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Abstract

Purpose—While sampled or short-frame realizations have shown the potential power of deep 

learning to reduce radiation dose for PET images, evidence in true injected ultra-low-dose cases is 

lacking. Therefore, we evaluated deep learning enhancement using a significantly reduced injected 

radiotracer protocol for amyloid PET/MRI.

Methods—Eighteen participants underwent two separate 18F-florbetaben PET/MRI studies in 

which an ultra-low-dose (6.64 ± 3.57 MBq, 2.2 ± 1.3% of standard) or a standard-dose (300 

± 14 MBq) was injected. The PET counts from the standard-dose list-mode data were also 

undersampled to approximate an ultra-low-dose session. A pre-trained convolutional neural 

network was fine-tuned using MR images and either the injected or sampled ultra-low-dose 

PET as inputs. Image quality of the enhanced images was evaluated using three metrics (peak 

signal-to-noise ratio, structural similarity, and root mean square error), as well as the coefficient 

of variation (CV) for regional standard uptake value ratios (SUVRs). Mean cerebral uptake 

was correlated across image types to assess the validity of the sampled realizations. To judge 

clinical performance, four trained readers scored image quality on a five-point scale (using 15% 

non-inferiority limits for proportion of studies rated 3 or better) and classified cases into amyloid-

positive and negative studies.

Results—The deep learning–enhanced PET images showed marked improvement on all quality 

metrics compared with the low-dose images as well as having generally similar regional CVs 
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as the standard-dose. All enhanced images were non-inferior to their standard-dose counterparts. 

Accuracy for amyloid status was high (97.2% and 91.7% for images enhanced from injected and 

sampled ultra-low-dose data, respectively) which was similar to intra-reader reproducibility of 

standard-dose images (98.6%).

Conclusion—Deep learning methods can synthesize diagnostic-quality PET images from ultra-

low injected dose simultaneous PET/MRI data, demonstrating the general validity of sampled 

realizations and the potential to reduce dose significantly for amyloid imaging.
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Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative disorder, and the number of people 

with this disease is projected to increase rapidly [1]. One significant biomarker for AD, 

amyloid plaque buildup in the brain, can be identified with positron emission tomography 

(PET) imaging [2, 3]. To leverage its exquisite sensitivity [4–6], more frequent PET 

scans can be used to understand the pathogenesis of the brain proteinopathies involved 

in dementia [7], to identify at-risk individuals, and to indicate the optimal time point 

for early intervention in potential anti-amyloid therapies [8]. Advanced hardware such as 

simultaneous PET/magnetic resonance imaging (MRI) also allows for perfect spatiotemporal 

correlation of complementary functional (PET) and structural (MRI) information, all of 

which can contribute to the diagnosis and staging of AD [9].

However, for widespread clinical use and longitudinal imaging studies with large study 

populations, radioactivity and cost will be limiting factors. The cost from the radiotracers 

(e.g., amyloid imaging agents) will limit the number of patients to be scanned and reduce the 

number of potential participants in studies. Furthermore, radioactivity associated with the 

radiotracers will also present a risk to participants, especially in vulnerable populations, and 

may discourage patients from enrolling in clinical trials. These factors limit the scalability 

of PET studies. However, a reduction in injected radiotracer dose implies fewer coincidence 

events from annihilation photon pairs (“counts”) being collected for image reconstruction. 

Therefore, reducing the counts collected in PET studies, either by reducing the radiotracer 

dose or the scan time (to reduce image quality degradation from subject motion as well as 

to increase machine throughput), but without sacrificing image quality and diagnostic value, 

will be key to the increased use of this powerful modality.

