalmologists with the ground truth. Of note, to reflect the real level
of the ophthalmologists in routine clinical practices, they were not
informed that they competed with the system to avoid bias from the
competition.

Statistical analysis
The performance of the ETDS was evaluated by calculating the AP score
using mmdetection 2.10.0. The sensitivity, specificity, accuracy, and AUC
were calculated to assess the performance of the deep learning
classification system. The 95% CIs of sensitivity, specificity, and accuracy
were estimated with the Wilson Score approach utilizing a package of
Statsmodels 0.11.1, and for AUC, utilizing Empirical Bootstrap with 1000
replicates. The ROC curves were drawn according to the sensitivity versus
1–specificity utilizing the packages of Scikit-learn 0.23.2 and Matplotlib
3.3.1. The deep learning provided a malignancy score ranging from 0 to 1
with a cutoff over 0.5 for classifying an eyelid tumor as being malignant.
Unweighted Cohen’s κ coefficients were calculated to compare the

classification results of the system with the ground truth. The Kappa result
is interpreted as follows: values ≤0 as indicating no agreement, 0.01–0.20
as slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect agreement43. The differences in
sensitivities, specificities, and accuracies between the deep learning
system and ophthalmologists were analyzed using the McNemar test. All
statistical tests were 2-sided and the results were considered statistically
significant at the level of p < 0.05. Statistical analyses were carried out
using Python 3.7.8 (Wilmington, Delaware, USA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The main data supporting the results of this study are available in the manuscript and
its Supplementary Information. The raw datasets from the Ningbo Eye Hospital,
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due to hospital regulation restrictions and patient privacy concerns. Some
anonymized data may be available for research purposes from the corresponding
authors on reasonable request.
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The code and example data used in this study can be accessed at GitHub (https://
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