While researchers have used approximations to investigate dose reduction, or more broadly, 

low-count imaging in PET, some using machine learning methods (both traditional [10–12] 

and convolutional neural networks: CNNs [13–19]), we are proposing actual PET/MRI 

studies with ultra-low-dose injections (~ 2% of the original). In this report, we investigate 

the use of actual injected ultra-low-dose (AULD) PET images (lower than the ~ 12% 

previously reported [20]) as inputs rather than list-mode samples (e.g., reconstructing a 

subset of the original data [13–16, 18, 19, 21] or normal dose with shortened bed time 

[11, 12, 17, 22–24]). To improve image quality, we will take advantage of the properties 
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of CNNs, where the network could learn important features directly from the data, and 

possesses translation invariance [25], which allows the network to extract crucial features of 

the input image regardless of its position in the field of view. This has resulted in multiple 

medical imaging applications such as image identification [26], generation [27, 28], image 

segmentation [29], and MR-based attenuation correction [30, 31]. We will specifically build 

upon our previous study where we trained CNNs to generate an “improved” version of a 

noisy image created by removing counts from a standard-dose study. Given the intrinsic 

radiation emission from many modern PET detectors, it is possible that true injected ultra-

low-dose images might present a more difficult task than the sampling approach. For this 

reason, we undertook this study in patients with separate imaging sessions of true injected 

ultra-low-dose and standard-dose 18F-florbetaben PET/MRI for two reasons: (1) to directly 

demonstrate the feasibility of true ultra-low-dose acquisition and (2) to further validate our 

prior undersampling method.

Materials and methods

Fifty total participants (32 for the pre-trained network presented in Chen et al. [13] and 18 

as new data) were recruited for this study, approved by the local Institutional Review Board. 

Written informed consent for imaging was obtained from all participants or an authorized 

surrogate decision-maker.

PET/MR data acquisition: pre-trained network

For the network pre-trained with ultra-low-dose list-mode samples, 32 participants (20 

female, age 67.7 ± 7.9 years) with MRI and PET data were simultaneously acquired 

on an integrated PET/MRI scanner with time-of-flight capabilities (SIGNA PET/MR, 

GE Healthcare, Waukesha, WI, USA). T1-weighted, T2-weighted, and T2 FLAIR 

morphological MR images were acquired as indicated in Chen et al. [13]. 334 ± 30 MBq 

of the amyloid radiotracer 18F-florbetaben (Life Molecular Imaging, Berlin, Germany) were 

injected intravenously and PET data was acquired 90–110 min after injection. The list-mode 

PET data was reconstructed for the standard-dose ground truth image and every 100th 

event was sampled and reconstructed (preserving the Poisson nature of the PET acquisition 

and taking the different randoms levels into account) for a sampled [20]1%-dose PET 

image. Time-of-flight ordered-subsets expectation-maximization, with two iterations and 28 

subsets, and accounting for randoms, scatter, dead-time, and attenuation, was used for all 

PET image reconstructions. MR attenuation correction was performed using the vendor’s 

atlas-based method relying on 2-point Dixon imaging [32].

PET/MR data acquisition: ultra-low-dose protocol

Eighteen (9 female, 72.1 ± 8.6 years) additional participants were scanned with the 

following injected ultra-low-dose protocol (participant breakdown by diagnosis in Table 

1; sample protocol in Fig. 1). These participants were scanned in two PET/MRI sessions 

(8 on same day: low-dose session followed by full dose; 10 on separate days: 1- to 

42-day interval, mean 17.8 days), with 6.64 ± 3.57 and 300 ± 14 MBq 18F-florbetaben 

injections respectively (2.2 ± 1.3% dose compared to the corresponding standard-dose 

sessions) representing an approximately 50-fold reduction in radiation dose. For all scans, 
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the T1-, T2-, and T2 FLAIR–weighted MR images were acquired simultaneously with 

PET (90–110 min after injection; 83–98 min for one participant) on the same scanner. 

Identical MR acquisitions were performed across the two scanning sessions for all but 

10 of the sequences, where the same sequence from the other scan would be used as a 

substitute. Similar to the previous reconstruction pipeline, time-of-flight ordered-subsets 

expectation-maximization, with two iterations and 28 subsets, and accounting for randoms, 

scatter, dead-time, and attenuation (vendor’s zero-TE [ZTE]-based method), was used for 

all PET image reconstructions. For validation of the sampled ultra-low-dose (SULD) data, 

the list-mode PET data was reconstructed for the standard-dose ground truth image and was 

also sampled by a factor determined from the dose reduction between the AULD data and 

the standard-dose acquisitions and then reconstructed to produce a SULD PET image at the 

same count level as the AULD image collected in the subject’s other session. Specific dose 

reduction factors can be found in the Supplementary Materials for all participants.

Image pre-processing

To account for any positional offset of the patient during different acquisitions within the 

same scanning session, all MR images (from both scanning sessions) were co-registered 

to the reference space of the standard-dose PET images (yellow-bordered images, Fig. 1) 

using the software FSL [33], with 6 degrees of freedom and correlation ratio as the cost 

function. All images were resliced to the dimensions of the acquired PET volumes, 89 slices 

(2.78-mm slice thickness) with 256 × 256 (1.17 × 1.17 mm2) voxels. All images from the 

low-dose session were also co-registered to the reference space to account for differences 

between scans. A head mask was made from the T1-weighted image through intensity 

thresholding and hole filling and applied to the PET and MR images; the normalized 

volumes were used as inputs to the CNN. The voxel intensities of each volume were 

normalized by their Frobenius norm.

CNN implementation, pre-trained network

A U-Net CNN was trained in the work from Chen et al. [13], with 2848 inputs (32 datasets 

with 89 slices each) and an eightfold data augmentation. Briefly, the inputs of the network 

are the multi-contrast MR images (T1-, T2-, and T2 FLAIR–weighted) and, during the 

pre-training phase, the sampled 1%-dose PET image. The standard-dose PET image was 

used as the ground truth (Fig. 2).

The encoder portion is composed of layers which perform two-dimensional convolutions 

(using 3 × 3 filters), batch normalization, and rectified linear unit activation operations. 

2-by-2 max pooling is used to reduce the dimensionality of the data. A residual connection 

was used in the central layers to connect its input and output. In the decoder portion, the data 

in the encoder layers are concatenated with those in the decoder layers. Linear interpolation 

is performed to restore the data to its original dimensions. 1 × 1 convolutions and hyperbolic 

tangent activation were used in the final layer to obtain the output, which is then added with 

the input low-dose image to obtain the enhanced PET image. The network was trained with 

an initial learning rate of 0.0002 and a batch size of four over 100 epochs. The L1 norm was 

selected as the loss function and adaptive moment estimation as the optimization method 

[34].
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CNN implementation, ultra-low-dose protocol

In the participants with both actual low-dose and standard-dose imaging sessions, to adjust 

for the potential subtle differences between the datasets and to prevent overfitting due to 

the number of the additional participants, the weights from the last layer of this pre-trained 

model were fine-tuned separately with either the AULD or SULD dataset as inputs. A larger 

head mask was made by dilating the previous head mask by 8 voxels and applied to all 

PET and MR images. Ninefold cross-validation was used to use all data efficiently and to 

prevent training and testing on the same subjects (16 subjects for training, 2 subjects for 

testing per network trained). The network was fine-tuned with a learning rate of 0.0001 and 

a batch size of four over 100 epochs. For testing, images acquired during the actual injected 

ultralow-dose session were used as inputs.

Assessment of image quality

Using the software FreeSurfer [35, 36], a brain mask derived from the T1-weighted images 

of each subject was used for voxel-based analyses. The mean cerebral uptake values were 

calculated for all image types (standard-dose images were multiplied by the low-dose 

percentage) and correlation coefficients were computed. The mean cerebral uptake values 

for the two ultra-low-dose images (AULD vs. SULD) were also correlated to test the 

validity of the undersampling method. For each axial slice, the image quality of the deep 

learning-enhanced PET images and the original low-dose PET images within the brain 

mask were compared to the standard-dose image using several metrics: peak signal-to-noise 

ratio (PSNR),structural similarity (SSIM)[37],and root mean square error (RMSE). The 

metrics for each subject were obtained by a weighted average (by voxel number) of the 

slices. Paired t tests were conducted (95% confidence interval, Bonferroni-corrected for 

three comparisons) to compare the three metrics between the methods (actual injected vs. 

sampled) as well as between the ultra-low-dose and their CNN-enhanced counterparts.

Clinical readings

The enhanced PET images, low-dose PET images, and the standard-dose PET image of 

each subject were anonymized and presented in random order to four clinicians (G.D., 

M.E.I.K., G.Z., M.Z.), all of whom had been certified to read amyloid PET imaging. The 

amyloid uptake status (positive, negative, uninterpretable) of each image was determined. 

The standard-dose image readings were treated as the ground truth; the accuracy, sensitivity, 

and specificity were calculated for the readings of the low-dose (two versions) and the 

enhanced images (two versions).

For each PET image, the clinicians assigned an image quality score on a five-point scale: 

1 = uninterpretable, 2 = poor, 3 = adequate, 4 = good, 5 = excellent. The scores were 

dichotomized into 1–2/3–5, and the percentage of images deemed adequate or better 

was calculated for each method. The 95% confidence interval for the difference in the 

proportions of high scores was constructed and compared to a predetermined non-inferiority 

threshold of −15%.

The agreement of the four readers was assessed using Gwet’s agreement coefficient 1 (AC1) 

[38]. For intra-reader agreement, the standard-dose PET images were clinically read by the 
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same clinicians a second time for amyloid status in a separate reading session (at least 6 

weeks apart).

Region-based analyses

FreeSurfer-derived cortical parcellations and cerebral segmentations based on the Desikan-

Killiany Atlas [39] were grouped into 10 larger regions for analysis (groupings in the 

Supplementary Materials). The whole cerebellum was used as a reference region for 

calculating SUVR values of all PET images. The mean SUVR and the voxel-wise standard 

deviation (SD) were calculated for the large regions in each subject. To assess tracer uptake 

agreement between images, the coefficient of variation (CV=SD/mean) was calculated and 

compared between methods with paired t tests.

Results

Qualitative assessment of image quality

Qualitatively, the enhanced images show marked improvement in image quality compared 

with the low-dose images and visually resemble the ground truth image (Fig. 3). The mean 

radiotracer uptake within the brain correlated strongly across image types (standard-dose vs. 

AULD, AULD vs. enhanced AULD, standard-dose vs. enhanced AULD, AULD vs. SULD) 

and the line of best fit is close to the line of identity (Fig. 4).

Quantitative assessment of image quality

The metrics showed that the enhanced images vastly outperformed their ultra-low-dose 

counterparts (p < 0.001 for all comparisons). Between the AULD and SULD images, the 

metrics did not show significant differences (p > 0.05/3for all comparisons), although the 

enhanced SULD images showed higher PSNR, SSIM, and lower RMSE than the enhanced 

AULD images (Fig. 5).

Clinical readings

Gwet’s AC1 was used to evaluate inter-rater agreement. The readers had generally high 

agreement for each method (Table 2), with the standard-dose images having the highest 

agreement followed by the enhanced AULD images.

Of the 72 total reads of the standard-dose ground truth amyloid images, 34 (47%) were 

amyloid positive. As expected, the AULD and SULD PET images were inadequate with a 

majority of them uninterpretable (43/72 reads, 60%).

In terms of accuracy, sensitivity, and specificity of the clinical assessments between the 

enhanced images and the standard-dose images, readings of the enhanced images had high 

values in general, with the enhanced AULD images slightly outperforming the enhanced 

SULD images (Table 3; confusion matrices in Table 4). The accuracy of the enhanced 

AULD images was close to the reader reproducibility (98.6%, 95% confidence interval: 

92.5%, 100.0%).
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Compared to the ratings, the readers had less agreement with each other in assigning the 

quality scores (Table 2). The readers had the most agreement in the enhanced AULD 

images followed by the enhanced SULD images. The image quality scores assigned by each 

reader to each of the reconstructed PET volumes are shown in Fig. 6, along with mean 

scores for each group. All of the standard-dose images were scored as 3 or above, while 

both sets of ultra-low-dose images scored 2 or below. The enhanced images had a slightly 

lower proportion of high-scoring images than the standard-dose images, but still fell within 

the non-inferiority threshold of - 15% (confidence intervals between enhanced AULD and 

standard-dose: [− 13%, − 1%]; between enhanced SULD and standard-dose: [− 11%, 0%]). 

Detailed confusion matrices of the readers are provided in the Supplementary Materials.

Region-based analyses

The CV of the regional SUVRs was higher in the AULD and SULD images than the 

standard-dose or the enhanced images. Performing paired t tests between the standard-dose 

and enhanced image types in each region (three tests per region) showed that a majority of 

comparisons were not significantly different (p > 0.05/3) (Fig. 7).

Discussion

In this study, we demonstrated the feasibility of ultra-low-dose deep learning–enhanced 

amyloid PET/MRI imaging, using a small percentage (~ 2.2%) of the traditional injected 

dose. Dramatically lowering injected dose will enable more frequent scanning under current 

radiation safety thresholds and has a wide range of potential applications, such as for use 

in studies requiring multiple follow-ups (e.g., clinical trials of amyloid-clearing drugs), 

multi-tracer studies, and longitudinal studies of younger populations (e.g., dementia in 

Down syndrome patients or those with familial AD) to evaluate their disease progression. In 

addition, we validated the list-mode undersampling method used to approximate ultra-low-

dose studies; this supports the idea that large-scale retrospective ultra-low-dose PET studies 

can be performed.

Metrics-wise, the enhanced images vastly outperformed their ultra-low-dose counterparts; 

comparing the enhanced AULD vs. enhanced SULD images showed slightly (but not 

significant) improved metrics for the SULD images. This may be due to the use of 

the pre-trained network, which was trained with sampled list-mode reconstructions. The 

SULD images were also in the same space as the standard-dose images; it is possible 

that the co-registration/interpolation step necessary for the AULD inputs might affect CNN 

performance. On the other hand, the CV of the regional SUVRs provides another metric to 

show the improved image quality of the enhanced images compared to their ultra-low-dose 

counterparts.

Qualitatively, the enhanced images are smoother in appearance than the standard-dose 

images; this difference resulted in the readers preferring the standard-dose images over 

the enhanced images. However, the enhanced images still produced a similar proportion 

of “high quality” images compared to the standard-dose. On the other hand, both sets of 

ultra-low-dose images were very noisy and had the same proportion of uninterpretable 

images.

Chen et al. Page 7

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2022 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The correlations between AULD and SULD images showed that the intrinsic radiation of 

the PET detector ring did not affect the AULD data, though this might become a factor as 

we extend our research into lower dose reduction regimes. Between the SULD and AULD 

images, the high correlation coefficient (almost 1) validated the use of undersampling the 

list-mode data and strongly suggests that results obtained from such data would translate to 

actual injected low-dose studies.

Similar studies on various tracers have also shown that readers can also read images 

reconstructed with reduced counts, albeit with less certainty [23] and the equivalent dose 

reduction factor is not as extreme (25%) [24]as that used in this work (~ 2%). With deep 

learning enhancement, the images achieve similar diagnostic value in accuracy and are much 

preferred by the readers compared to the ultra-low-dose images. This shows the potential of 

employing scan protocols that use massively lower injected dose than current convention.

There are several limitations to our study, one of them being the registration (and 

interpolation) of the AULD and MRI images discussed previously. Further investigation 

on the effect of simultaneity as well as training PET-only networks (e.g., using the network 

structure in [15]; preliminary results shown in the Supplementary Materials) will elucidate 

the extent of this effect on the low-dose image enhancement. The rounding error that occurs 

when converting the DRF into an undersampling factor will also contribute to inaccuracies 

during the correlation study. The parameters used for reconstructing the AULD and SULD 

datasets are also a potential source of bias in this study. Ideally, the PET images at different 

count levels should be individually optimized during reconstruction. However, we did not 

opt to perform this optimization due to the varying methods implemented in literature [23, 

24] as well as the large parameter search space. The bias due to image quality between the 

two ultra-low-dose datasets should also be minimized due to the two image types having 

the same reconstruction parameters. The difference in attenuation correction methods as well 

as dose reduction levels between the two datasets used (for the pre-trained network vs. the 

ultra-low-dose protocol) is also a potential source of bias, although we believe this issue has 

been resolved through fine-tuning the network with datasets coming from the ultra-low-dose 

protocol. Finally, other potential sources of bias include the time between the two scanning 

sessions, participant population, and the difference in brain physiology and function at the 

time of scanning due to these differences, though studies have shown that the change in 

physiology will be minimal given our time frame [40]. Due to the challenges in scheduling 

and acquiring multiple PET sessions in these patients at risk of dementia, the size of the 

test set is also necessarily small. This may result in a non-representative sample and larger 

studies could be considered (particularly using sampled list-mode data now that they have 

been validated).

Conclusion

This work has shown that high-quality amyloid PET images can be generated using deep 

learning methods starting from simultaneously acquired MR images and actual ultra-low-

dose PET injections. Moreover, we have validated the method of undersampling list-mode 

data for ultra-low-dose imaging. The enhanced images demonstrated diagnostic value with 

high accuracy, sensitivity, and specificity, as well as quantitative value through SUVR 
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analyses. The results of this work can potentially contribute to the implementation of lower-

count (shorter time and/or reduced dose) amyloid PET imaging and its increased utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sample scanning protocol for those participants undergoing two injections in the same day. 

The same MRI sequences are acquired during each session. The standard-dose image is used 

as the standard space (yellow border) during co-registration
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Fig. 2. 
A schematic of the U-Net used in this work. Initially, the ultra-low-dose PET and the 3 

MR contrasts are used as inputs and pre-trained on the standard-dose PET image (a). The 

weights from all the layers are then saved as the starting point for the 2nd fine-tuning step 

(b). Only the last layer (red) is trained with data from the ultra-low-dose injection protocol. 

The arrows denote computational operations and the tensors are denoted by boxes with the 

number of channels above each box. Conv: convolution; BN: batch normalization; ReLU: 

rectified linear unit activation; tanh: hyperbolic tangent

Chen et al. Page 13

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2022 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Representative amyloid PET images (top: amyloid negative, bottom: amyloid positive). The 

enhanced PET images show significantly reduced noise compared to both the actual injected 

and sampled ultra-low-dose PET images, and bear resemblance in uptake pattern to the 

standard-dose images
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Fig. 4. 
Correlation of mean cerebral uptake between image types. The uptake values of the 

standard-dose images were multiplied by each dataset’sdose reduction factor (ratio between 

the injected ultra-low-dose and the injected standard-dose). E.: enhanced
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Fig. 5. 
Image quality metrics comparing the ultra-low-dose PET images to their counterparts 

enhanced from the network. For the three metrics, comparison is to the ground truth 

standard-dose PET images. PSNR: peak signal-to-noise ratio; SSIM: structural similarity; 

RMSE: root mean square error
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Fig. 6. 
Clinical image quality scores as assigned by the four readers. AULD: actual injected ultra-

low-dose; Enh.: Enhanced; SD: standard-dose; SULD: sampled ultra-low-dose
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Fig. 7. 
Coefficient of variation (mean/standard deviation) of regional standard uptake value ratios 

(SUVRs) compared between image types across all subjects. Pair-wise paired t tests were 

only performed between the standard-dose and enhanced images (three image types with 

similar coefficients of variation) at the p = 0.05/3 (Bonferroni corrected) level, with 

asterisks denoting significance. AULD: actual injected ultra-low-dose; Enh.: enhanced; 

HC: hippocampus; L. Temp.: lateral temporal; SULD: sampled ultra-low-dose; WM: white 

matter
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Table 1

The participants recruited in this study and their clinical diagnoses

Diagnosis Number

Pre-trained network Alzheimer’s disease 6

Mild cognitive impairment 2

Dementia with Lewy bodies 1

Parkinson’s disease 12

Healthy control 11

Subtotal 32

Ultra-low-dose protocol Alzheimer’s disease 4

Mild cognitive impairment 6

Healthy control 8

Subtotal 18

Total 50
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Table 3

The accuracy, sensitivity, and specificity of the uptake status readings between the enhanced images and the 

standard-dose images.

Metric (95% CI) Enhanced from AULD Enhanced from SULD

Accuracy 97.2% (90.3–99.7%) 91.7% (82.7–96.9%)

Sensitivity 100% (89.7–100%) 88.2% (72.5–96.7%)

Specificity 94.7% (82.3–99.4%) 94.7% (82.3–99.4%)

AULD, injected ultra-low-dose; CI, confidence interval; SULD, sampled ultra-low-dose
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Table 4

Confusion matrices between the standard-dose and the images enhanced from actual injected ultra-low-dose 

(AULD) and sampled ultra-low-dose (SULD) data

Enhanced from AULD data

Negative Positive Total

Standard-dose Negative 36 2 38

Positive 0 34 34

Total 36 36 72

Enhanced from SULD data

Negative Positive Total

Standard-dose Negative 36 2 38

Positive 4 30 34

Total 40 32 72
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